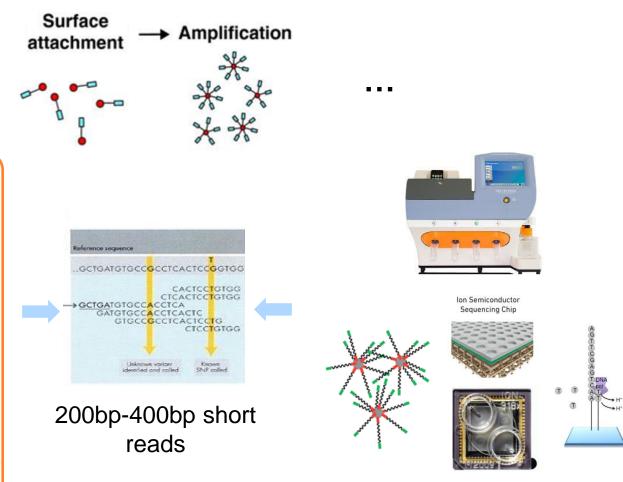
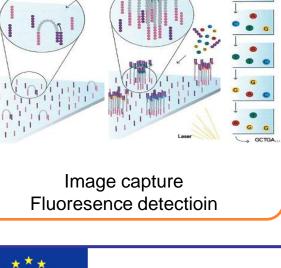
Introduction to NGS data formats, quality check and analytical tools

Valeria Michelacci

WGS course, October 2020

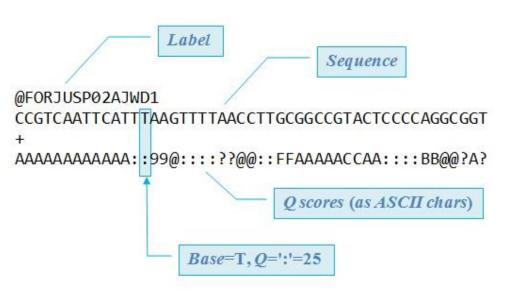

Conventional sequencing vs NGS

Conventional **NGS** Pipeline **DNA** extraction Genome **DNA** fragmentation fragmentation **Clone into Vectors** End repair and adaptor ligation Transform bacteria, grow, isolate vector DNA Surface attachment Sequence the library Amplification -**Electrophoresis** and detectionATGATGCCC Sequencing GAATGGG....



Next generation sequencing

pH variation when incorporating nucleotides in the growing strand


MiSeq

illumina

.fastq files

Each .fastq file covering a 5 Mb genome at 50X weights about **500 MB**

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

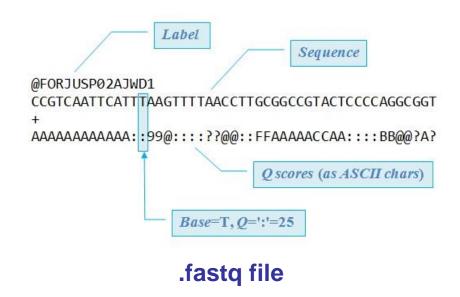
Phred quality score

$$Q = -10 \log_{10} P$$

from 0 to 93 using ASCII characters 33 to 126

.fastq files

```
@
        @X1L6C:01561:00672
        AAATATCACCAAATAAAAAACGCCTTAGTAAGTATTTTTCAGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTG
        GATTAAAAAAAGGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCAC
        TAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCA
        CCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAAGCCCGCA
        CCTGACAGTGCGGGCTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCG
        CC:9::FBC<CD7:88888(:>><C<CCC<<CCBBAAB/A@A8888,;<@;AABBB=?;B98992:B<
        CGBBCGDCC??BCC;BB<ADEEED*CCCAAACCCBCABBDDBB>B??A;999;@8=>199A7>9::CBCH:B:>>>)999)
        77037;<7==5=@@BBCC:C@BBB9B<E<D9>?><<6ADCBCBAABB@@@DDCCBA@@==+=.//?B<??AEB::6;DCD>
        C:;;;-:9:BC<BBCCC9??<AA;AG<CB>GD@B;;;A<AE;AA<B??@9@C<BB<???BB;BBBAAAA:::BAB099/9>
        @======(<<?)99997>>CCEBA>>=>2373333&3:99-33(3--717---43606704/47761
@X1L6C:01104:03031
        AGAAGCTGCTATCAGACACTCTTTTTTTAATCCACACAGAGACATATTGCCCGTTGCAGTCAGAATGAAAAGCTGAAAAATA
        CTTACTAAGGCGTTTTTTATTTGGTGATATTTTTTTCAATATCATGCAGCAAACGGTGCAACATTGCCGTGTCTCGTTGCTC
        TAAAAGCCCCAGGCG
        @AC=BCCC???B?@@CBB@???>>>>*?8??>DAABEBCBABCAAA:@@>+9:8>;<;//.
        98283988*44449;;9/88:?29:>>5;78333333&399298:6/./DCDDCC';>:ACBDAABB??9::+9<
        1444@:?77-3<03368:8755888;:9833)3777'--'--
@
        @X1L6C:03659:02717
        GCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATA
        GCGCACAGACAGATAAAAATTACAGAGTACACACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTA
        CCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAAACACAGAAAAAAAGACCCGCCACTGACCAGTGCG
        ???9?BB@<CAA;A8@?:?@@5::BCCCEC;C=CCC8CEJ8DE;AACF>CC?DDCCCBB:B@???99;B=B=CAA@?;?BCG
        CCCCCCBABBBBCCDDAA2:4;@???CAB@AAA9@@AB?C:;;C;CDCCC>ECCAA<AC<CB>DC<AB=CD=C9::A4::>
        CC;@@@A?CI@DDAFKDDD:A@CBCDC::::99199+8;4746@CA?)<444/3:4934333-3888//
@
        @X1L6C:02011:02071
        CAACATCCATGAAACGCATTAGCACCACCATTACCACCATCACCATTACCACAGGTAACGGTGCGGGTGACGCGTACAG
        =0>>>19;;,;;7=CCDADC;?:::::,5;;==4>273:<@BBCF=CDH;@;MMFEED@?>>>::::*5/55<
        ;::@:;:BC=BCBB<B@@D<@@B:;3:::9@<BB=BD=AC;@B:??3::CAC=CD;;;=BBAB>CC;AA;BAAAA9AD@>>
        >>?955>4?949998555555&4<>2:;661499888...88/56666666$;6/.5:8(..+'++
@
        @X1L6C:01333:03005
        TGTACAGCTACGTACGTCTGAGCATCGATCGATGTACAGCTACG
        555/55/(//(///(/8:9:<=>?<?@:98A??676<:;;@:555555554444;=4443333;383338<68>>
        68=3331118311111111113933644588?==<76992---2+++0/
```


...and so on

Quality check

Output of NGS sequencers

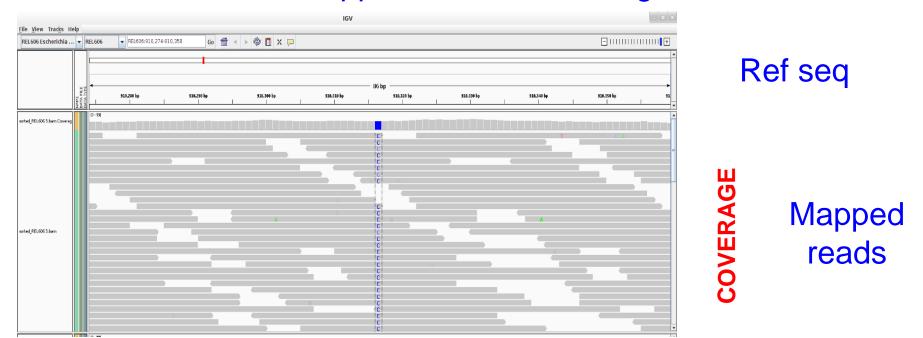
Input for quality check

Sequencing errors would impact every following application

Unreliability of following results (and difficulty to detect the existence of problems!)

Parameters to control

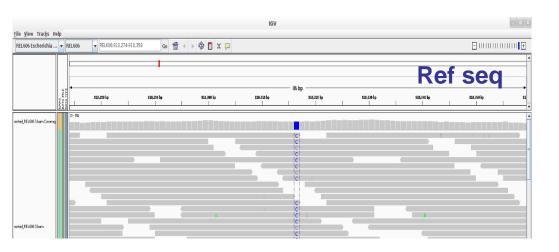
- Phred score
- GC content distribution over all sequences
- Distribution of undetermined bases (N)
- Distribution of nucleotides
- ★ Length of the reads
- ★ Coverage


Adoption of corrective actions is possible to minimize some of these problems

Coverage (depth)

Reads mapped on a reference genome

Coverage assessment:


Total length sequenced in Mb / expected genome size (5 Mb) Count of reads mapping on housekeeping genes (e.g. MLST)

Alignment (mapping)

Alignment of the sequencing reads on a reference sequence or on a database of reference sequences

Possibility to directly inspect the presence/absence of a target sequence and the presence of SNPs at interesting positions by opening the bam file with a graphic viewer (e.g. IGV)

QNAME	FLAG	RNAME	POS	MAPQ	CIGAR
ME2UT:01383:01267	0	gad:3:EF547388	1285	0	113M18I4M
ME2UT:02555:01592	16	gad:4:CP001925	1123	0	27M1I248M39I4M
ME2UT:02231:01820	0	gad:5:CP001846	87	1	138M
ME2UT:01605:00255	16	gad:5:CP001846	399	1	51M
ME2UT:01345:02031	16	gad:5:CP001846	685	1	176M
ME2UT:03330:02136	16	gad:5:CP001846	1050	1	6M1I38M
ME2UT:01475:02165	0	gad:6:BA000007	1	0	3M31I47M1D130M
ME2UT:01488:00709	16	gad:6:BA000007	1	0	4M32I55M1I149M
ME2UT:01943:01152	16	gad:6:BA000007	13	1	196M1I50M1I10M

Possibility to convert the output in a sam file (tabular) to extract interesting info and sequences

Assembly

Short sequencing reads

Partially assembled genome (contigs)

.fastq file

@HWI-ST700693:238:B0224ACXX:1:1101:1218:1982 NACACTTGCTTTGGTGACAGCGGGGCATCCTCAAGC #1=DDDDDHAFF?GEFGIIIIIIIIIIIIIIIIII @HWI-ST700693:238:B0224ACXX:1:1101:1161:1986 NGATTTTGACCTCTCCAGTTTCCTCTTAACACTTTG #1:BDFFFGHHHGJJJIIJHIJJJJJJJJJJJJJJJJ @HWI-ST700693:238:B0224ACXX:1:1101:1193:1989 NTATCCAGCCTGCGGTGCTACTTGGTGGAAGAGGAT #1=DDFFFHGHGGJJFGHJJIJJIEGECHDFHCC? @HWI-ST700693:238:B0224ACXX:1:1101:1440:1981 NTCAAGAATCCAAGTGGGGCCAGCATAATGTACGCT #1=DDFFFHGHDFDAEGIIFGIICGGHGBFGEFDHI @HWI-ST700693:238:B0224ACXX:1:1101:1367:1983 NATTAGAACAGATCGCTACTTCGCCCGAAGATACAT #4BDFFFFHHHHHJGIJIJJJJJJJJJJJJJJJJJ @HWI-ST700693:238:B0224ACXX:1:1101:1395:1988 NTGGAAACGTTTTTAAACGCGGAGACAGCGTGGAGT #1=DDFFFHCFFHJJJIJJIJJJJJGGIFHIGI7 @HWI-ST700693:238:B0224ACXX:1:1101:1285:1994 NCTTTGCTGTATTGACCGTTTGTAGATTTGAATCTT #4=DDFFFHBHHHHIGIJFHIJFGGGIGIHIJIJII @HWI-ST700693:238:B0224ACXX:1:1101:1632:1989

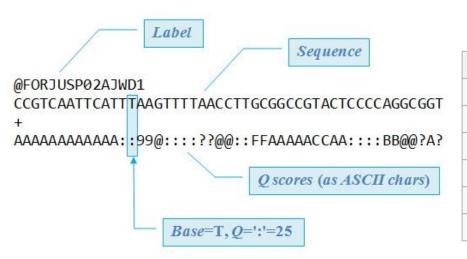
.fasta file

>NODE 1 length 449 cov 4.835189 ATCTTTCGCGCCTTCCAGCTCCAGCCATTCGGAACCGTTCGCCAGAAAACGGGCGTAATC GGGTAAGACATAGCGCGGTTTGTACGGCGCATGACCTTCAAACATATCGCAGATTACACC TTCATCCAGCGCGCGGGGCTTCGGCAGGAAGCTGTGGGTAAGGCAGATTGTTTTCTGC TTCCAGTGCCAGAAAATGGCGCTTCTGCTCCGGGCTAAGCACTGGGCTGGTGACAATTTG CTGGCAACGTTGTTGCAGTGCATTTTCATGAGAAGTGGGCATCTTCTTTTCCTTTTATGC CGAAGGTGATGCGCCATTGTAAGAAGTTTCGTGATGTTCACTTTGATCCTGATGCGTTTG CCACCACTGACGCATTCATTTGAAAGTGAATTATTTGAACCAGATCGCATTACAGTGATG CAAACTTGTAAGTAGATTTCCTTAATTGTGATGTGTATCGAAGTGTGTTGCGG >NODE 2 length 309 cov 4.686084 ACTGGTCAGTGCGGGTATCCTTGGACAATGGCCGATTGGACGTCTGGCGGATAAGTTTGG TCGACTGCTGGTGTTGCGTGTTCAGGTCTTTGTCGTCATTCTCGGCAGTATCGCGATGCT TAGCCAGGCGGCGATGGCCCCAGCGTTATTCATCCTCGGTGCCGCTGGCTTTACGCTATA TCCGGTGGCGATGGCATGGGCTTGCGAGAAAGTTGAACATCATCAACTGGTGGCGATGAA CCAGGCCTTACTGTTGAGCTATACTGTGGGAAGTCTGCTTGGCCCGTCATTTACCGCTAT GCTAATGCAGAATTTCTCCGATAATTTATTGTT >NODE 3 length 101 cov 3.346535 AGCGCATGAGCĞCGCAGCGCCGCCGTTACGTGGTGCATCAGCATGATGTTGGCCGGAGAG TACAGAGACTCCCCTTCATCCATGATGCCCTCTTTCACCAGCAGTTCTTCAATCATCACC AGACC >NODE 4 length 311_cov_3.610933 CATCAÃCGCTAĂAAGCCAGATGÃCGCAGACCGCAAGCTTCCGGTCGGCTGGGTCGTTCCG GCGGGAACGGAAATGAGAAAAGCTCAATCACATATTGCCCATTAAGCGCCAAATCCCCTT TCCATGAGTCGCGCGCTTCGCGATAGACTTCGCTTTGCAGCGTGAAACCAAGAATATCGC AGTAGAAAGCTTTGCTCACCGCATAATCCGTCGCAATAATCGCAATATGGTGAACCTGTT TTAAACCCAGCATAACGTCTCCTTTATTTGTTAACAGCACGTTACTCGCCCGGAAGCCGC TCTGGCAAGTTATCCCGCCATTTTTAGGACTCGTA >NODE 5 length 186 cov 4.973118 CGAAGĀTĀTAAĞAAĀGCGĀACCĀGAAAGAATGCCGGAGAACTTCATCAATTCATCACCTG CATTGAGCAGATTTTGCAGGTTCTCAATAACCGGTAATCCAGCCCCAACGTTGGTGTCAT AGAGGAATTTACGCCGCGATTTTTCCGCCGCATAACGCAACTGATGGTAGTAATCCATCG ACGAGGTGTTGGCCTTTTTGTTCGGCGTGA

FastqSize ≈ GenomeSize x Coverage x 2

At least 0.5 GB per genome

NTCTATGAATGTTCAAGCGGTAGCTGAGGAGAGTCC


FastaSize for *E. coli* contigs

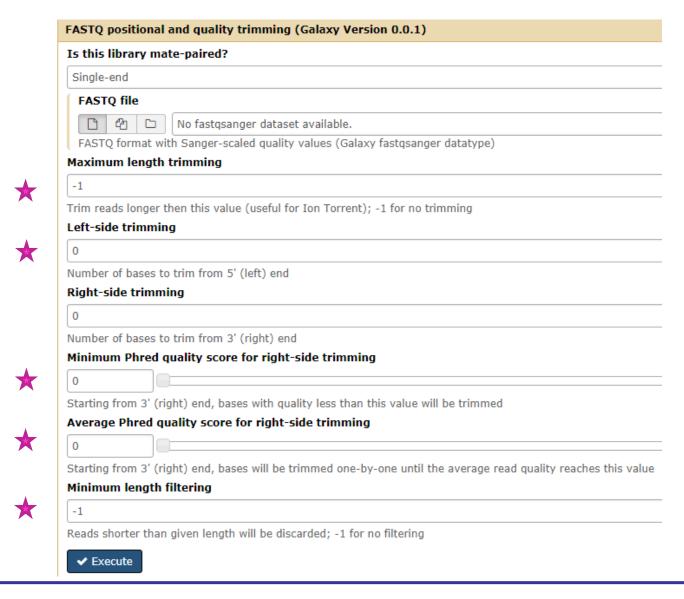
~5.5 MB

What should be trimmed out?

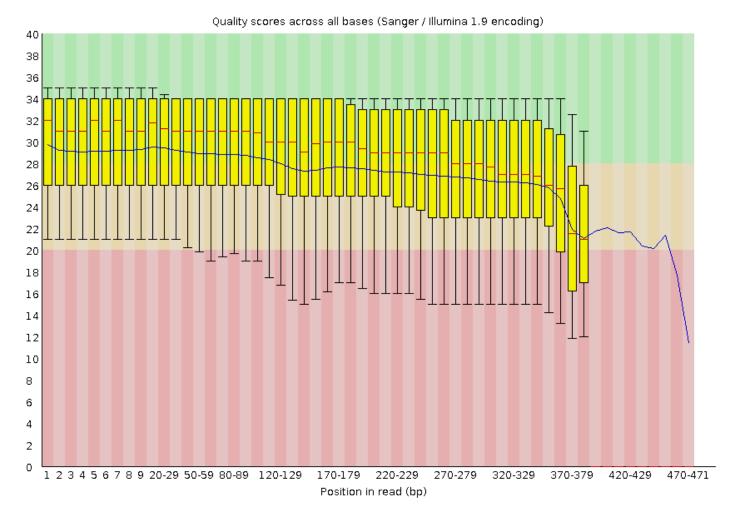
Phred quality scores are logarithmically linked to error probabilities

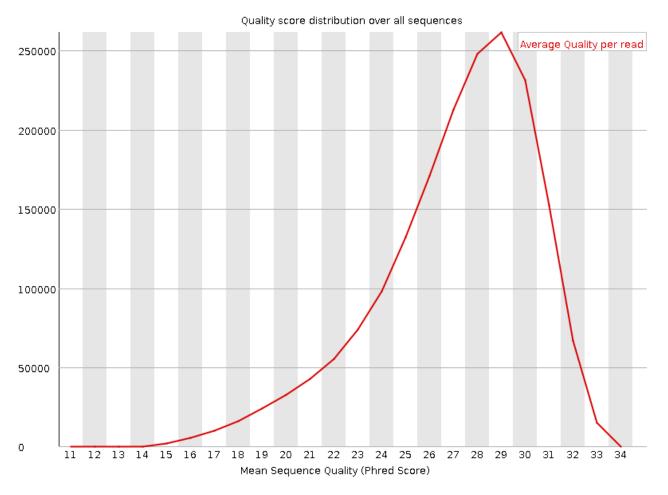
	,	•
Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

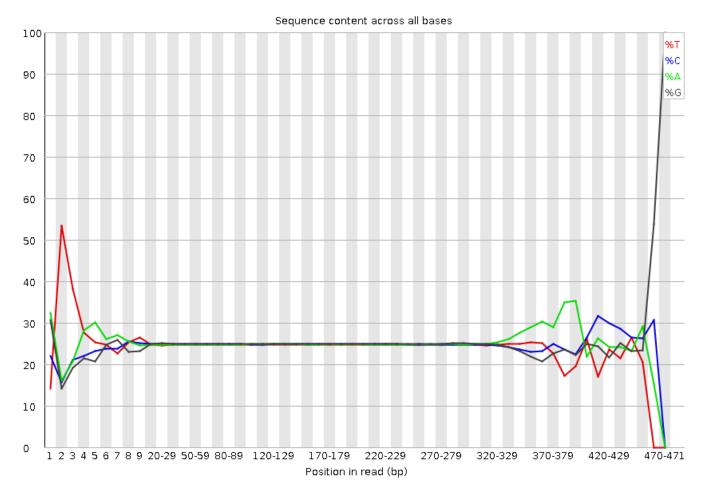
Low quality positions

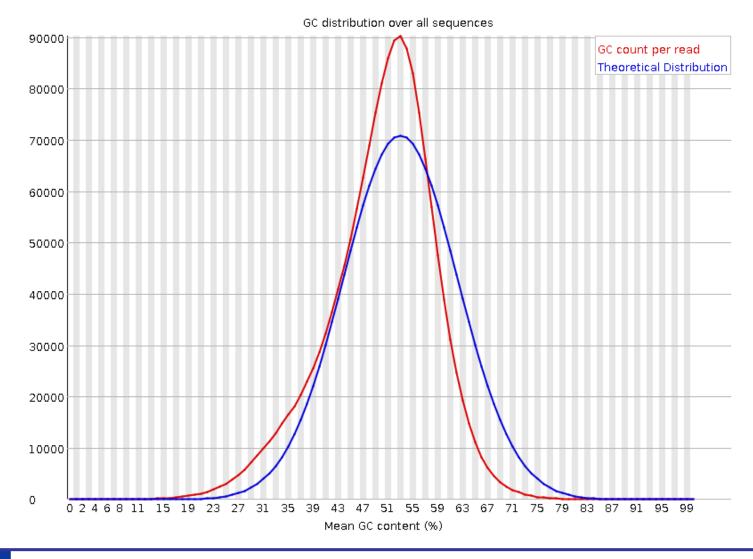

Adaptors and barcodes

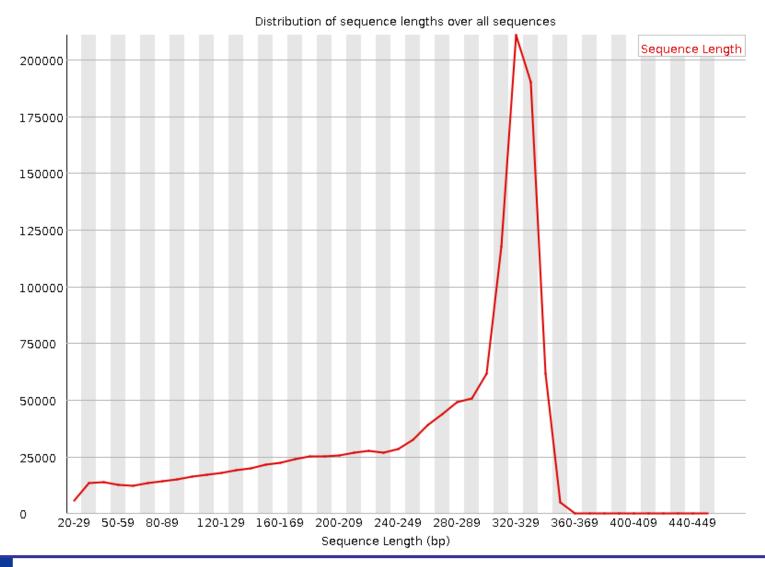
Very short sequencing reads

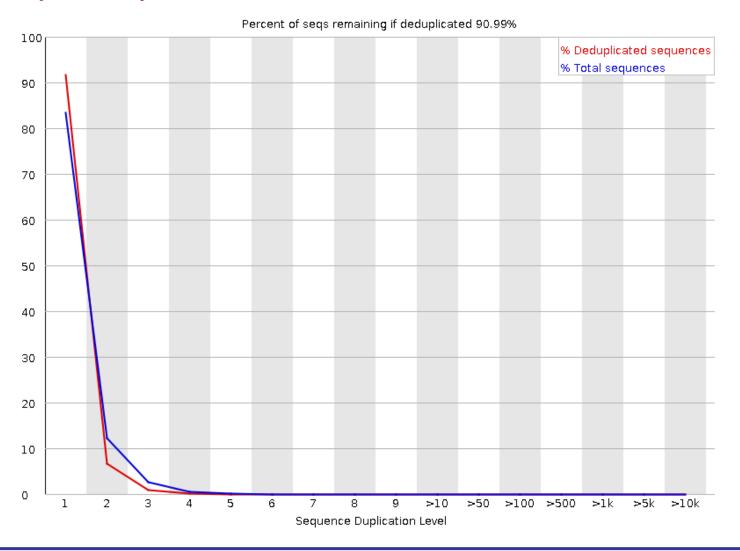

What should be trimmed out?

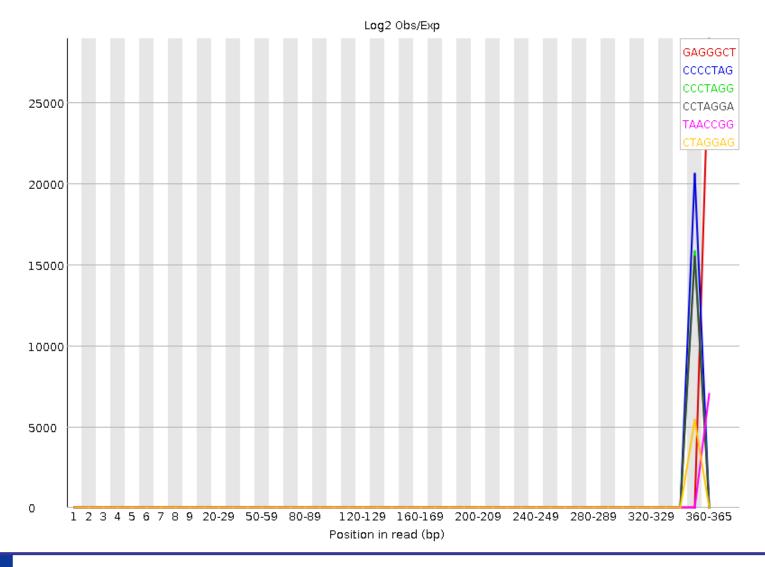

Per base sequence quality

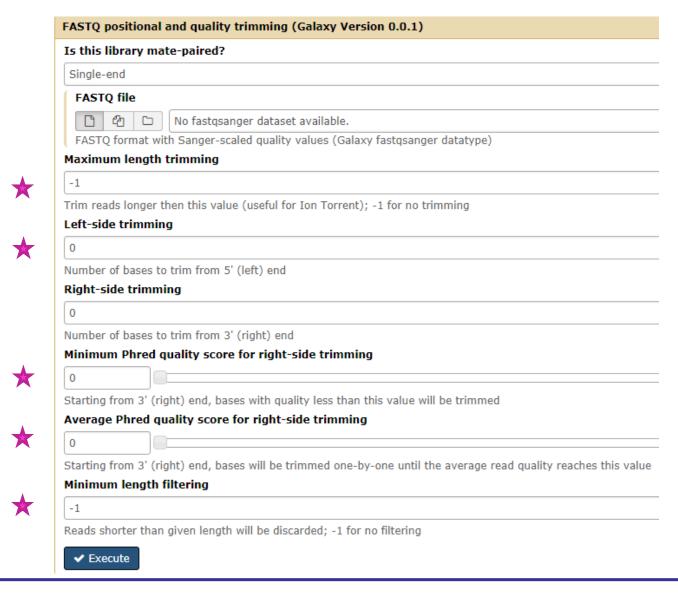

Per sequence quality scores


②Per base sequence content

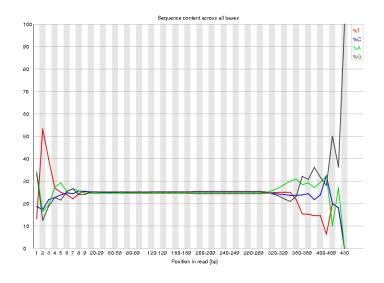

Per sequence GC content

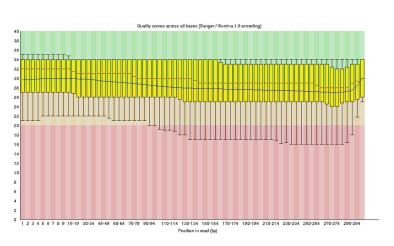

Sequence Length Distribution

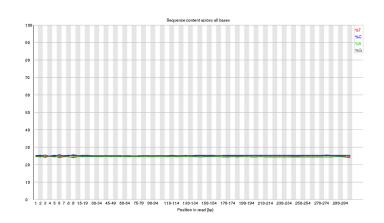

Sequence Duplication Levels


Kmer Content

What should be trimmed out?






Before trimming

After trimming

