INTRODUCTION

In the pre-antibiotic era, the role of vitamin D in prevention of infectious diseases has been very important. The cod liver oil, one of the most important nutritional sources of vitamin D, was used both for treatment of rickets and tuberculosis (TB). Moreover, research has stressed the important role of vitamin D for the immune system. Due to the polyvalent action of vitamin D for the human health, in recent times its deficit has been investigated and associated with a number of different diseases.

Micronutrients as potential adjunctive immunotherapy are a growing field of medical attention since scientific evidence of a specific antimycobacterial activity of vitamin D3 in macrophages has increased. HIV (Human Immunodeficiency virus) and TB co-epidemics represent a setback to global control of tuberculosis. Hypovitaminosis D has been identified as a main risk factor for the development of TB. Therefore, vitamin D supplementation may represent a new strategy for the TB prevention and for the shortening of TB treatment in the face of growing drug resistance.

Vitamin D: an historical perspective

The discovery of vitamin D began with the recognition of rickets as childhood bone disease by Francis Glisson in 1650. The association between rickets and a lack of sunlight exposure was reported by Sniadecki in 1822. By the mid-19th century, cod liver oil has been used both for treatment of rickets and tuberculosis (TB). Moreover, research has stressed the important role of vitamin D for the immune system. Due to the polyvalent action of vitamin D for the human health, in recent times its deficit has been investigated and associated with a number of different diseases.

Micronutrients as potential adjunctive immunotherapy are a growing field of medical attention since scientific evidence of a specific antimycobacterial activity of vitamin D3 in macrophages has increased. HIV (Human Immunodeficiency virus) and TB co-epidemics represent a setback to global control of tuberculosis. Hypovitaminosis D has been identified as a main risk factor for the development of TB. Therefore, vitamin D supplementation may represent a new strategy for the TB prevention and for the shortening of TB treatment in the face of growing drug resistance.
has been established as an effective treatment for rickets [1]. Mellanby emphasized the role of the vitamin D as the preventing agent of rickets in 1919 [2]; while the first demonstration of its anti-rachitic properties was given by Elmer McCollum in 1922 [3]. By the 1930s, the use of cod liver oil in the treatment and prevention of rickets became common place. The bridging of the knowledge that photosynthesized vitamin D and vitamin D in cod liver oil were similar was responsible for the eventual conquest of rickets. In the same way, the utilization of vitamin D for treatment of tuberculosis was common in the pre-antibiotic era [4]. In the mid-19th century, cod liver oil was reported by Williams to provide improvement to patients with pulmonary tuberculosis [5] and it was subsequently found to contain high quantities of vitamin D3. The isolation of vitamin D3 from cod liver oil in order to treat tuberculosis in the 1930s led to its widespread use in TB treatment and prevention, until the introduction of antibacterial chemotherapy in the 1950s.

VITAMIN D: MECHANISM OF ACTION

Vitamin D: endocrine metabolism

Vitamin D is considered an essential micronutrient. It is well known for its important role, together with calcium, in bone mineralization. Vitamin D in human body is present in several forms: the most important are 1,25-dihydroxyvitamin D, the circulating form, and 1,25- dihydroxyvitamin D, the active form. Vitamin D is produced in the skin through exposure to UV light (through the transformation of 7-dehydrocholesterol in vitamin D3 or cholecalciferol) or absorbed from few foods. Vitamin D can be ingested in the form of vitamin D3 or vitamin D2 (ergocalciferol). Vitamin D2 is derived from irradiation of the fungal steroid ergosterol. The vitamin D is processed by 25-hydroxylase present in the liver to produce 1,25-dihydroxyvitamin D. Finally 25 hydroxyvitamin D is transformed by the enzyme 25-hydroxyvitamin D-1a-hydroxylase (CYP27B1) in 1,25-dihydroxyvitamin D, its active form. An important target organ for generation of 1,25-dihydroxyvitamin D is the kidney, where the process is regulated by calcium metabolism signaling.

Vitamin D role in the immune system and tuberculosis

Vitamin D, in its active form, 1,25-dihydroxyvitamin D, has a complex action on the immune system, by modulating and inhibiting its activity in different ways. In 2006, Liu and colleagues proved that Mycobacterium tuberculosis sensing by the Toll-like receptor 2/1 (TLR2/1) complex increases expression of vitamin D receptors (VDR) and CYP27B1 in monocytes [6]. The synthesis of 1,25-dihydroxyvitamin D promotes VDR-mediated transactivation of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis.

Cathelicidins have a direct antimicrobial function. In addition to anti-bacterial effects including membrane disruption, they have antiviral effect in the inhibition of herpes simplex viruses, adenovirus and retrovirus [7]. A study showed that macrophages are most efficient in producing cathelicidin antimicrobial peptide LL-37 after infection with M. tuberculosis, suggesting that cathelicidin from macrophages may be an important participant in the innate immune response during early infection in humans [8]. Liu (2006) demonstrated that transcriptional regulation of cathelicidin can be mediated by activation of 1,25-dihydroxyvitamin D. Stimulation of TLR receptors in macrophages by microbial products results in increased conversion from the inactive 25-hydroxyvitamin D to the active 1,25-hydroxyvitamin D. According to Adams and colleagues, a consequence of TLR activation is the production of defensin-2 and of cathelicidin: these two antimicrobial peptides are strongly up-regulated by 1,25-hydroxyvitamin D [9]. In fact, according to Liu (2006), serum from donors with insufficient levels of dihydrovitamin D supported a lower induction of cathelicidin in monocytes compared to serum of donors with sufficient vitamin D levels. A similar conclusion has been reported by the above study of Adams, using serum from patients with insufficient levels of vitamin D, before and after vitamin D supplementation. Those further experiments have confirmed earlier evidence: the 4 μg/ml concentrations of vitamin D metabolites have been able in a reproducible way to protect infected human macrophages and restrict mycobacterial growth in vitro [10].

The crucial role played by vitamin D in the immune response to M. tuberculosis consists, as well as the production of the LL-37, in promoting phagolysosome formation [11].

A research has documented that 1,25-dihydroxyvitamin D promotes autophagy in monocytes [12]. Autophagy and vitamin D3-mediated innate immunity have demonstrated to confer protection against infection with intracellular Mycobacterium tuberculosis. A study of Eun-Kyeong confirms the scientific findings that antimicrobial peptides play central roles in innate immunity to mycobacteria, including direct killing and indirect immune modulation. Of particular interest, human cathelicidin LL-37 has shown to be a key component linking vitamin D3-dependent immunity and autophagy [13]. The study wishes further researches into how cathelicidin regulates innate immune responses in order to facilitate the development of combinatorial treatments involving antimicrobial peptides, nutritional deficit correction and conventional chemotherapy. This could represent a breakthrough in therapies for TB, especially for multidrug-resistant TB, which shows resistance to conventional antibiotics.

On the other hand, vitamin D binds the vitamin D receptors on natural killer T (NKT) cells and CD8aa. Both cells have an important role in regulating cytokine production and in protecting against the generation of autoimmunity [14]. Researches have demonstrated that 1,25-dihydroxyvitamin D is a potent modulator of the T-cell phenotype: it inhibits the T-helper (Th) 1 T cells associated with cellular immune response while conversely enhancing humoral
Th2 cells response [15, 16]. A recent finding indicates that a balance between pro-(Th1) and anti (Th2) inflammatory responses is optimal for control of TB, thus suggesting that the role of 1,25-dihydroxyvitamin D3 may have a relevant importance [17].

VITAMIN D DEFICIENCY IN THE WORLD

An overview

It is now widely recognized that vitamin D deficiency (VDD) is one of the most common conditions in the world. It has been estimated that upward of 50% of both children and adults living in the United States, Canada, Mexico, Europe, Asia, New Zealand, and Australia have vitamin D deficiency [18].

A recent national survey in the United States demonstrated that the prevalence of vitamin D insufficiency doubled in the last ten years: more than 90% of pigmented populations (Blacks, Hispanics, and Asians) suffer from vitamin D insufficiency, as well as nearly three fourths of the white population [19]. The reason why both Hispanics and Blacks are at much higher risk for VDD is mainly related to their skin pigmentation that gives them a natural sun protection factor, thereby reducing by 50% to 90% skin’s efficiency in producing vitamin D3. When black American men and women were exposed to simulated sunlight, they were unable to raise their blood levels of vitamin D3, whereas white adults who received the same amount of simulated sunlight raised their blood levels of vitamin D3 by almost 50 fold [20]. High prevalence of hypovitaminosis D among black Americans has been found mainly in women [21].

A clinical research that investigated vitamin D metabolism showed that people from India residing in southern United States have reductions in serum vitamin D3 and 25(OH)D and are at risk of developing VDD, rickets and osteomalacia [22]. People in poor countries often have low vitamin D levels. In addition, darkly pigmented skin reduces the amount of UV light available in the skin for production of vitamin D. A comparative study carried out in Ethiopia has demonstrated that both ordinary Ethiopians and full term pregnant Ethiopian women living in Addis Ababa have a significantly decreased vitamin D status compared with pregnant Norwegian women living in Oslo [23].

In the Indian sub-continent several studies assessed the vitamin D level in the population. A study conducted in Northern Pakistan found 89% of adult patients with low vitamin D level [24]. An investigation from India has drawn attention towards wide prevalence of VDD in all the country, in all age groups including newborns, children, pregnant women and adult males and females residing in rural and urban areas. In both areas, widely prevalent VDD is functionally relevant to skeletal health including osteomalacia and rickets [25]. In 2005 a very high prevalence of hypovitaminosis D was observed in a research carried out among pregnant women and their newborn in northern India [26]. An investigation in Mysore found that sixty-seven percent of women had vitamin D deficiency and that at ages 5 and 9.5 years, children born to vitamin D–deficient mothers had smaller arm-muscle area in comparison with children born to mothers without deficiency [27]. A parallel research in New Delhi assessed a very high prevalence of vitamin D deficiency in healthy term born infants at the age of 3 months and their mothers in winter as well as summer [28].

In the Middle East and other Arab countries, the hypovitaminosis D is very frequent in children and adults. A cross-sectional study observed high prevalence of VDD in apparently healthy children living in Jeddah [29]. For cultural and religious reasons, the dress style of women outdoors prevents exposure of skin to sunlight. A cross-sectional randomized study conducted in Saudi Arabia indicated that VDD among healthy Saudi women of 25-35 years was 30% and 55% in women of ≥ 50 years [30]. In Iran high percentage of VDD was defined in a population study: in Teheran prevalence of severe, moderate and mild VDD was 9.5%, 57.6% and 14.2% respectively [31]. New lifestyles, with an increase in time spent in artificial environment (offices, houses, commercial centres), mainly in the hottest season, limit the physiological ability of human body to synthesize from precursor “active” form of vitamin D.

The prevalence of vitamin D deficiency increased significantly with age. Although vitamin D levels may differ by latitude and skin pigmentation worldwide, there is growing evidence that living in sunlit areas may not provide adequate amounts of vitamin D, especially in postmenopausal women and old people. A study in Brazil assesses that although severe vitamin D deficiency leading to rickets or osteomalacia is rare in the country, there is accumulating evidence of the frequent occurrence of subclinical VDD, especially in elderly people [32].

Hypovitaminosis D and main diseases

Much debate has taken place over the definition of vitamin D deficiency. Most agree that a 25(OH)D concentration ≤ 50 nmol/L, or 20 ng/mL, is an indication of vitamin D deficiency, whereas a 25(OH)D concentration of 51-74 nmol/L, or 21-29 ng/mL, is considered to indicate insufficiency; concentrations > 30 ng/mL are considered to be sufficient [33]. VDD is associated with various chronic diseases: osteopathy, myopathy, infections, inflammatory disease, hypertension, and diabetes mellitus [34], and auto-immune diseases (systemic lupus erythematosus and rheumatoid arthritis) [33] and is a risk factor for developing cardiovascular disease [36].

Rickets, although rare, is still diagnosed in the United States. Infants who are recent immigrants or adopted from orphanages abroad are at risk for rickets [37]. Vitamin D deficiency rickets is persistent in Canada, particularly among children who reside in the north and among infants with darker
skin who are breastfed without appropriate vitamin D intake [38].

Rickets is among the most frequent childhood disease in many developing countries. In the Indian subcontinent and Middle East rickets is directly caused by VDD [39]. Moreover, a study in India suggests that rickets is common in malnourished children [40]. Inadequate exposure to sunlight appears to be the main factor responsible for the high incidence of the disease. In addition, malnutrition may contribute to the development of rickets [41].

The VDD is an important factor in the development of osteoporosis. An international epidemiological investigation of 18 countries at various latitudes conducted in 2004 and 2005 found a prevalence of vitamin D inadequacy among women with osteoporosis [42] and a study carried out in Italy assessed a high prevalence of osteoporosis in postmenopausal women due mainly to VDD [43].

VITAMIN D DEFICIENCY AND TB

TB patients frequently have lower vitamin D levels than the general population. Scientific research is studying the effect of vitamin D on the course of the TB disease. A recent study in Spain indicated that a high proportion of contacts of TB patients had low serum 25(OH)D levels and suggested that sufficient 25(OH)D levels protect against tuberculin skin test (TST) conversion, therefore supporting the hypothesis that deficient vitamin D status is a TB risk factor [44].

One of the major causes for globally VDD is a lack of sun-induced vitamin D synthesis. A survey in Germany among immigrant and ethnic minority groups [46]. The observation that migrants have lower serum vitamin D than do their healthy matched controls has led authors to conclude that the fall in vitamin D levels associated with migration from sunshine-rich to sunshine-poor areas is the cause for consequent reduction in cellular immunity that may allow a previously quiescent tuberculous focus to break down [47].

Martineau in 2011 observed that VDD was highly prevalent among black African adults living in Cape Town and is associated with susceptibility to active TB in both the absence and the presence of HIV infection, the association being stronger in HIV-infected people. Moreover, he pointed out that seasonal variations in vitamin D status and TB incidence among black Africans in Cape Town are causally related and suggested that all African immigrants should have their vitamin D levels checked, in order to restore the vitamin D deficiency [48].

A cross-sectional study was conducted among pulmonary tuberculosis (PTB) patients in Mwanza, Tanzania to identify the predictors of their vitamin D status. The authors deduced that serum 25(OH)D is a valid measure of vitamin D status during the acute phase response and that the lower concentrations in PTB+ patients may reflect increased utilization of vitamin D [49].

A study by Gibney confirms the strong association between VDD and Latent Tuberculosis Infection (LTBI) in African immigrants in Melbourne [50]. A further study, among sub-Saharan African immigrants attending the infectious diseases clinics in Melbourne, documents the frequency of latent or active TB infection and the relationship with vitamin D deficiency [51].

In the Indian sub-continent, TB has historically been a public health concern, due to a high prevalence and incidence in the general population. In a cohort follow-up study from Pakistan, low vitamin D levels were associated with progression to active TB disease in healthy household contacts. The findings suggested also the higher susceptibility of women to the infection, because of their low socioeconomic status, poor nutrition, traditional/cultural traits, and little exposure to sunlight [52]. In Southeast Asian countries, TB is also a major public health issue. A study among the Vietnamese population in Ho Chi Minh City suggests that low vitamin D status is an antecedent risk factor for TB [53].

A review of several observational studies (UK, Indonesia, Kenya, Thailand, Hong Kong, India) found that patients with TB have, on average, lower serum levels of vitamin D than healthy controls matched on sex, age, ethnicity, diet and geographical location. W orries about VDD and the risk of TB may therefore not be limited to Arab countries, Afro-Asian indigenous and migrant communities, as half of people in Europe aged more than 60 years are vitamin D deficient and concerns have been expressed in the UK about increasing malnutrition in the elderly [54].

VITAMIN D DEFICIENCY AND HIV

HIV represents a severe threat to the worldwide health, through population mobility. The VDD is particularly important in chronic illnesses, like HIV, both because the epidemiology of the disease coincides with the populations at higher risk of vitamin D deficiency and for the negative impact of protease inhibitors on vitamin D metabolism [55].

There is growing recognition of an association between VDD and the pathogenesis and course of HIV disease. According to a study, VDD was found frequent in HIV-infected persons of several countries of north, central, south Europe and Israel and was independently associated with a higher risk of mortality and HIV outcomes [56].

VDD has been demonstrated to be more frequent in HIV-positive patients than in healthy age and sex matched controls [57]. Insufficient levels of vitamin D may be one of several other risk factors contributing to the progression of HIV disease. Some cross-sectional studies have indicated positive correlations between 1,25(OH)2D and CD4+ cell counts [58].
According to Spector, VDD is present in 25% to 75% of infected persons and has been associated with more rapid disease progression. In the meantime, infants born to HIV-infected women with vitamin D deficiency are at increased risk of infection and have decreased survival [59]. A study has indicated an association between low vitamin D levels and mother-to-child transmission (MTCT) of HIV in developing countries. In a research in HIV-infected Tanzanian women, it was observed an increased risk of being HIV infected or of dying at birth for children born to women with a low vitamin D level at baseline. A low maternal vitamin D level was also associated with HIV transmission via breast-feeding and with higher infant mortality during follow-up [60].

In a further survey in the same cohort, low vitamin D levels at baseline were significantly associated with increased risk of HIV disease progression, severe anemia, and hypochromic microcytosis [61].

The above researches provide initial support for a potentially beneficial effect of adequate vitamin D status on HIV disease and related outcomes. Their results were consistent with one study which has found a correlation between higher vitamin D levels and increased survival times of HIV-infected patients [62].

Moreover HIV is correlated with the risk of tuberculosis co-infection. The TB is spreading quickly in developing countries, in sub-Saharan Africa and South Asia, and low-cost public health interventions for its prophylaxis are urgently needed. To restore the vitamin D level in the blood may prove to be an effective adjuvant treatment regimen for TB patients [63].

VITAMIN D AND RESPIRATORY INFECTIONS

Vitamin D has complex effects on pulmonary cell biology and immunity with impact on inflammation, host defense, wound healing, repair, and other processes. First of all the epithelial cells of lungs express high levels of CYP27B1, supporting conversion of vitamin D in its active form. Those cells treated with supplementation of vitamin D increase the production of cathelicidin [64]. Studies have established a possible link between vitamin D and respiratory infections by examining VDR polymorphisms. Single polymorphism in VDR has been associated with severe outcomes in respiratory syncytial virus and lower respiratory tract infections [65]. Findings provide preliminary evidence of associations of VDR polymorphisms with the risk of acute lower respiratory infections (ALRI), predominantly viral bronchiolitis, in young children, consistent with a potential role of vitamin D in the immune response to respiratory tract infection [66].

Epidemiological and experimental researches highlight that low levels of serum vitamin D is associated with impaired pulmonary function and it is potentially involved in a number of lung diseases [67]. Moreover, a case-control study in Ethiopia determined the role of VDD as predisposing factor for pneumonia in children aged under 5 years [68].

Vitamin D deficiency increases patients’ vulnerability to viral respiratory infections [69] and it is also involved in the pathophysiology of chronic rhinitis and rhinosinusitis [70].

Vitamin D appears capable of inhibiting pulmonary inflammatory responses while enhancing innate defense mechanisms against respiratory pathogens [71]. A study suggested higher vitamin D concentrations as a protective “seasonal stimulus” against influenza and other aspects of respiratory health [72].

An Indian clinical trial on 27 children treated for six weeks with a supplement of vitamin D orally has shown reduction in respiratory infections [73], while a British study on 1740 elderly patients, treated with 800 IU for two years, showed no significant reduction in respiratory infections [74]. The effect of vitamin D supplementation on incidence of respiratory infections seems relevant only when it is associated with a vitamin D deficiency, a relatively common situation in many developing countries. The findings have been confirmed by a Finnish research which found an association between 1,25(OH)2D concentration of less 16 ng/ml and an increase incidence of respiratory acute infections [75] and by a two-months study in Bangladesh which showed a significant correlation between lower levels of 25(OH)D (11.7 ng/ml against 15.7 ng/ml of control group) and increased number of respiratory infections [76].

VITAMIN D SUPPLEMENTATION

Vitamin D has been attributed a significant role in host immune defence against M. tuberculosis as observational studies have found evidence of an association with VDD and active tuberculosis.

Clinical evidence using vitamin D in TB treatment was reported in several studies. The addition of vitamin D in the therapy of moderately advanced PTB had been proven to show a significant difference in sputum conversion compared with placebo. In a research carried out in Jakarta, the group treated with vitamin D had higher sputum conversion and radiological improvement (100%) as compared to the placebo group (76.7%) [77]. A black American woman with hypovitaminosis D and refractory drug-susceptible pulmonary TB was treated with antituberculous therapy and the correction of vitamin D deficiency. The patient demonstrated a significant radiographic improvement with negative sputum cultures at 13-month of total therapy [78].

In an Egyptian study vitamin D was administered to children with tuberculosis, showing that clinical improvement was more evident in patients taking vitamin D as compared to those who received treatment alone. The study concluded that vitamin D therapy may be very effective in addition to antituberculous drugs in the treatment of TB children [79].

Vitamin D has been suggested as prophylaxis in TB household contacts, being a low-cost intervention that is also easy to administer in resource-poor settings [80]. A research has demonstrated that a
single oral dose of vitamin D enhanced tuberculosis contacts’ antimycobacterial immunity in vitro. The finding that a single oral dose of 2.5 mg vitamin D corrects profound vitamin D deficiency for at least 6 weeks, without causing hypercalcemia, underlines the potential use of this formulation as a safe, effective, and low-cost public health intervention [81].

The administration of a single oral dose of 50 000-150 000 IU of vitamin D early in winter may be a convenient way to maintain 25(OH)D levels within the desirable range in children [82]. Children affected by VDD are likely to have suboptimal bioavailability of vitamin D, which might hamper their achievement of an adequate peak bone mass. Efforts to maintain an optimal supply of both vitamin D and calcium throughout the year seem warranted in order to facilitate bone accumulation and prevent osteoporosis later in life [83].

In veiled Arab women, vitamin D deficiency is the result of a combination of limitations in sunlight exposure and a low oral intake of vitamin D. Although exposure to sunlight is a key way to ensure enough levels of vitamin D in the body, however, addressing dietary intake of vitamin D to people who may avoid sunlight exposure for cultural beliefs seems a more successful way.

A research suggests that daily oral intake of vitamin D in sunlight deprived individuals should exceed 600 IU; probably it should be 1000 IU/day to secure a normal level of 25-hydroxyvitamin D. This finding was confirmed in a cross-sectional study among randomly selected Moslem women of Arab origin living in Denmark. Although the daily oral intake of vitamin D among those veiled women was very high, (approximately 600 IU), they were still vitamin D-deficient [84].

An adequate supply of vitamin D may be important in HIV-infected individuals with their additional risk factors for osteopenia, neoplasias or cardiovascular disease [85]. Moreover vitamin D supplementation reduces the incidence of rheumatoid arthritis, insulin-dependent diabetes mellitus, multiple sclerosis [86, 87] and prevents the risk of osteoporotic fractures in older persons [88, 89].

The oral administration of vitamin D should consider an important fact: storage of vitamin D is difficult, particularly considering the risk of oxidative inactivation of the micronutrient. A key point for an effective supplementation should be the use of oral monodose, packed with commonly used nitrogen technology, to avoid any risk of oxidative stress. The cheap cost of vitamin D (60 USD/kg) makes it an affordable technology for developing countries.

CONCLUSION

The overlapping of HIV and TB epidemics creates an health care crisis. The potential ability of vitamin D to fight TB, a leading cause of death in HIV-infected patients, mainly in sub-Saharan Africa, could lead to decrease in mortality or slower the disease progression. Investing in TB control in poor settings can be a cost-effective approach.

The connection among vitamin D, infections and immune function in the pediatric population indicates a possible role for vitamin D supplementation [90]. A study tested the association between vitamin D deficiency rickets and protein-energy malnutrition (PEM) in Ethiopian children and suggested that programmes targeting vitamin D deficiency rickets should give emphasis to children with PEM [91].

The relationship between rickets and maternal vitamin D deficiency has important implications for a comprehensive prevention strategy of vitamin D deficiency in women and children in the poorest settings of developing countries [92]. Moreover, the potential health consequences of VDD are very crucial in Africa and Asia where the infectious disease burden is high and malnutrition and famine are spreading in many populations, lowering their immune system [93]. Therefore programmes should be planned in order to provide vitamin D mainly to pregnant women and children.

In the western countries, more attention should be paid to the nutritional and vitamin D needs of older people and of all high risk groups (immigrants, HIV-subjects, TB patients) who are prone to hypovitaminosis D.

Public health education should stress the need for adequate dietary intake of vitamin D in vulnerable groups of people all over the world.

The ideas expressed in this paper do not necessarily reflect any official view of the Italian Ministry of Foreign Affairs.

Conflict of interest statement

There are no potential conflicts of interest or any financial or personal relationships with other people or organizations that could inappropriately bias conduct and findings of this study.

Received on 14 May 2012.
Accepted on 23 July 2012.

References

24. Mufli MA, Mulhi UR, Zubair A, Badar I, Mufli M. Vitamin D levels in Adults in Northern Pakistan. RMJ 2012;37(1).

35. Dinz Lopes Marques C; Tavares Dantas A; Sotero Fragoso T; Diniz Lopes Marques C; Tavares Dantas A; Sotero Fragoso T; Diniz Lopes Marques C; Tavares Dantas A; Sotero Fragoso T; Diniz Lopes Marques C; Tavares Dantas A; Sotero Fragoso T; Diniz Lopes Marques C; Tavares Dantas A; Sotero Fragoso T. Vitamin D deficiency and increased risk of cardiovascular disease. J Investig Med 2007;55(1):67-80.

68. Muhe L, Lulseged S, Mason EK, Somones EAF. Case control study of the role of nutritional rickets in the risk of develop-
http://dx.doi.org/10.1016/S0140-6736(96)12098-5

http://dx.doi.org/10.1097/ACI.0b013e32834eccdc

http://dx.doi.org/10.1016/j.coi.2008.10.004

http://dx.doi.org/10.1017/S0007114511001991

http://dx.doi.org/10.1093/jtroped/40.1.58

http://dx.doi.org/10.1093/ageing/asm091

http://dx.doi.org/10.1111/j.1651-2227.2009.01594.x

http://dx.doi.org/10.1097/SMJ.0b013e31814a5d37e

http://dx.doi.org/10.1164/rccm.200701-0070OC

http://dx.doi.org/10.1093/jbmr.13.4.544

http://dx.doi.org/10.1046/j.1365-2796.2000.00595.x

http://dx.doi.org/10.1097/QAD.0b013e328337b161

http://dx.doi.org/10.1136/ard.2007.069831

http://dx.doi.org/10.1001/jama.293.18.2257

http://dx.doi.org/10.1136/bmj.38561.406146.b

http://dx.doi.org/10.1203/PDR.0b013e31819dba91

http://dx.doi.org/10.1136/adc.2007.122689

http://dx.doi.org/10.1007/s12018-009-9038-6

http://dx.doi.org/10.1111/j.1651-2227.2009.01594.x