Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

Bence Tamas Szabo(a), Levente Pataky(a), Regina Mikusi(a), Pal Fejerdy(b) and Csaba Dobo-Nagy(a)

(a) Independent Section of Radiology; (b) Department of Prosthodontics, Dental Faculty, Semmelweis University, Budapest, Hungary

INTRODUCTION

The success of endodontic treatments is defined by the knowledge of the dental root canals’ morphology and the technique of the preparation and the hermetic obturation [1, 2]. The proper identification of the root canal system (number and shape of canals, accessory canals, etc.) is essential and requires clinical and radiological examinations. Different novel techniques and methods have been introduced and might facilitate the investigation of the root canal morphology [1], the knowledge of anatomic variations and helps in selecting proper instrumentation technique [3] even adequate files which might contribute to the success of the endodontic treatment.

At chairside the dentists should be aware of the variety of the root canals [4-7] during the access cavity preparation of the tooth a priori. Using operation microscope [8, 9] or CBCT (cone-beam CT) might simplify the localization and identification of the root canals [1]. A good number of publications deal with the possible varieties of the root canal systems using CBCT-s [1, 10-20]. Three-dimensional imaging has an advantage to define the morphology of a root canal in space [16, 21]. CBCT has the unique feature that eliminates the superimposition of surrounding formulas [16]. It might be useful in detecting the root canal shape, however, only a few studies have been reported on the visualization of the whole root canal shape – from the entrance to the apical foramen – using CBCT equipment yet [22].

In vitro studies focused on root canal morphology still have a continuous interest [22-27]. Over the past few years micro-CT systems have been used for the evaluation of the root canal morphology because of...
its high resolution and its nondestructive nature [28-33], furthermore it allows the observer evaluating the complete root canal system in different planes simultaneously or separately [32, 34]. For these reasons micro-CT is the best technology available now and might be functioned as a gold standard [35] besides using histopathological findings [36] or clinical sectioning [16].

The aim of this study was to compare three differing CBCT instruments with micro-CT as the gold standard to quantitatively determine their proficiencies with respect to imaging root canal systems.

MATERIALS AND METHODS

Three female monkey’s (Macaca fascicularis) skulls, cultured for other research purpose, were selected and scanned by the following CBCT instruments: Planmeca ProMax 3D Smart (Planmeca Oy, Helsinki, Finland), Classic i-CAT (Imaging Sciences International, Hatfield, USA) and NewTom VG (ImageWorks, New York, USA). The acquisition was taken at the highest respective resolutions for each scanner: 100 μm isometric voxel size using Planmeca (84 kV, 10 mA), 250 μm isometric voxel size i-CAT (120 kV, 36 mA) and 100 × 100 × 150 μm non-isometric voxel size NewTom (110 kV, 0.50 mA). The following preparation was made of the dental jaw sections with the second and third molars. The cut-out samples were scanned using SkyScan 1172 micro-CT (SkyScan, Kontich, Belgium) at a resolution of 17 μm (70 kV, 141μA) isometric cube voxel. The latter were used as a gold standard for comparison.

The root canal systems were dynamically analysed using CTAn v.1.1. software (SkyScan, Kontich, Belgium). The evaluation was made from coronal to apical level, in three plains from reconstructed images by three independent observers, two of whom have more than ten years experience in oral radiology and endodontology. The observers were not provided with results from related micro-CT analyses. The most apical level, where the root canal lumen was visible on the coronal plane of the CBCT images, was used as the reference level (RL). Root canal lumen was analysed at the RL on the axial planes of the reconstructed images taken by the micro-CT. Reconstruction of the micro-CT raw images was made by NRecon v.1.6 software (SkyScan, Kontich, Belgium). Manual tresholding of images was made, then the area of the lumen, the major and minor diameters, the mean thickness and the aspect ratio were subsequently determined.

RESULTS

The left upper second and third molars’ mesiobuccal and distobuccal and the left lower second and third molars’ mesial root canals (12 molars, 24 root canals and one accessory canal) were evaluated. Examining the images made by the Planmeca instrument, only one root canal apical end was invisible from 1.80 mm coronal to the apex (Table 1). NewTom VG showed a total of 11 apical root canal lumen being invisible, with a mean RL-apex distance of 2.79 ± 1.34 mm. Finally, i-CAT images showed 16 apical root canals being invisible, with a 3.62 ± 1.45 mm mean length for invisible parts. The cross section parameters of the root canal lumen were as follows: the mean minor diameter was 121.87 ± 86.85 μm and 69.46 ± 43.56 μm while the major diameter was 335.32 ± 210.69 μm and 187.07 ± 82.08 μm on i-CAT and NewTom images, respectively. The aspect ratios representing the cross sectional shape of the lumen were 3.11 ± 1.39 and 3.00 ± 0.98, respectively. Mean thickness of the root canal lumen at RL was 95.05 ± 44.34 μm and 55.06 ± 18.52 μm for i-CAT and NewTom, respectively.

DISCUSSION

The increasing importance and applications of CBCT-s can’t be emphasize enough in everyday dental clinical practice and dental research [37]. In endodontics it might aid the diagnosis of periapical lesions, identification of their origins and observing the canal morphology noninvasively [21, 38]. Nevertheless these instruments are not able to define the working length of a root canal.

Considering the results the instrument’s resolution and the isotropic nature of the voxel size might be essential factors for detecting the full length of a root canal: with Planmeca only 4% (only one root canal apical end), with i-CAT 64% and with NewTom 44% of the 25 root canals’ apical end was invisible. The reason of the high amount of the invisible apical ends might be that at the reference level some of the parameters describing the root canal might be smaller than the voxel size, among our selected parameters it was the minor diameter. This may certify the impor-

<table>
<thead>
<tr>
<th>Equipments</th>
<th>no.</th>
<th>RL (mm)</th>
<th>Area (μm²)</th>
<th>Major Φ (μm)</th>
<th>Minor Φ (μm)</th>
<th>Mean thickness (μm)</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planmeca</td>
<td>1</td>
<td>1.8</td>
<td>7243</td>
<td>125.27</td>
<td>34.74</td>
<td>34.75</td>
<td>3.6</td>
</tr>
<tr>
<td>NewTom</td>
<td>11</td>
<td>2.79 ± 1.34*</td>
<td>21162 ± 14737</td>
<td>187.07</td>
<td>69.46</td>
<td>55.06 ± 18.52*</td>
<td>3</td>
</tr>
<tr>
<td>iCAT</td>
<td>16</td>
<td>3.62 ± 1.45*</td>
<td>65378 ± 65792</td>
<td>335.32</td>
<td>121.87</td>
<td>95.05 ± 44.34*</td>
<td>3.11</td>
</tr>
</tbody>
</table>

RL = reference level. AR = aspect ratio. *p < 0.05.
Cone-beam CT and micro-CT comparative evaluation

The 3D-dimensional micromtomography analysis

References


