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Abstract: COVID-19 remains a significant threat, particularly to vulnerable populations. The 

emergence of new variants necessitates the development of treatments and vaccines that induce 

both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-

CoV-2 peptides and to explore the intricate host–pathogen interactions involving peripheral 

immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using 

in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that 

are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike 

and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 

57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and 

mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-

epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and 

longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing 

antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, 

and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher 

prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong 

cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of 

confusional state, and habitual sporting activity. 
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1. Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has led to the rapid 

development and distribution of several vaccines, effectively reducing the spread of the 

virus, disease severity, hospitalizations, and deaths. However, the continuous emergence 
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of new viral variants affecting the binding sites of neutralizing antibodies (nAbs) 

necessitates additional efforts to search for new treatments and vaccines [1–5]. Immune 

homeostasis appears to play a critical role in protecting against SARS-CoV-2 infection, 

although the specific mechanisms and host factors involved in disease evolution are not 

fully understood [6–8]. 

In general, SARS-CoV-2 natural infection can elicit both humoral and cellular 

immune responses [9–12] with a long-lasting protection provided by antigen-specific T 

cell immunity as compared to the antibody response [13–16]. Although neutralizing 

antibodies have been associated to protection in vaccinated individuals, no clear universal 

correlate of protective immunity has been validated and standardized so far in COVID-19 

[17], due to the evasion from neutralization by new emerging variants [18]. However, the 

magnitude and functionality of T cell responses have been linked to disease severity and 

to the ability to mount an effective immune response, crucial for recognizing and 

eliminating virus-infected cells. Individuals with a strong and diversified T cell response 

may exhibit milder symptoms or even be asymptomatic, indicating a more effective 

control of the infection [19]. In particular, CD8 T cells have been shown to play a key role 

in mitigating disease severity, offering long-term immune protection against mild 

COVID-19 [20]. Memory T lymphocytes retain information about previously encountered 

pathogens, enabling a faster and more effective response upon re-exposure, thus 

conferring a stable response throughout convalescence [21]. Polyfunctional T 

lymphocytes, especially interferon-γ-secreting CD4 T cells, are known to be critical in this 

response [22,23]. 

A comprehensive SARS-CoV-2 vaccine should include both B cell epitopes for 

eliciting nAbs and T cell epitopes for robust and long-term immunity [24]. It has been 

demonstrated that some vaccines are able to induce strong T and B cell responses [25,26]. 

Recent literature strongly supports the use of updated vaccines in order to induce potent 

humoral and cellular immune responses simultaneously against all known variants of the 

SARS-CoV-2 virus [27]. Moreover, the induction of SARS-CoV-2 T cell immunity is a 

central goal for vaccine development, and of particular importance for patients with 

congenital or acquired B cell deficiencies [28]. Hence, assessment of cellular immune 

response may complement antibody testing to determine correlates of protection, 

especially in immunocompromised individuals [29]. 

Novel vaccine strategies include immunoinformatic/computation-based peptide 

vaccines, which have shown promise against viral pathogens, as they can be engineered 

with specific antigenic regions, reducing adverse reactions [30]. In this regard, in silico 

studies predicted numerous potentially immunogenic SARS-CoV-2 T cell epitopes, with 

good global coverage [31] and many MHC-class I CD8+ T cell epitopes have been 

identified so far. The in silico-based prediction methods may reduce the number of 

antigenic peptides for experimental testing, thus saving time and cost [32,33]. Generally, 

linear T cell epitopes offer more reliable results, compared to linear B cell or discontinuous 

epitopes [34]. However, discordance in the prediction of some of them highlights the need 

for further improvement, and more specialized tools [35]. As an added benefit, peptide-

based vaccine candidates are cost-effective and safe [36]. 

For be�er and longer-lasting protection against COVID-19, next-generation multi-

epitope vaccines [37], able to induce both humoral and cellular response, have been 

designed, based on peptide pools [38,39]; in some cases, these vaccine candidates have 

already reached the phase I clinical stage [28,40]. Another multi-epitope approach is 

represented by longer peptides that exhibit an improved stability and solubility compared 

to shorter peptides, thus reducing their risk of degradation and increasing their suitability 

for vaccine formulation and storage [41–45]. Further strategies, such as multiple allele 

epitope engineering, are expected to enhance the efficacy of peptide-based vaccines [46]. 

Based on these assumptions, a study has been designed aimed at the identification, 

by means of suitable computer prediction tools, of new potentially immunogenic HLA-

A*02:01-restricted epitopes of SARS-CoV-2 proteins, specific for cytotoxic T lymphocytes. 
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In addition, while vaccines licensed so far are based only on the Spike protein, both 

structural and non-structural proteins should be considered as potential vaccine targets. 

In fact, early recognition of non-structural proteins by the immune system may inhibit 

virus replication and spread [47]. Therefore, we considered epitopes derived not only 

from the Spike protein but also from some non-structural proteins that play a pivotal role 

in viral replication (Nsp1, Nsp2, Nsp3, and Nsp16). 

Subsequently, we tested the immunogenicity of the selected peptides on 

cryopreserved peripheral blood mononuclear cells (cPBMCs) derived from healthy 

subjects’ blood who were all vaccinated against SARS-CoV-2 and recovered from 

paucisymptomatic/mild COVID-19. Several studies have utilized IFN-γ ELISpot, 

intracellular staining of cytokines (ICS), or non-cytokine activation-induced marker (AIM) 

by flow cytometry (FC) on PBMCs to characterize anti-SARS-CoV-2 T-lymphocyte 

responses [48]. Here, the ELISpot assay was selected as the more sensitive approach for 

our purposes [49]. The subjects enrolled in this study were also characterized for their 

virus-specific antibody response. 

In addition, multiparametric flow cytometry (MFC) was employed to determine the 

circulating T cell subsets, including some less represented subpopulations, and their 

related naïve/memory status [50–53]. Among them, a small subpopulation of circulating 

CD4+CD8+double positive (DP) T cells has been described in healthy and pathological 

conditions, with unique and well-defined functions [54]. DP T cells exhibit memory-like 

features, with a predominant effector memory (EM) and central memory (CM) phenotype 

and can be distinguished in two distinct subsets (CD4dimCD8hi or DP1 and 

CD4hiCD8dim or DP2). These cells may represent a useful marker to predict the disease 

outcome, since they are significantly reduced in severe COVID-19 [55]. Other relevant 

subpopulations in the context of COVID-19 are represented by the CD4-CD8- double 

negative (DN) subset that possess both innate and adaptive immune functions, differing 

from conventional CD4+ and CD8+ T cells [56]. Despite their low frequencies, DN T cells, 

have a role in orchestrating immune responses through cytokine production and they 

display effector functions associated with pathology development [57]. Among DN, the 

gamma-delta (γδ) lymphocytes are a subset with a restricted receptor repertoire, sharing 

some characteristics with NK cells, as both are often associated with innate immunity. 

These cells, endowed with a cytolytic activity, are able to readily respond to a wide range 

of both infectious and non-infectious stressors [58–60]. In particular, γδ T cells expressing 

the Vδ2 TCR chain predominate in the peripheral blood and secondary lymphoid organs. 

Various T cell perturbations have been described in COVID-19 patients with different 

degrees of severity [61–65]. 

Ultimately, we tried to define the complex interplay between all the gathered data, 

linking the humoral and cellular immune response to the host’s peripheral T cell memory 

profile, demographic characteristics, lifestyle, and the severity of the disease. We thus 

obtained some compelling evidence of the interrelationship among all the collected 

information, which could aid in tailoring therapeutic and vaccination interventions, and 

serve as a model in anticipation of a new pandemic. 

2. Materials and Methods 

2.1. Study Workflow 

The study workflow can be visualized in Figure 1. Briefly, a preliminary in silico 

phase was conducted by bioinformatics tools, to identify HLA-A*0201-restricted epitopes 

of viral proteins, which had been poorly studied for their immunogenicity. After chemical 

synthesis, peptide immunogenicity was assessed using cPBMCs obtained from healthy 

donors who had been previously vaccinated and subsequently infected and recovered 

from mild COVID-19. Furthermore, ex vivo immune phenotyping for the determination 

of T cell memory status was conducted on fresh whole blood, while plasma was assessed 
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to quantify total and neutralizing Abs directed against viral proteins. Subjects’ demo-

graphic, clinical, and lifestyle data were collected as well. 

 

Figure 1. Experimental workflow. 

2.2. Selection and Synhtesis of Peptides 

2.2.1. T Cell Epitope Prediction 

To predict potential immunogenic peptides, we used the amino acid sequences of the 

widely known Spike (YP_009724390.1) and non-structural protein (Nsp1—

YP_009725297.1, Nsp2—YP_009725298.1, Nsp3—YP_009725299.1, and Nsp16—

YP_009725311.1) accession numbers, collected in the database of the National Center for 
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Biotechnological Information (NCBI) and derived from the Wuhan-Hu-1 (genome acces-

sion number NC_045512) reference isolate. These sequences were submi�ed to the 

NetMHCpan-4.1b EL algorithm available at h�ps://services.healthtech.dtu.dk/ser-

vices/NetMHCpan-4.1/ (accessed starting from 15 October 2020), which is based on eluted 

ligands (EL) data and, associating a value to each epitope, calculates a percentile Rank (% 

Rank) [66]. 

The following parameters were set: 

 Input type: FASTA 

 Allele selected: HLA-A*02:01 

 Peptide Length: Any length 

 Other fields: default values 

The tool generated a list of peptides predicted to bind with high affinity to the HLA-

A*02:01 allele, ranked in descending order of % Rank. 

2.2.2. Selection of 9-11mer Poorly Studied Ancestral Peptides 

We then submi�ed the FASTA format sequence of each listed peptide with a % Rank 

below 1.1 to the IEDB Analysis Resource (h�ps://www.iedb.org/re-

sult_v3.php?cookie_id=60c6fc&active_tab=Tcell%20Assays) (accessed starting from 15 

October 2020) to exclude peptides that had already been shown to elicit a positive re-

sponse in an IFN-γ ELISpot release assay by other authors. 

The following parameters were set: 

 Epitope: Linear peptide 

 Sequence: Exact match (inpu�ing the sequence of each peptide) 

 Assay: T cell, IFN-γ release ELISpot 

 MHC Restriction: Class I 

 Host: Human 

 Other fields: Default values 

Peptides that had never been reported as positive in IFN-γ-ELISpot assays (whether 

tested or not) were selected for synthesis and subsequent immunological testing (by IFN-

γ-ELISpot), as well as for further characterization as described below. The main scientific 

articles reporting immunogenicity studies of the selected peptides, extracted from the 

IEDB website after a query without a specified assay type, are also listed in Table 1. 

2.2.3. Selection of 9-11mer Mutant Peptides 

Based on the reference genome accession numbers for Delta B.1.617.2 (MZ359841.1) 

and Omicron B.1.1.529 (BA.1) (OL672836.1), we selected the mutant Spike protein se-

quences of the Delta B.1.617.2 (QWK65230.1) and Omicron (BA.1) (UFO69279.1) virus 

strains and compared them to the ancestral Wuhan-1 strain protein (YP_009724390.1) us-

ing the free software Mega v11 (iGEM, Temple University, Philadelphia, PA, USA) 

(h�ps://www.megasoftware.net/, accessed starting from 15 October 2020) [67]. The soft-

ware created a new protein sequence alignment by matching the three FASTA format se-

quences using the ClustalW method. Upon examining the alignment, we identified four 

mutant peptides corresponding to four selected peptides from the Wuhan-1 strain 

(KA10w-KA10δ, KL9w-NL9o, VV11w-VV11oδ, and VV9w-VG9o). 

2.2.4. Long Peptides 

Ultimately, our analysis also focused on two regions with a high rate of constant sub-

stitutions and deletions in the subunit S1 of the Wuhan-1 (YP_009724390.1) Spike protein 

sequences, belonging to Delta (B.1.617.2—QWK65230.1) and Omicron (B1.1.529 (BA.1)—

UFO69279.1) VOCs, allowed us to select four long peptides (LP), approximately 30 aa 

long, including one pair beginning at position 135 and the other pair at 203 of the Wuhan-

1 protein sequence. We also estimated the presence of strong binder epitopes (% Rank < 
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0.6) for the most representative HLA super-type, including HLA-A*0201, using the 

NetMHCpan-4.1b version, within these long peptide sequences (Supplementary Table 

S1). 

2.2.5. Control Peptides 

A positive control (CEF) was designed by mixing in equal parts three HLA-A*02:01 

restricted immune-dominant peptides of cytomegalovirus (CMV) NLVPMVATV (pp65), 

Epstein–Barr virus (EBV) CLGGLLTMV (LMP2), and influenza virus (FLU) GILGFVFTL 

(M1). 

KIADYNYKL and YLQPRTFLL (two known immuno-stimulating Spike HLA-

A*02:01 restricted peptides), as well as VF9 (an irrelevant peptide, VTWFHAIHF, to be 

used as negative control) were also selected for the synthesis. 

2.2.6. Selected 9-11mer Peptide Additional Characterization 

 NetCTLpan version 1.1: Available as a prediction method at the IEDB Analysis re-

source page (h�p://tools.iedb.org/netchop/) (accessed starting from 15 October 2020) 

[67], this tool integrates the prediction of peptide binding affinity to MHC class I mol-

ecules within the MHC class I antigen processing pathway. It combines the pro-

teasomal cleavage score (C-score), which predicts the likelihood of protein cleavage 

at the C-terminus by the proteasome, with the TAP score, which indicates the 

transport efficiency by the transporter associated with antigen processing (TAP) pro-

teins. For each selected peptide, the sequence in FASTA format was entered into the 

appropriate input field, the species was set to “human”, and the allele was specified 

as “HLA-A*02:01”, while all other parameters were kept at their default values. The 

output included a “% Rank”, which inversely correlates with the peptide's binding 

capacity to the MHC molecule of interest. 

 SYFPEITHI: This is an online database (www.syfpeithi.de) (accessed starting from 15 

October 2020) that uses an algorithm to assign a score to each amino acid at specific 

positions based on its frequency in natural ligands, T cell epitopes, or binding pep-

tides [68]. Each peptide sequence in FASTA format was submi�ed to the appropriate 

input field (Epitope prediction), specifying the HLA-A*02:01 allele and the peptide 

length. The algorithm produced a score directly proportional to the binding affinity 

between the MHC molecules and their ligands. 

 VaxiJen v2.0 algorithm: Available at h�ps://ddg-pharmfac.net/vaxijen/VaxiJen/Vaxi-

Jen.html (accessed starting from 15 October 2020), this tool evaluates the probability 

of a given peptide being an antigen based on a trained model [69]. Each selected pep-

tide sequence was submi�ed in the appropriate input field using the default antigen-

icity threshold se�ing of 0.4, and the target organism was set to “virus”. The output 

provided an antigenicity score for each peptide along with a qualitative prediction 

(probable antigen or non-probable antigen). 

2.2.7. Identity with Other Human Coronaviruses 

The selected 9-11mer peptides were further evaluated according to the percentage of 

identity between SARS-CoV2 and other human coronaviruses (OC43, HKU1, NL63, and 

229E). Single epitope sequences were subjected to analysis by means of 'NCBI Basic Local 

Alignment Search Tool (BLAST) (h�ps://blast.ncbi.nlm.nih.gov/Blast.cgi) (accessed start-

ing from 15 October 2020) and results are reported in Supplementary Table S2. 

2.2.8. Chemical Synthesis 

Bio-Fab Research (Rome, Italy) synthesized the selected predicted SARS-CoV-2 9-

11mer, the long peptides, and the control peptides, with a purity > 95%, in freeze-dried 

form. Peptides were resuspended in DMSO at a concentration of 40 mg/mL and used in 

culture at a final concentration of 10 µg/mL, avoiding repeated freeze–thaw cycles. 
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2.3. Subjects 

Subjects were enrolled by ISS based on the following criteria: 

2.3.1. Inclusion Criteria 

18–60 years of age. 

Laboratory-confirmed SARS-CoV-2 infection and negativization (both determined 

by PCR or rapid antigen test). 

Negativization occurred 30–90 days before the enrollment date. 

Previous asymptomatic/mild COVID-19. 

Good general health conditions. 

Understanding and agreeing to comply with planned study procedures. 

Wri�en informed consent. 

2.3.2. Exclusion Criteria 

Previous severe COVID-19 (pneumonia, hospitalization). 

Concurrent metabolic diseases (obesity, diabetes, resistant hypertension, severe heart 

disease, tumors, rheumatic disease). 

Chronic infectious disease (HIV, HBV, HCV). 

Concomitant biological, antibiotic, immunosuppressive therapy. 

Using of immuno-suppressive drugs during COVID-19. 

Incapacity to understand the informed consent. 

Withdrawal of the signed informed consent. 

2.3.3. Demographic, Clinical, and Lifestyle Aata Collection 

On blood sampling day, subjects were interviewed to gather information relative to 

their SARS-CoV-2 vaccination and infection course as well as their past and current health 

conditions. The survey’s main data are included in Table 2 (subjects’ demographic/vac-

cination/infection main data), Supplementary Table S3 (symptoms), and Supplementary 

Table S4 (other clinical/lifestyle characteristics). 

2.4. Blood Sampling 

Blood draws were performed by specialized staff at S. Filippo Neri Hospital (ASL 

RM1). Briefly, 30 mL of venous blood were collected in lithium heparin Vacutainer tubes 

(Becton Dickinson, San Jose, CA, USA). Samples were processed within 2 h: an aliquot of 

fresh blood was commi�ed to HLA testing and immune-phenotyping, and plasma was 

collected by centrifugation and immediately frozen at −80 °C, while PBMC were separated 

by Ficoll density gradient (Lymphoprep, Axis-Shield, Scotland, UK) and frozen in liquid 

nitrogen until the moment of use as already described [70]. 

2.5. Immune Cell Assays 

2.5.1. HLA Test 

Positivity to HLA-A*02 was tested by staining 50 µL of fresh whole blood with a 

FITC-anti-human HLA-A*02 antibody (clone BB7.2, Biolegend, San Diego, CA, USA). 

2.5.2. ELISpot 

After 3 rounds of plate washing with distilled sterile water, an anti-human IFN-γ 

antibody (clone 1, D1K, Mabtech, Nacka Strand, Sweden, EU) was added (10 µg/mL) for 

18 h at + 4° C in 96-well nitrocellulose-bo�omed plates (Merck-Millipore MSP4510, Bur-

lington, MA, USA). Plates were then washed with DPBS (Corning, Corning, NY, USA) and 

incubated with DPBS supplemented with 10% FBS (Corning, NY, USA) for 2 h at 37 °C, to 

avoid non-specific staining. 
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Meanwhile, cPBMCs were thawed in 20% FBS-DPBS, in the presence of 20 µg/mL 

DNAse (Sigma, Livonia, MO, USA), centrifuged, washed with 10% FBS-DPBS and re-sus-

pended in complete medium, composed of RPMI (Thermo Fisher Scientific, Gibco, Wal-

tham, MA, USA), 10% FBS, Penicillin/Streptomycin, non-essential amino-acids, Na-py-

ruvate, HEPES (all form Lonza, Basel, Swi�erland, EU), β-mercaptoethanol (Sigma, MO, 

USA), and a sub-optimal dose of DNAse (10 µg/mL). 

After counting, 250,000 cPBMCs were left for 2 h at 37 °C in a controlled atmosphere 

of 5% CO2 and then seeded in duplicate wells for each condition, in a final volume of 200 

µL of complete medium per well. Following the addition of the appropriate stimuli, the 

cells were cultured for 24 h at 37 °C in a controlled atmosphere of 5% CO2. 

Selected-predicted peptides, as well as VF9 (as negative control), CEF, and PepTiva-

tor® (SARS-CoV-2 Prot_S Complete and Prot_N, Miltenyi Biotec, Bergisch Gladbach, Ger-

many, EU, as positive controls), were added at the final concentration of 10 µg/mL plus 1 

µg/mL of anti-CD28 (BD Biosciences, San Jose, CA, USA), as a co-stimulation. As an addi-

tional positive control, staphylococcal enterotoxin B (SEB; Sigma-Aldrich, Munich, Ger-

many, 2 µg/mL) was used, whereas medium only, anti-CD28 and DMSO (1:4000), were 

added as additional negative controls. 

The development of the ELISpot assay was performed according to the Mabtech pro-

tocol: briefly, after culture, cells were removed, and the plate washed 5 times with DPBS. 

A biotinylated anti-IFN-γ antibody (clone 7-B6-1, Mabtech) was then added and cells were 

incubated for 2 h at room temperature. The plate was washed again 5 times with DPBS 

and a HRP enzyme-conjugated streptavidin (Mabtech) was added for 1 h at room temper-

ature. After a new round of washing with DPBS (5 times), the TMB substrate (Mabtech) 

was added for about 20 min. The plate was finally washed with tap water and allowed to 

dry for at least 24 h, after which it was read with Aid iSpot instrumentation using AID 

ELISpot software 7.0 iSpot. 

2.5.3. Characterization of Peripheral Blood T Cell Naïve-Memory Status 

Whole blood was stained with a panel constituted of a 7-color mixture of fluoro-

chrome-conjugated Abs (Supplementary Table S5), based on DuraClone technology 

(Beckman Coulter, Life Science Europe, Geneva, Swi�erland) consisting of 5 conjugated 

Abs (anti-CD3, -CD4, -CD8, -CD45RA, -CCR7) in dry formulation, integrated with 2 

dropped-in Abs (anti-CD45 and anti-Vδ2) in liquid formulation. Dried reagents have al-

ready proven to yield high reproducibility and efficient standardization in large-scale pro-

jects such as the ONE study [71,72]. Based on expression of CD45RA and CCR7, we de-

fined the following naïve/memory subsets within CD3+, CD4 single positive (sp), CD8sp, 

DP1, DP2, DN and Vδ2+ γδ T cells: naïve (N, CD45RA+CCR7+), central memory (CM, 

CD45RA−CCR7+), effector memory (EM, CD45RA−CCR7−), and terminally differentiated 

(TD, CD45RA+CCR7−) cells (panel gating strategy is illustrated in Supplementary Figure 

S1). 

Staining Procedure 

For each panel, 200 µL of whole blood were stained. Briefly, samples were incubated 

with the corresponding antibody cocktail for 15 min at room temperature in the dark. The 

red blood cells were lysed by adding FACS lysing solution (BD Biosciences, San Jose, CA, 

USA) at room temperature for 10 min. After washing with DPBS, cells were fixed in For-

maldehyde 0.8% and stored at 4 °C in the dark until the acquisition within the next 2 h. 

Before acquisition, an equal volume of DPBS was added to the samples. 

Flow Cytometry Acquisition and Analysis 

Data acquisition was performed using a Gallios cytometer (Beckman Coulter, Brea, 

CA, USA) and analyzed by Kaluza (v.1.3) software (Beckman Coulter, CA, USA). 
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2.6. Plasma Antibody Assays 

2.6.1. Commercial Anti-Spike and Anti-NP ELISA 

Plasma samples were tested for the qualitative detection of anti-SARS-CoV-2 Abs us-

ing the “Elecsys® Anti-SARS-CoV-2” test kit, an electrochemiluminescence immunoassay 

by Roche Diagnostics (Basel, Swi�erland), on the cobas e411 instrument. The assay is a 

double-antigen sandwich using recombinant nucleocapsid protein (NP) for the detection 

of total Abs (IgA, IgM, and IgG) against SARS-CoV-2 (anti-SARS-CoV-2 NP Abs). Results 

are reported as numeric values in the form of a cut-off index (COI; signal sample/cutoff) 

as well as in the form of a qualitative “non-reactive” (COI < 1.0; negative) or “reactive” 

(COI ≥ 1.0; positive) result. 

Plasma samples were further tested using the “Elecsys® Anti-SARS-CoV-2 S” test kit, 

recently released by Roche Diagnostics for the quantitative detection of Abs against SARS-

CoV-2 spike receptor binding domain (anti-SARS-CoV-2 S-RBD Abs). The total antibody 

content in the sample is expressed as U/mL, traceable to the Roche Diagnostics internal 

standard for anti-SARS-CoV-2 S. This standard consists of an equimolar mixture of two 

monoclonal Abs that bind Spike-1 RBD at two different epitopes; 1 nM of these Abs cor-

respond to 20 U/mL of the Elecsys® Anti-SARS-CoV-2 S assay. The cut-off is 0.8 U/mL, and 

the linear range is up to 250 U/mL. Samples with a concentration > 250 U/mL have been 

diluted up to 1:1000 in specimen diluent. 

2.6.2. Neutralization Assay 

Production of Pseudovirus Pseudotyped with Spike Variants 

Lentiviral vector (LV) delivering Luciferase pseudotyped with Spike (LV-Luc/Spike) 

were generated by transient transfection of 293T Lenti-X cells as previously described [73–

75]. In brief, 293T Lenti-X cells were transfected with the lentiviral transfer vector plasmid 

pGAE-Luc expressing the luciferase coding sequence, the packaging plasmid pAd-SIV3+ 

and the pseudotyping plasmids expressing Spike from Wuhan-1, Alpha, Delta or Omicron 

(BA.1, BA.2 or BA.4/5) utilizing the JetPrime transfection kit (Polyplus Transfection, Ill-

kirch, France). Forty-eight hours post-transfection, the supernatants containing the LV-

Luc/Spike were collected, filtered with a 0.45 µm pore size filter (Millipore), and stored in 

0.25 mL aliquots at −80 °C. 

Pseudovirus Titration and Neutralization Assay 

Preparations of LV-Luc/Spike were ti�ered in Vero E6 cells (Cercopithecus aethiops 

derived epithelial kidney, ATCC C1008), as described [73]. Briefly, cells were plated in 96-

well plates (Viewplate, PerkinElmer) for 48 h with serial dilutions of LV-Luc/Spike prep-

arations. Luciferase expression was measured with a Varioskan luminometer (Thermo 

Fisher) using the britelite plus Reporter Gene Assay System (PerkinElmer). 

For the neutralization assay, plasma serial 2-fold dilutions starting from 1:80 were 

incubated at 37 °C for 30 min in 96-deep well plates (Resnova, Roma, Italy) in duplicate 

with the LV-Luc/Spike providing final 2 × 105 relative light units (RLU)/well. The mixture 

was then added to Vero E6 cells seeded in a 96-well Isoplate (Perkin Elmer, Groningen, 

The Netherlands) at a density of 2.2 × 104 cells/well. Cell-only and virus-only controls were 

included. After 48 h, luciferase expression was measured using the britelite plus Reporter 

Gene Assay System. RLU numbers were transformed into percentage neutralization val-

ues, and relative to virus-only controls. Results were expressed as the inhibitory concen-

tration (ID) 50, which corresponds to the dilution of plasma providing 50% inhibition of 

the infection (corresponding to neutralization), compared to the virus-only control wells. 

ID50 was calculated with a linear interpolation method [73,75]. 

2.7. Statistical Analysis 

A SPSS (IBM-SPSS V25, IBM Corporate, New York, NY, USA) database collected all 

parameters under study (demographic, clinical, and lifestyle, as well as T and B immune 
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response variables), which are shown in Supplementary Table S6, as well as the MFC var-

iables listed in Supplementary Table S7. Some variables were the result of a calculation 

based on the collected data, such as the time interval between the 1st positive swab and 

sampling (PS-DT), the last vaccine dose and sampling (VS-DT), the last vaccine dose and 

1st positive swab (VP-DT), and the 1st positive swab and the negative swab (PN-DT), all 

expressed in days (Supplementary Table S6). Outliers were appropriately eliminated. 

Regarding the statistical analysis of ELISpot results, we compared absolute spot-

forming cell counts (SFC) of each stimulus vs VF-9 negative control as well as of mutant 

(o/δ) vs. Wuhan-1 peptides by non-parametric paired samples Wilcoxon test (Figure 2 in 

Results Section 3.3). VF9 irrelevant peptide always showed a less or comparable number 

of spot counts than medium, anti-CD28, and DMSO-only negative controls. Furthermore, 

due to the low average number of spot counts, a qualitative measure of peptide positivity 

was defined when the average of the spots produced was at least twice the average of the 

spots counted in the negative control condition (2 × VF-9 peptide average spot counts = 

cut-off value) (Table 3). 

A non-parametric Spearman’s Rho test was applied to find a correlation between 

pairs of continuous variables (Table 1 and elsewhere in the text). The non-parametric Wil-

coxon test was employed for correlated sample comparisons (Figure 2), while the Mann–

Whitney U test was used for group-to-group comparisons (in the text). 

Multiple Correspondence and Principal Component Analysis (MCA and PCA) 

The R-package ‘Factominer’ (v.2.8) was used [76] for both MCA and PCA. 

For MCA, the dataset consisted of 12 profiles of 18 features: 11 were the active varia-

bles (symptoms: Fever, Anosmia, Ageusia, Cough, Headache, Sore throat, Rhinorrhea, 

Muscle pain, Joint pain, Malaise fatigue, Confusional state), 3 were quantitative (Age, total 

symptoms, time-interval between 1st positive swab and sampling, this last hereafter de-

fined as PS-ΔT), and 4 qualitative (VOC, Paracetamol, Intensive Sport Activity-Sport_Y/N, 

COVID-19 vaccine dose number-Vax dose#) supplementary variables. Rare symptoms 

(frequency < 3) were excluded, thus yielding a total of 11 symptoms included in the anal-

yses. 

For PCA the dataset consisted of 12 profiles of 67 features: 38 were active variables 

(cell subpopulations determined by flow cytometry), 14 were quantitative (immune re-

sponses: Spike LA-9, Spike KL-9w, 33-peptide response rate, Peptivator N, Peptivator S, 

anti-Spike Abs, anti-Wuhan nAbs, anti-NP Abs; context-related: time intervals between 

last vaccine dose and sampling (VS-ΔT), last vaccine dose and 1st positive swab (VP-ΔT), 

1st positive swab and 1st negative swab (PN-ΔT) and PS-ΔT; personal: age, total symp-

toms), and 15 were qualitative (11 symptoms, VOC, intensive sport activity, paracetamol, 

vax dose#) supplementary variables. 

The association between synthetic variables and supplementary variables was evalu-

ated in terms of Pearson correlation for continuous variables and R2 for categorical ones. 

3. Results 

3.1. Peptide Selection 

3.1.1. 9-11mer Peptides In Silico Prediction 

When the project started, several in silico prediction studies had already been con-

ducted on the peptide's MHC-I receptor affinity, and the most promising peptides had 

already been tested for their immunogenicity by several research groups. At that point, 

we wondered about the immunogenic properties of the minor (less described in the liter-

ature) peptides. Therefore, we decided to concentrate on peptides that did not rank among 

the top best, although they still exhibited interesting % Rank values. We also sought to 

comprehend how mutations present in the most prevalent VOCs at that time could influ-

ence the cellular response toward individual peptides. 
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To this end, we obtained a set of representative CD8 T cell HLA-A*02:01-restricted 

peptides belonging to the Spike and to the Nsp1, Nsp2, Nsp3, and Nsp16 derived from 

the SARS-CoV-2-isolate Wuhan-Hu-1 protein sequences. To generate the peptide set, pro-

tein sequences were subjected to the NetMHCpan-4.1b algorithm, which assigns a % Rank 

inversely proportional to the peptides’ ability to bind to class I MHC [66]. Afterwards, a 

peptide selection based on the quality of the % Rank was performed, including peptides 

not yet tested for their immunogenicity in the current literature, to achieve 11 ancestral 9-

11mer peptides derived from Spike (TL-9, LA-9, GL-9, VV-11w, KV-10, FV-10, VI-9, KA-

10w, TL-10, VA-11, VV-9w), with a % Rank ranging from 0.041 to 1.043. We also included 

two already known and well-characterized immune-dominant peptides, namely KL-9w 

and YL-9, with % Ranks of 0.067 and 0.013, respectively. Three potentially immunogenic 

epitopes were selected as well, for each non-structural protein: TV-9, QV-9, VL-9 (Nsp1), 

TI-9, RT-9, FV-9 (Nsp2), IV-9, FL-10, KL-10 (Nsp3), and SL-10, WV-9, QL-9 (Nsp16), whose 

% Ranks ranged between 0.051 and 0.538, as shown in Table 1. 

3.1.2. 9-11mer VOC Mutated Peptide Pairs 

Through comparison and mutation analysis performed by Mega software [77] based 

on the reference Wuhan-1 Spike protein sequence versus the principal VOCs circulating 

in Italy between June 2021 and May 2022 (Delta and Omicron BA.1, according to the 

COVID-19 Data Portal website) [78], four mutant peptides were selected: VG-9o and NL-

9o both belonging to Omicron BA.1, KA-10δ present in Delta, and VV-11o/δ existing in 

both variants, pairing four previously selected Wuhan-1 peptides (VV-9, KL-9w, KA-10, 

and VV-11). 

Of note, peptides whose % Rank is <0.5 are commonly defined as strong binders, 

while % Ranks ranging from 0.5 to 2 define weak binder peptides [66]. As we were inter-

ested in comparing paired ancestral-mutated peptides and in verifying correlation linear-

ity between immunogenicity and % Rank, the current study included twenty strong 

binder peptides (% Rank < 0.5) and five peptides with a % Rank between 0.5 and 0.55, and 

some weak/not binders, such as the paired VV-9/VG-9o peptides (1.043 and 28,630 % 

Rank, respectively), the Delta mutant KA-10δ (1.841 % Rank), and the VA-11 peptide 

(0.735 % Rank). Mutant peptides’ % Rank was generally worse than that of their ancestral 

ones, except for Spike VV-11δ/o peptide whose % Rank resulted slightly be�er than the 

ancestral VV-11 one. Mutated peptides are coupled with the relative wild counterparts in 

Table 1, while details on the literature-based immunogenicity of the selected peptide pairs 

are described in the Supplementary Material [79–85]. 

Table 1. 9-11mer peptides. 

  High Affinity   Algorithm 

for Peptide 

Selection 

Other Algorithms      

  Low Affinity    

 Peptide 

ID 

1st Aa 

Positi

on 

VOC 

° 
Sequence Already Tested by £ 

EL 

NetMHCpa

n 4.1b % 

Rank 

NetCTL

pan % 

Rank 

SYFPEIT

HI Score 

VaxiJen 

Decision 

Spike 

KA-10w 947 W 
KLQDVVNQ

NA 
 0.511 2.00 16 Antigen 

KA-10δ 947 D 
KLQNVVNQ

NA 
 1.841 $ 5.00 $ 15 

Non-

antigen 

KL-9w # 417 W KIADYNYKL Various assays [27,86–98] 0.067 0.30 26 Antigen 

NL-9o 417 O NIADYNYKL 
ICS [86], Multimer_staining 

[99] 
0.352 1.00 25 Antigen 
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VV-11w 610 W 
VLYQDVNCT

EV 
  0.290 0.30 nd Antigen 

VV-11δ/o 610 D/O 
VLYQGVNCT

EV 
  0.237 0.30 nd Antigen 

VV-9w 62 W VTWFHAIHV Multimer staining [99–102] 1.043 $ 2.00 15 Antigen 

VG-9o 62 O VTWFHVISG   28630 $ 50.00 $ 11 Antigen 

FV-10 515 W FELLHAPATV Multimer staining [89] 0.377 7.00 $ 17 Antigen 

GL-9 857 W GLTVLPPLL 

Biol_activity [103], multimer 

staining [102,104], ELISpot 

[91] 

0.259 2.00 22 Antigen 

KV-10 386 W 
KLNDLCFTN

V 

ICS [96], multimer staining 

[97,104], ELISpot 

[92,105,106] 

0.354 0.15 23 Antigen 

LA-9 821 W LLFNKVTLA 

ELISA [107], ELISpot [91–

93], HTMA [108], ICS 

[96,109,110], c ytotoxicity 

[107,111], multimer staining 

[87,88,98,102,107,111]  

0.105 0.80 22 Antigen 

TL-10 1136 W TVYDPLQPEL   0.518 2.00 19 Antigen 

TL-9 109 W TLDSKTQSL 

Biol_activity [97], HTMA 

[108], ELISpot [91,92,94,112], 

multimer_staining 

[89,102,113,114] 

0.041 2.00 25 Antigen 

VA-11 83 W 
VLPFNDGVY

FA 
Multimer staining [89] 0.735 3.00 nd Antigen 

VI-9 915 W VLYENQKLI 
ELISpot [91,115], multimer 

staining [102] 
0.397 3.00 21 Antigen 

YL-9 # 269 W YLQPRTFLL 
Various assays [27,86–98] 

and many others 
0.013 0.05 26 Antigen 

Nsp1 

QV-9 15 W QLSLPVLQV ICS [116,117] 0.214 3.00 26 Antigen 

TV-9 103 W TLGVLVPHV 
ICS [111,117], multimer 

staining [90,98,102] 
0.162 1.00 26 Antigen 

VL-9 38 W VLSEARQHL 
Biol_acitivity [116], ICS 

[116], multimer staining [89] 
0.311 2.00 23 Antigen 

Nsp2 

FV-9 461 W FLRDGWEIV 

Biol_acitivity [116], ICS 

[116], multimer_staining 

[102] 

0.360 0.80 24 
Non-

antigen 

RT-9 399 W RLIDAMMFT multimer staining [89,98] 0.438 1.50 17 
Non-

antigen 

TI-9 34 W TLSEQLDFI 
ICS [116],multimer_staining 

[102] 
0.288 0.80 24 Antigen 

Nsp3 

FI-10 430 W FLTENLLLYI Multimer staining [89,107] 0.542 0.15 25 
Non-

antigen 

IV-9 1514 W ILFTRFFYV 

Biol_activity [103], ICS 

[109,111–119], 

multimer_staining [102,114] 

0.051 0.01 23 
Non-

antigen 

KL-10 1407 W KLINIIIWFL 
Granzyme_B [94], Multimer 

staining [102] 
0.538 0.05 27 

Non-

antigen 

Nsp16 QL-9 266 W QINDMILSL Multimer staining [102] 0.313 2.00 27 Antigen 
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SL-10 243 W SLFDMSKFPL   0.435 0.15 24 
Non-

antigen 

WV-9 88 W WLPTGTLLV 
Biol_activity [86], multimer 

staining [102] 
0.501 0.80 25 Antigen 

  p by Spearman test vs. NetMHCpan 0.051 0.008  

° W: Wuhan-1, O: Omicron BA.1, D: Delta; £ References are extracted from the iedb.org website; # 

known immuno-dominant peptide; $ Outlier; nd: no peptide prediction matrices for “HLA-A*02:01” 

defined. 

3.1.3. 9-11mer Peptide In Silico Characterization 

A deeper characterization of all selected peptides was performed by means of other 

specialized algorithms such as NetCTLpan-1.1 cell epitope prediction tool from the Im-

mune Epitope Database and Analysis Resource (IEDB) [67] that combines proteasome 

cleavage, TAP transport, and MHC class I score, assigning a combined score and a specific 

% Rank (Table 1). 

An additional score was also calculated by the SYFPEITHI algorithm (Table 1), which 

makes predictions based on natural ligands and epitopes of known T cells present in its 

database. Commonly, values above 20 are considered predictive of good binding. Most of 

the selected epitopes showed good scores (>20); no one had a score < 15, except for VG9o 

which showed a bad score (=11) [120]. 

Eventually, the VaxiJen assignment of the probability to be antigenic for each peptide 

was detailed in Table 1 [69]. Here, the virus was selected as the target organism, and the 

antigenicity threshold was set at 0.4. All epitopes were defined as suitable antigens, apart 

from Spike KA-10δ, Nsp2 FV-9 and RT-9, all Nsp3, and the Nsp16 SL-10 peptides. 

3.1.4. 9-11mer Peptides In Silico Prediction Scores: Correlation among Different Algo-

rithms 

Spearman's test revealed a nearly significant correlation between NetMHCpan-4.1b 

% Rank and NetCTLpan-1.1 % Rank (p = 0.051), while the SYFPEITHI score showed a 

stronger association with NetMHCpan-4.1b % Rank (p = 0.008) (Supplementary Figure 

S2A). At the same time, even though VaxiJen decision did not significantly group peptides 

based on their NetMHCpan-4.1b % Rank (p = 0.123) (Supplementary Figure S2B), all the 

most probable VaxiJen-defined non-antigen peptides were included in higher 

NetMHCpan-4.1b % Rank (>0.355), apart from Nsp3 IV-9 (0.051 % Rank) (Table 1). 

3.1.5. Forecasting 9-11mer Peptide Immunogenicity 

Overall, based on NetMHCpan-4.1b % Rank and VaxiJen definition, we could specu-

late that the most promising epitopes in terms of immunogenicity could be those “proba-

ble antigen” peptides with a % Rank < 0.6. According to this definition, at the top of the 

classification we could find YL-9 (0.013 % Rank), TL-9 (0.041 % Rank), KL-9w (0.067 % 

Rank) and LA-9 (0.105 % Rank) peptides, all derived from the Spike protein. This predic-

tion would have been partially verified once our investigation was carried out. In fact, 

only KL-9w and LA-9 peptides showed a good degree of immunogenicity post hoc. 

In brief, Table 1 collects the complete sequence of each peptide, its first amino acid 

position in the Wuhan-1 strain protein sequence, the % Rank calculated by Net MHCpan-

4.1b as well as the other algorithm scores. When available, we also reported the appropri-

ate literature reference, and the type of test or analysis they were submi�ed to, as de-

scribed in Jin et al. [42]. 

3.1.6. Long Peptide Selection 

Furthermore, we wanted to explore the possibility of assaying certain longer protein 

segments that were particularly rich in mutations by switching from the Wuhan-1 strain 

to the Delta and Omicron VOC strains. For this purpose, sequences of two long peptides 
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spanning two regions potentially relevant for their mutational burden in Delta and Omi-

cron BA.1 VOCs, both located in the S1 subunit, were investigated to explore their possible 

immunogenicity. The regions of interest were labeled as 135w and 203w according to their 

starting residue position in the Wuhan-1 protein sequence, and they were 32 and 28 amino 

acid long, respectively (135w amino acid sequence: 

FCNDPFLGVYYHKNNKSWMESEFRVYSSANNC, 203w: IYSKHTPINLVRDLPQGF-

SALEPLVDLP). These regions enclose several mutations from the ancestral strain, includ-

ing amino acid substitutions, deletion, or insertion, as depicted in Supplementary Table 

S1. On this basis, we identified a 135δ and a 203o LP, which encompassed the Delta and 

the Omicron BA.1 mutations as compared to the Wuhan-1 sequence, both 30 amino acids 

long (respective sequence: FCNDPFLDVYYHKNNKSWMESGVYSSANNC and 

IYSKHTPIIVREPEDLPQGFSALEPLVDLP). By the way, we should point out that the 

135w LP is conserved in Beta VOC, while 203w LP is conserved in Alpha, Gamma, and 

Delta VOCs. 

Furthermore, the binding affinity of the potentially immunogenic T cell epitopes, en-

closed within the selected LPs, was calculated by NetMHCpan-4.1b algorithm for the most 

represented HLA super-types, including HLA-A*02:01, as shown in Supplementary Table 

S1, along with other literature-based details of the selected LPs (Supplementary Material) 

[121–124]. None of the four LPs, Wuhan-1 and mutants, generated strong binder epitopes 

belonging to the HLA-A*0201 haplotype. Differently, they all showed, within their se-

quences, a strong binder epitope towards HLA-A*24:02 haplotype, which is a relatively 

rare allele in the population (incidence = 0–0.5%). 

3.1.7. 9-11mer and LP Peptide Sequence Identity with Other Coronaviruses 

Selected (9-11mer and long) peptide sequences were compared for identity, and 

therefore for their putative cross-reactivity [125], towards other human Coronaviruses 

(OC43, HKU1, NL63 and 229E), using the NCBI Blastp platform (Supplementary Table 

S2). Most of the selected peptides exhibited a Sequence Identity (SI) of ≤70% with these 

human Coronaviruses, except for: 

Spike GL-9, 77% SI with OC43; 

Spike KV-10, 80% SI with NL63 and 229E; 

Spike LA-9, 77% SI with HKU1; 

Spike VI-9, 77% SI with OC43 and HKU1; 

Nsp1 VL-9, 77% SI with NL63 and 229E; 

Nsp16 QL-9, 77% SI with OC43 and 229E; 

Nsp16 SL-10, 90% SI with OC43 and HKU1; 

Nsp16 WV-9, 77% SI with OC43. 

All selected long peptides showed an identity percentage lower than 50% compared 

to other coronaviruses. Based on these observations, we might speculate that immunolog-

ical cross-reactions with other human Coronaviruses were unlikely, except for the SL-10 

epitope of Nsp16, showing 90% SI with OC43 and HKUI viruses. 

3.2. Subjects’ Characteristics 

Twenty healthy subjects were enrolled between November 2021 and June 2022, being 

infected from July 2021 to May 2022. Among them, 14 out of 20 resulted positive for HLA-

A*02 and were therefore included in our analysis. Table 2 reports the main characteristics 

related to the demographic features (sex at birth—hereafter referred as sex, for brevity—

and age), the vaccine manufacturer (Johnson & Johnson, New Brunswick, NJ, USA; Pfizer, 

New York, NY, USA; Moderna, Cambridge, MA, USA), and the dose number, as well as 

the 1st positive swab date, the probable infecting SARS-CoV-2 VOC, the total symptom 

number, and the PS-, VS-, VP-, and PN-ΔT time intervals. In particular, the cohort com-

prised 11 female and 3 male subjects, with an average age of 51 years (min 18, max 58). 

According to their infection onset date (first positive swab), the potential VOC was esti-

mated by referring to the COVID-19 Data Portal (CDP; 
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h�ps://www.covid19dataportal.org/) (accessed starting from 15 October 2020), an open-

access data sharing [78]. On this basis, 5 subjects were presumably infected by Delta, 7 by 

Omicron BA.1, and 2 by Omicron BA.2 strain; all subjects showed a previous paucisymp-

tomatic/mild COVID-19 course (median symptoms = 5, min 1–max 13). All subjects re-

ceived one (14%), two (43%), or three (43%) anti-SARS-CoV-2 vaccination doses before the 

infection, while vaccine manufacturers were Johnson & Johnson (14%), Moderna (36%) 

and Pfizer (50%). A median of 70 days was determined in PS-ΔT (min 44, max 173), of 188 

days (min 74, max 434) in VS-ΔT, of 107 days (min 4, max 261) in VP-ΔT, and of 12 days 

(min 7, max 26) in PN-ΔT. 

Table 2. Subjects’ demographic/vaccination/infection main data. 

Subj # 

ID 

1st 

Positive 

Swab 

Date (d-m-

y) 

Sex Probable VOC 

Vaccine 

Dose 

Number 

Vaccine 

Manufacturer

* 

Age 

(y) 

Total 

Symptoms 

PS-DT 
$ (d) 

VS-

DT $ 

(d) 

VP-

DT $ 

(d) 

PN-DT 
$ (d) 

  

01 26.07.2021 F Delta 1 M 31 1 116 147 31 9   

02 11.09.2021 F Delta 2 J 51 7 69 170 101 10   

03 19.10.2021 F Delta 2 J 55 13 52 206 154 26   

04 23.07.2021 M Delta 1 P 18 4 165 169 4 15   

05 11.01.2022 F  Omicron BA.1 2 M 29 3 59 206 147 10   

06 31.12.2021 F  Omicron BA.1 3 P 58 2 70 89 19 11   

07 11.01.2022 F  Omicron BA.1 2 P 54 7 62 264 202 13   

08 07.01.2022 F  Omicron BA.1 3 P 51 3 66 74 8 10   

09 05.01.2022 M  Omicron BA.1 2 P 49 4 93 281 188 7   

10 03.01.2022 F  Omicron BA.1 3 P 51 5 108 129 21 16   

11 05.11.2021 M Delta 2 M 41 5 173 434 261 16   

12 02.05.2022 F  Omicron BA.2 3 P 52 7 44 156 112 7   

13 21.04.2022 F  Omicron BA.2 3 M 53 5 55 226 171 13   

14 23.03.2022 F  Omicron BA.1 3 M 50 7 112 211 99 16   

  
Frequency 

(n out of 

14 

Subjects) 

M = 3 
B 1.617.2 Delta 

= 5 
1 = 2 J = 2 51 5 70 188 107 12 median 

  F = 11 
B.1.1.529 Om 

BA.1 = 7 
2 = 6 M = 5 18 1 44 74 4 7 min 

    
B.1.1.529 Om 

BA.2 = 2 
3 = 6 P = 7 58 13 173 434 261 26 max 

* M = Moderna; J = Johnson & Johnson; P = Pfizer. $ Time interval (DT) between 1st positive swab 

and sampling (PS), last vaccine dose and sampling (VS), last vaccine dose and 1st positive swab 

(VP), 1st positive swab and the negative swab (PN). 

3.3. Assessment of T Cell Immune Responses to Selected Peptides 

Immunogenicity analysis of the in silico predicted/selected peptides was performed 

on cPBMCs derived from 14 HLA-A*02: 01 positive healthy subjects’ blood samples by 

means of IFN-γ ELISpot assay and is reported in Figure 2. Most of the selected peptides 

exhibited a low and variable response across subjects. Comparing each peptide to the neg-

ative control, only one peptide poorly studied by functional ELISpot test so far, named 

Spike LA-9, exhibited a significant increase (p = 0.017) in terms of SFCs. The previously 

investigated KL-9w peptide confirmed its immunogenicity (p = 0.002) and the same was 

true for Peptivator S and Peptivator N (p < 0.001 and p = 0.001, respectively, after Bonfer-

roni correction). The YL-9 peptide regarded as immunogenic showed a trend of increase 

in SFCs as compared to negative control, although not significant. Univariate analysis by 

Spearman test indicated that cellular response to the various immunodominant peptides 
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and two viral protein peptide pools significantly correlated with each other (i.e., 33-pep-

tide response rate with KL-9w and Peptivator S, as well as Peptivator S with Peptivator N, 

rho = 0.730, 0.621, 0.533 and p = 0.003, 0.018, 0.050, respectively). 

We also investigated the response to LA-9 by ELISpot assay on cPBMCs derived from 

five non-HLA-A*02:01 vaccinated and recovered subjects, with characteristics comparable 

to the HLA-A*02:01 subjects described so far. A positive response was obtained in three 

out of five of these subjects (Supplementary Figure S3A), whose exact haplotype was not 

known, as we did not have the opportunity to perform a complete HLA-typing. We there-

fore queried the netMHCpan 4.1b algorithm to obtain predictions of MHC class I affinity 

for the most common alleles, as listed by the IEDB website, and observed that LA-9 ap-

peared to be a strong binder candidate for two alleles (A*02:06 and B*08:01, % Rank 0.19 

and 0.08, respectively) and a weak binder for many other alleles (with a % Rank ranging 

from 0.56 to 1.6) (Supplementary Figure S3B). Some of these alleles are described as rela-

tively common (such as B*08:01, with a frequency of 6%). 

 

Figure 2. PBMC response to in silico selected peptides. (A) One representative experiment of a 24 h 

ELISpot assay on cryopreserved PBMCs derived from an HLA-A*02:01+ recovered and vaccinated 
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subject (Subj#9). Here, we show the raw ELISpot data image of negative (VF-9) and positive (pool 

S, pool N, CEF, SEB) controls as well as Spike and Nsp in silico selected peptides, whose ratio vs 

VF9 negative control resulted ≥2. (B) Boxplot (median and 10–90 percentile range) graph showing 

cumulative results of ELISpot assay on 14 subject cryopreserved PBMCs stimulated with in silico 

selected peptides as well as negative and positive controls. KL-9w and YL-9, in yellow, are already 

described as immunogenic peptides; LA-9, in purple, was the only poorly studied peptide to differ 

significantly from the VF-9 irrelevant peptide (negative control, in grey). Peptivator pool, in orange, 

and CEF, in pink, positive controls significantly differed from the negative control, as well. p-value 

= non-parametric Mann–Whitney test for paired samples, Bonferroni corrected. Black dots represent 

the outlier values. 

3.3.1. Qualitative Analysis of T Cell Response to Selected Peptides 

A qualitative analysis of functional immune response has been carried out by estima-

tion of the positive/negative value for each peptide tested on each subject. An SFC value 

that was at least double the SFC value of the negative control was defined as positive (Ta-

ble 3). Hence, the immunogenicity rate for each peptide has been calculated as the ratio 

between the number of positive events and the number of tested subjects (n = 14). This 

rate varied between a minimum value of 0.07 and a maximum value of 0.93. In particular, 

the peptide LA-9 rate was equal to 0.57, being positive in more than half of the tested 

subjects. The immunodominant peptide KL-9w exhibited a rate of 0.79, while the above 

mentioned YL-9 showed a rate of 0.64. We could not define YL-9 peptide as immunodom-

inant in our cohort of subjects, due to its lack of quantitatively significant responsiveness. 

However, this peptide has been described as immunogenic by several other authors [89] 

and we believe that the lack of observed response in our study could be a�ributed to nat-

ural biological variability, influenced by the small size of our sample group. The higher 

immunogenicity rate was a�ributed to 135δ long peptide (0.93) (Table 3), although weak 

and not significantly different from the negative control, when globally and quantitatively 

analyzed (Figure 2). All subjects’ cPBMCs showed a positive response to the CEF positive 

control and to the Peptivator S peptide pool (in this last case, except one), while four out 

of fourteen subjects’ cPBMCs did not react to the Peptivator N peptide pool. Only one 

subject did not respond to the Peptivator S, noteworthy for having experienced a greater 

number of symptoms and a longer infection time, despite having already received two 

doses of the vaccine. The response to the Peptivator N was more variable, with four unre-

sponsive subjects. 

Overall, following our ELISpot tests, we collected a consistent amount of information 

regarding the cellular response to the Spike and the Nuclear proteins, as well as the two 

immunodominant peptides in our subject cohort (KL-9w and LA-9). Additionally, we 

were able to assess the response rate across the 33 analyzed peptides (9-11mer and long), 

by calculating for each subject the incidence of the positive response (33-peptide response 

rate: median 0.29, min 0.06, max 0.73) (Table 3). Noteworthy, this response rate could re-

flect a comprehensive cellular response inclusive of both Spike protein and the four Nsp 

proteins under examination.  

Table 3. Qualitative evaluation of the cellular immune response: single peptide immunogenicity 

rate and determination of subjects’ response rate to the 33 peptides. 
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Spike 

135W + − − + + − + + − − − − − − 0.36 

135δ + + − + + + + + + + + + + + 0.93 

203w + − − + − − + − − + − − − + 0.36 
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203o − − − + + + + + − − − − − + 0.43 
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KA-10w − − − + + − + − − − − − − + 0.29 

KA-10δ − − − + + − + − − − − − − + 0.29 

KL-9w + − + + + + + + + + − + − + 0.79 

NL-9o + − − − − + + − − − + − − + 0.36 

VV-11w − − − − − + + − − − − − − + 0.21 

VV-11oδ − − + − + − − − − − − − − − 0.14 

VV-9w + − − − + + + − + − − − − − 0.36 

VG-9o − − − + − + + − − − − + − + 0.36 

FV-10 + − − + + + + − − − − + − + 0.50 

GL-9 + − + + − − + − − − − − − + 0.36 

KV-10 − − − − + + + − − − − − − − 0.21 

LA-9 − − + + + − + + + − − − + + 0.57 

TL-10 − − − + + − + + − − − − − + 0.36 

TL-9 + − − + + + + − − − − + − + 0.50 

VA-11 − − − + − − + − − + − + − − 0.29 

VI-9 − − − + − + − − + − − − − + 0.29 

YL-9 + + − − + + + + − − − + + + 0.64 

Nsp1 

QV-9 − − − + − + + + − − − + − + 0.43 

TV-9 − − − − − + + − − − + − − + 0.29 

VL-9 + − − + − + − − + − − − − + 0.36 

Nsp2 

FV-9 − − − − − − + − − − + + − − 0.21 

RT-9 − − − + − − + − − − − − − − 0.14 

TI-9 + − − − + − + − − − − − − + 0.29 

Nsp3 

FI-10 + − + − − + − − − − − − − + 0.29 

IV-9 − − − + + − − − − − − − − + 0.21 

KL-10 − − − + − − − + − − − − − + 0.21 

Nsp16 

QL-9 − − − + + + − − − − − + − − 0.29 

SL-10 − − − − + − − − − − − − − − 0.07 

WV-9 − − − − + − − − − − − − − + 0.14 

  
33-peptide response 

rate 
0.39 0.06 0.15 0.64 0.58 0.52 0.73 0.27 0.18 0.12 0.12 0.30 0.09 0.73   

  Peptivator S + + − + + + + + + + + + + + 0.93 

  Peptivator N + + + + + − + + + − − + − + 0.71 

    CEF + + + + + + + + + + + + + + 1.00 

3.3.2. Agreement between Algorithms and Immunogenicity 

We then sought a correlation by Spearman’s Rho test between the immunogenicity 

rate and the % Rank assigned by the algorithm of choice for peptide selection 

(NetMHCpan-4.1b). After removing outlier values from algorithm results, these two pa-

rameters showed a significant correlation with a p = 0.025, while the comparison between 

peptide immunogenicity and NetCTLpan MHC % Rank or SYFPEITHI score did not (p = 

0.081 and p = 0.949, respectively), bringing us to elect ex post EL NetMHCpan 4.1b as the 

best algorithm to predict peptide immunogenicity in our study (Supplementary Figure 

S4A). Moreover, VaxiJen decision was significantly associated to the immunogenicity rate 

(p = 0.005) (Supplementary Figure S4B). 

3.4. B Cell Response 

Total anti-Spike and anti-NP Abs in plasma samples were tested by commercial assay 

kits (Figure 3). Antibody titers exhibited a certain variation among subjects, all showing 
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high levels of anti-Spike Abs, far above the cut-off (0.8 U/mL) with a median of 46140 

U/mL (min 964–max 105300). A significant correlation was found between anti-Spike Abs 

and previous doses of anti-SARS-CoV-2 vaccine (rho = 0.603, p = 0.022, by Spearman test, 

(Supplementary Figure S5A). All subjects also exhibited anti-NP antibody values equal to 

or above the positivity cut-off (1 U/mL), with a median of 17.48 (min 1, max 286) U/mL. 

Furthermore, plasma levels of nAbs was evaluated using a test developed in our la-

boratory, based on the use of pseudovirus, as described in [73,75]. Anti-Spike nAbs di-

rected towards the Wuhan-1 strain, were analyzed in twelve out of fourteen enrolled sub-

jects, while anti-Spike nAbs against the Omicron BA.1 variant were measured in seven out 

of fourteen subjects, likely infected with this VOC, as shown in Figure 3. All subjects ex-

cept one exhibited a high neutralizing titer against the Wuhan-1 strain (median ID50 9789, 

min 1765, max 41,000). Anti-Wuhan nAbs and anti-Spike Abs strongly correlated (rho = 

0.902, p < 0.001 by Spearman test, Supplementary Figure S5B). 

Similarly, the subgroup of subjects examined for direct Abs against the Omicron BA.1 

variant all tested positive (median ID50 3534, min 1450, max 15,762). We also tested the 

plasma concentration of nAbs directed against other VOCs (Alpha, Delta, Omicron BA.2, 

and BA.4.5) in a few subjects, selected on the basis of their positive SARS-CoV-2 test date. 

In all cases, high ID50 values were detected (Supplementary Figure S5C). 
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Figure 3. B cell response evaluation. Plasma samples collected 1–6 months after negativization were 

evaluated for anti-Spike and anti-NP total Ig (IgG, IgM, IgA) antibodies (Abs) by ELISA and for 

neutralizing antibodies (nAbs) against Wuhan and Omicron BA.1 variant by pseudovirus neutrali-

zation assay. Positivity was defined when values were higher than 0.8 U/mL for anti-Spike Abs and 

1.0 cut-off index (COI; signal sample/cut-off) for anti-NP Abs. nAb titer is expressed as ID50, corre-

sponding to the dilution of plasma providing 50% inhibition of the infection. 

3.5. Relationship between Symptoms and Demographic, Clinical, and Lifestyle-Related 

Parameters 

Since COVID-19-related symptoms can widely vary within the population, depend-

ing on several features, such as individual differences, vaccination status, and infection 
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with different viral variants, we characterized our sample in terms of symptom profiles 

and their relationship with personal and context-related factors (i.e., age, physical activity, 

paracetamol intake, vaccine doses, estimated VOC, and number of reported symptoms). 

To this aim, MCA was applied to the symptom dataset, while personal and context-de-

pendent variables were used as illustrative. The symptomatology pa�ern among individ-

uals was evaluated in the plane formed by the first two dimensions, which explained 

52.25% of the total dataset variability (Dim1 = 30.86%; Dim2 = 21.39%). 

As shown in Figure 4, Dim1 can be considered a quantitative indicator of sympto-

matology (“Size” effect) since it accounts for the differences between individuals who pre-

sented many symptoms (severe, positive coordinates) and individuals who did not (mild, 

negative coordinates); most of the categories marked as ‘Y’ (i.e., presence of symptom) are 

located in the right plane, with the only exception of the rhinorrhea symptom. Accord-

ingly, Dim1 correlates with the number of reported symptoms (rho = 0.91). Individuals 

who used paracetamol and practiced sport can be observed at negative values of Dim1, 

consistently with a picture of mild symptomatology. 

Dim2 adds hints on symptoms quality: (1) In the upper-right quadrant, the presence 

of ‘neurological symptoms’ (i.e., ageusia, anosmia and confusional state) was associated 

with individuals infected with Delta variant and who received two vaccine doses; (2) in 

the upper-left quadrant, rhinorrhea was present in a set of individuals infected with the 

Omicron variant who received a single vaccination dose, (3) in the lower-left quadrant, 

most of the Omicron-infected subjects who presented the fewest symptoms practiced 

sport and underwent three vaccine doses; (4) in the lower-right quadrant, individuals pre-

sented influenza-like symptoms. 

 

Figure 4. MCA of symptoms. The figure represents the map of categorical variables, both active 

(symptoms, black) and supplementary (vaccine dose number, blue; VOC, green; intensive sport ac-

tivity, red; paracetamol intake, pink). 

3.6. Peripheral Blood T Cell Memory Profile Characterization 

Although many studies showed that T cells play an important role in COVID-19 re-

covery, the contribution of their naïve/memory status is still unclear. We therefore 
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assessed it on both major (total CD3, CD4sp, and CD8sp) and minor (DP1, DP2, DN, and 

Vδ2) T cells subpopulations, performing an immunophenotyping on fresh whole blood 

samples of the enrolled subjects, using a seven-color MFC panel (refer to Section 2 Mate-

rial and Methods, Supplementary Table S5, and Supplementary Figure S1) [126,127]. 

Supplementary Figure S6 describes the distribution of major and minor lymphocyte 

subpopulations and their corresponding naïve/memory phenotype in our sample (n = 12; 

38 total relevant cellular subsets). In particular, sca�er plots showing the median and in-

terquartile range of major and minor naïve/memory subsets indicated a prevalence of na-

ïve phenotype within the total CD3+, and CD4+ gated cells, whereas CD8+ T cells showed 

a higher proportion of TD cells. In contrast, DP1 were mostly represented by CM and EM 

phenotype, while DP2 were characterized by a higher frequency of EM and TD cells. DN 

T and γδ T cells presented mostly a TD or EM phenotype. 

3.7. Host–Pathogen Relationship Described Throughout Linking T Cell Memory Profile to 

Immune Response and Demographic-Clinical Subject Characteristics 

Naïve/memory phenotype results underwent a PCA to investigate the distribution of 

their pa�ern, reducing the 38 phenotypic features to 11 Principal Components (PC, Sup-

plementary Figure S7A). 

The 53.33% of the total variability in the dataset (scree plot in Supplementary Figure 

S7B) could be well explained by the first two PCs. In Figure 5A, each phenotypic parame-

ter is represented in a correlation circle by vectors (black arrows), whose coordinates cor-

respond to loadings, i.e., the correlation between the original variable and principal com-

ponents (PC1, PC2). The figure shows how the memory lymphocytic subpopulations were 

inter-correlated (the higher the correlation between features, the smaller the angle be-

tween arrows) and arranged in the plane according to their maturation status (N, CM, 

EM, and TD, counterclockwise order). 

Subjects represented with a positive pole on PC1 had higher values, as compared to 

the sample mean, for the variables CD8sp, TD CD3, CD45RA CD3, Lymphocytes, CD3, 

TD CD8sp, and TD DP1, and lower values for the variables CD4sp, CM DP2, CM CD3, 

CCR7 CD3, and CM CD8sp (variables selected from the largest loading, as absolute value) 

(Supplementary Figure S7A). As far the supplementary variables were concerned, the 33-

peptide response rate (blue arrow) was correlated to PC1 (rho = 0.51, p = 0.09) and associ-

ated with the absence of symptom malaise-fatigue (eta2 = 1.74, p = 0.085) (Supplementary 

Figure S7D). 
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Figure 5. PCA of naïve/memory phenotype and its association with individual and context-depend-

ent parameters. Correlation circle including the 20 most correlated variables (black) to the PCs as 

well as the ‘response’ and context-dependent quantitative supplementary variables (blue) correlated 

to PCs; the correlation of the parameters to PCs is represented by the radius; correlation between 

parameters is represented by the angle between them. (A) PC1 vs. PC2 plot. Naïve/memory subset 

variability as well as antibody response association with phenotype, age, and distance between in-

fection and sampling. Arrow coloring: black, naïve/memory phenotype; blue, T cell response; red, 

B cell response; green, anagraphic/context related variables. (B) PC2 vs. PC9 plot showing cellular 

response parameter variability (its contrast with anti-NP antibodies) and its association with phe-

notype. (C) Qualitative variables that showed a trend of ability to group subjects in the PC2/PC9 

plane. 

Within PC2, individuals with positive coordinates were characterized by higher val-

ues of the variables N CD3, N DP2, N CD8sp, N CD4sp, N DP1, CCR7 CD3, DN, and Vδ2 

and lower values for EM CD4sp, CM Vδ2, and DP2 (see Supplementary Figure S7A). This 

component negatively correlated to age (rho = −0.80, p < 0.01; naïve subpopulations were 

more represented in youngest subjects; green arrow), correlated to the PS-ΔT (rho = 0.54, 

p = 0.054; the largest, the less EM subpopulations; green arrow), and negatively correlated 

to anti-Spike Ab levels (rho = −0.63, p = 0.026; the higher the response, the richer the phe-

notype in EMs and CMs; red arrow). In our sample, the variable age was correlated to the 

vax dose# (rho = 0.74, p = 0.005) and was negatively correlated to PS-ΔT (rho = −0.7, p = 

0.010). In summary, the production of anti-Spike antibodies was associated with a pheno-

type rich in CM and EM (specifically, EM CD3 and CM CD4sp) components and poor in 

N CD4sp, N DP1, DN, and Vδ2 T cells, along with age, and inversely to PS-ΔT. 

In addition, PC2 correlated to the Delta VOC infection (eta2 = 1.929105, p = 0.039) and 

to the confusional state symptom (eta2 = 1.93, p = 0.047) (Supplementary Figure S7D). In 

the PC1-PC2 plane, no categorical variable significantly segregated the individuals. 



Biomolecules 2024, 14, 1217 23 of 38 
 

 

Further principal components from three through eleven were analyzed to investi-

gate their potential biological/clinical relevance, though each explained a lower percent-

age of total variance than the first two. Interestingly, PC9 showed maximum correlation 

with cellular response parameters: a be�er response to Spike KL-9w, 33-peptides, and, to 

a lesser extent, to Peptivator N, Spike LA-9, Peptivator S, along with a low response to 

anti-NP Abs were associated to the positive pole of this dimension (Supplementary Figure 

S7C), where individuals shared higher values of CM DP2, TD CD8sp, Vδ2, DN, lympho-

cytes, N DP2, and lower values of N CD8sp and EM DP2 (Supplementary Figure S7A). In 

addition, PC9 was associated to Omicron VOC infection (eta2 = 0.57, p = 0.04 and to 

Sport_Y (eta2 = 0.58, p = 0.06) and the absence of the anosmia symptom (eta2 = 0.64, p = 

0.04; Supplementary Figure S7D). 

When plo�ing PC2 vs PC9 dimensions (Figure 5B), it is possible to effectively visual-

ize how the cellular response (blue arrows) to the different viral peptides and proteins 

was distributed in the same portion of the plane (positive pole of PC9), confirming that 

subjects tended to respond similarly to all the analyzed cellular stimuli. 

The antibody response to the NP protein (do�ed red arrow in the negative pole of 

PC9, Figure 5B), an antigen not included in the vaccine formulation, was clearly opposite 

to the global cellular response (i.e., the response to Peptivator S and N, KL-9w, LA-9, and 

the 33-peptide response rate). The immunophenotypic components that seemed to have 

the greatest weight in directing the cellular response were the Vδ2 and the DN subsets, 

while N CD8 seemed to be associated with the anti-NP response. Differently, it can also 

be observed that anti-Spike antibodies and anti-Wuhan nAbs laid very closely in this 

plane along the negative pole of PC2; in fact, there was a strong correlation between them 

(p <0.001, R2 = 0.860, by Spearman test). As a whole, the antibody response to the Spike 

protein, which is contained in the vaccine, was related to the age, the vax dose#, and to a 

shorter PS-ΔT. The lymphocyte subpopulations positively associated with the antibody 

response to the Spike protein appeared to be EM CD4 and DP2 T lymphocytes, while N 

CD3, N CD8, and N DP2 were negatively associated. Moreover, in this plane, confusional 

state during the infection, Omicron/Delta VOC infection and the practice of sport (Figure 

5C) clustered individuals into groups (p = 0.003, 0.027 and 0.074, by Wilk’s lambda test, 

respectively). 

4. Discussion 

Although vaccination efforts have been critical in mitigating the spread of the virus 

and in reducing disease severity, vaccines still need to be updated and redesigned to pre-

vent future infections with emerging mutant strains that may evade the host immune re-

sponse, as recommended by international health agencies. Vaccination strategies should 

be conceived to strengthen both the humoral and cellular immune compartments provid-

ing a long-lasting protection. In particular, novel T cell-restricted epitopes have proven to 

be valuable tools for research purposes and promising weapons for vaccines and/or im-

munotherapeutic interventions against SARS-CoV-2. In this regard, in silico epitope iden-

tification is an important step in the vaccine pipeline and it is gaining recognition by both 

regulatory and funding agencies [128]. 

The present study has been conducted to predict novel potentially immunogenic vi-

ral epitopes by bioinformatics tools and to confirm their immunogenicity on cPBMC de-

rived from a cohort of vaccinated and recovered from mild COVID-19 subjects, as an ap-

propriate population sample to investigate potential immune correlates that are effective 

in controlling the disease. 

To achieve this first aim, we focused on those CD8 T cell HLA-A*02:01 restricted 

epitopes, poorly studied or not yet tested for their immunogenicity. By in silico prediction, 

fifteen ancestral Spike peptides, four mutated peptides for Delta and/or Omicron, and three 

peptides for each Nsp (Nsp1, Nsp2, Nsp3, and Nsp16) have been identified, with promis-

ing prediction scores. 
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Our results indicated a general low-grade immunogenicity of the selected 9-11mer 

peptides, except for a peptide namely LA-9 (LLFNKVTLA), starting at position 821 of the 

S2 Spike protein, that tested positive in 57% of vaccinated and recovered subjects. As far 

as we know, this is the first report highlighting its remarkable positivity by ex vivo 

ELISpot assay [97,104]. 

When thinking about peptide vaccine design, the issue of HLA restriction is a con-

cern, since in the context of this type of vaccine, it would be desirable to consider peptide 

pools, to cover a certain number of different globally frequent HLA-restricted SARS-CoV-

2 immunodominant epitopes. 

Using computational algorithms designed to predict the binding affinity with the 

most common HLA alleles, it was found that LA-9 peptide, beyond its restriction to the 

HLA-A*02:01 allele, shows at least two other alleles with excellent prediction rankings, 

one of which is quite prevalent in the population (i.e., HLA-B*08:01). This may explain the 

ex vivo responsiveness to LA-9 even in some non-HLA-A*02:01 subjects. 

Another intriguing issue concerns the immunogenicity of longer protein segments 

particularly rich in mutations that have arisen from the Wuhan-1 strain to the Delta and 

Omicron VOCs. Thus, we also evaluated two pairs of Spike LP (one Wuhan-1/Delta and 

one Wuhan-1/Omicron), derived from two protein regions characterized by a high muta-

tional burden, that, to the best of our knowledge, had not been previously been considered 

in the literature [129,130]. Although the four selected longer peptides included in our ex-

periments have not been tested in vitro with methodologies designed to amplify the meas-

urable response [129], they showed a low but detectable ex vivo immunogenic capacity 

by direct cPBMC stimulation. Specifically, the LP 135 derived from the Delta VOC tested 

positive in 93% of cases, compared to its Wuhan-1 counterpart, which was positive in only 

36% of cases. A specific query on the IEDB platform highlighted some peptides, within 

the longer peptide sequence, with good % Rank predictions for certain alleles highly rep-

resented in the population. In fact, some % Ranks were improved by the presence of Delta 

mutations compared to the Wuhan-1 origin sequence, but none to an extent that would 

justify the increase in cellular immune response between the two longer peptides. It can 

be speculated that specific mutations in longer peptides can possibly favor an advanta-

geous architecture for antigen presentation to the immune system, therefore resulting in 

an enhanced immunogenicity. 

The choice of the aforementioned approach, based on a T cell assay, enabled us to 

characterize the subjects’ responsiveness to the single selected peptides as well as to the 

overlapping Spike and NP peptide pools. Despite the extensive endeavors of the scientific 

community, uncertainties persist regarding the relation between disease progression and 

individual traits, including immune, clinical, and lifestyle factors. The second objective of 

the study consisted in examining the intricate mutual interconnection among all the col-

lected individual and clinical/immunological features, such as the humoral and cellular 

response, as well as the peripheral immune profile of naïve/memory T cells. 

Overall, the analyzed population sample accurately represents the local epidemio-

logical scenario during the specified period. This snapshot includes individuals who had 

been vaccinated and subsequently infected, reflecting the real-life conditions when Delta 

and Omicron VOCs were prevalent. In this context, the immune response to the viral 

Spike protein resulted from a combination of vaccination and infection responses. How-

ever, the immune response to viral proteins other than Spike (e.g., Nsp peptides, Peptiva-

tor N, and anti-NP Abs) can solely be a�ributed to the infection, although it is plausible 

to hypothesize that its intensity may be modulated by prior vaccination. 

Based on these considerations, our results indicated a certain variability across indi-

viduals with generally low-grade cellular responsiveness to the majority of the selected 9-

11mer and long peptides. Almost all subjects’ cPBMCs responded well to both the Spike 

and NP peptide pools, with NP eliciting a slightly lower response compared to the Spike 

protein, as expected [131]. 
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With regard to the humoral response, we observed a strong presence of anti-Spike 

Abs anti-Wuhan nAbs in almost all patients, which correlated to the number of anti-SARS-

CoV-2 vaccine doses received [132], according to the previous literature showing that vac-

cination against COVID-19 enhances immunity, leading to a significant rise in Spike anti-

body levels and enhanced neutralizing antibody responses in individuals with a history 

of mild COVID-19 [133]. 

The presence and magnitude of antibody responses are known to correlate with var-

ious clinical outcomes and disease severity. In particular, during a mild infection, anti-

body production could be somehow related to the short time frame of infection, to the 

lower viral load, and to the reduced inflammatory response, as well as to lower antigen 

exposure compared to the severe course [134]. These factors could also account for the 

earlier decrease in the titer of anti-NP Abs compared to anti-Spike Abs [135]. Even if a 

large variability in the anti-NP antibodies has been reported [136], some authors described 

that low levels of anti-NP Abs are associated with mild course of infection compared to 

severe clinical presentation [137], in line with our observation. All subjects in our cohort 

resulted positive for the presence of anti-NP Abs, with variable levels. 

High levels of anti-Spike Wuhan nAbs were detected in all subjects included in the 

study (except the one who had received a single vaccine dose) and well correlated with 

total anti-Spike Abs, as expected. Overall, the antibody response was lower in younger 

individuals, who had received fewer vaccine doses, also experiencing a longer time lapse 

between the infection onset and the sampling date, compared to the elder subjects. Higher 

antibody titers, particularly of nAbs, have been associated with a more robust immune 

response and control of viral replication [138]. In fact, nAbs are considered key factors to 

recovery and protection of the host against SARS-CoV-2, although their long-term re-

sponse against new variants still remains poorly documented [139]. 

Regarding the clinical presentation and symptomatology of COVID-19, it is known 

that it can vary widely among individuals. Common symptoms include fever, cough, 

shortness of breath, fatigue, and muscle pain. The severity and duration of these symp-

toms can be influenced by the overall immune response, including both the humoral and 

cellular components. Rapid virus clearance mediated by SARS-CoV-2-specific T cells pre-

vents severe symptoms of COVID-19 [140]. Moreover, various studies have indicated that 

symptom profiles may differ between variants of SARS-CoV-2 [141–143]. Ultimately, life-

style factors like diet, exercise, and stress levels can also impact immune function, and 

thus affect symptomatology [144,145]. Medical history, including pre-existing conditions 

and prior exposure to related pathogens or vaccines, can also modify susceptibility to and 

severity of infections [146,147]. 

A multivariate analysis, focused on symptom profiles of our cohort, showed that 

most of the overall variability among individuals was associated to the number of symp-

toms. Furthermore, certain symptoms were more commonly observed in association with 

a particular viral variant. Specifically, individuals infected with the Delta variant predom-

inantly exhibited ‘neurological’ symptoms, whereas Omicron infection was mostly linked 

to asymptomatic cases, consistent with previous findings in adult patients [148]. Of note, 

lifestyle habits, such as intensive sport activity, or the intake of medicaments such as pa-

racetamol were also associated with a very mild symptomatology. However, in a retro-

spective cohort study of COVID-19 patients, no differences in disease severity were noted 

between individuals who exclusively used paracetamol and those who did not assume it 

[149]. Conversely, the consumption of paracetamol was associated with a lower risk of 

SARS-CoV-2 infection and, in vitro, with a decreased expression of ACE2 protein [150]. 

Focusing on the analysis of the naïve/memory T cell peripheral asset, our data high-

lighted that the frequency of major T lymphocyte subpopulations seemed not to substan-

tially differ from that of healthy adult subjects [151,152], even because comparing the ob-

served immune profiles with the existing literature is challenging due to the lack of har-

monization in reported results, especially when considering DN and DP minor T cell sub-

sets. A multivariate analysis was then applied to our dataset resembling all the above 
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discussed findings. Individual features such as age, lifestyle, and medical history factors 

may influence the progression and outcome of a viral infection, and understanding their 

interconnection might be crucial for developing effective strategies for preventing, diag-

nosing, and treating infections. 

Aging is an extremely sophisticated biological phenomenon that is conditioned by 

various cellular and systemic alterations, including the suppression of the immune re-

sponse, even in the context of COVID-19. In fact, age is a risk factor for developing severe 

COVID-19 outcomes [153], even stronger than vaccination status [154], also due to the 

potential presence of comorbidities that can affect the immune system [155]. Elderly indi-

viduals affected by respiratory diseases generally exhibit a natural decline in immune 

function over time, with a less robust antibody response and compromised cellular re-

sponse leading to a higher risk of severe symptoms and complications [156], as well as an 

increased mortality rate. It is also well-documented that, with an equal vaccination status 

and an equal time distance from infection, younger subjects demonstrate a superior anti-

body response [157]. The composition of cell subsets and their memory status across all 

cell lineages differs between young and elderly individuals [158]. Perhaps the most strik-

ing change that occurs within the aging T cell compartment is the decrease in the output 

of new naïve T cells, as a result of thymic involution [159–161] at the end of puberty [162] 

and at the age of 40–50 [163]. This gradual decline, combined with the accumulation of 

terminally differentiated memory-like cells in the periphery, with an exhausted and/or 

senescent profile [164] together with a decrease in proliferation and differentiation of B 

and T cells in lymph nodes [165] and dysregulation of T cells migration [166] contributes 

to an overall decrease of the immune response to infections [167,168], limiting the ability 

to effectively respond to encounters with novel antigens [169]. Memory T cells from older 

adults generally exhibit diminished proliferative capacity and produce lower levels of cy-

tokines in response to antigenic challenges [170]. 

In apparent contrast to all these reports, the older subjects in our cohort exhibited a 

higher expression level of anti-Spike Abs and anti-Wuhan nAbs compared to the younger 

subjects. They also presented a higher frequency of EM CD4sp and DP2 and a lower pro-

portion of N T cell subsets. One must keep in mind that, in our specific cohort, the younger 

subjects had been infected earlier in the pandemic, when vaccination had not yet reached 

a large proportion of the population, and the Delta variant was predominant. The signifi-

cantly higher number of vaccine doses and the accidentally biasing shorter PS-ΔT of the 

elderly certainly correlated with the intensity of the humoral response. 

In addition, the overall analysis highlighted that the global cellular response was an-

tagonistic to the vaccine-unrelated anti-NP Ab production. Both these factors did not as-

sociate with age and the PS-ΔT. The immunophenotypic components that seemed to have 

influence, to some extent, in directing the global cellular response were the CM DP2, TD 

CD8sp, Vδ2, and DN subsets. Conversely, subjects more efficient in terms of anti-NP pro-

duction were characterized by higher frequencies of N CD8 T cells and EM DP2. 

In mild cases, a greater proportion of viral antigen-specific CD8 T cells compared 

with CD4 T cells responses has been described [171]. However, we need to emphasize that 

our immunophenotypic analysis was based on general T cell populations rather than on 

antigen-specific T cell subsets. 

Following natural infection or vaccination, the generation of effective and persistent 

T cell memory is essential for long-term protective immunity to the virus. It was proposed 

that memory T cells might protect populations from severe infections, especially when 

antibody titers are waning [7,172]. Conflicting results have been reported regarding 

memory T cell subsets in the context of SARS-CoV-2, probably due to the low number of 

individuals in the study population and to the lack of grouping by disease severity, age, 

and sex in some studies. Interestingly, altered percentages of CD4 T cells, CD8 T cells, and 

their memory subsets were reported to be significantly associated with the disease sever-

ity. A clear distinction was observed between memory T cells from individuals with acute 

severe or acute non-severe COVID-19 and those derived from convalescent and healthy 



Biomolecules 2024, 14, 1217 27 of 38 
 

 

control subjects. In particular, when comparing patients to healthy controls, a significant 

reduction in the percentage of TD CD8 T cells and an increase in N CD8 T cells were de-

tected. Non-severe patients showed less CD4 and N CD4, and more EM CD4, as well as 

less CD8, N CD8, and CM CD8 and more TD and EM CD8 T cell frequencies [61]; likewise, 

the subjects in our cohort that showed a be�er cellular response, characterized by a higher 

TD CD8 frequency. However, the correlation between different subsets of memory T cells 

and COVID-19 severity, and its associated comorbidities, needs further elucidation, espe-

cially if considering DP and DN minor T cell subpopulations, which are less described in 

the published literature. The TD phenotype of subjects showing higher cellular response 

could be explained with an intense involvement of the CD8 counterpart in contrasting the 

infection, since it represents the main actor of the cellular response to viruses [173]. 

Minor T cell subsets can play a significant role in determining the course of a viral 

infection. Longitudinal studies following patients with primary HIV infection showed an 

increased frequency of DN T cells [174]. Petitjean et al. demonstrated that the increase in 

DN T cells producing immunosuppressive cytokines (TGF-β and IL-10) could be involved 

in the control of harmful immune activation [175]. TCR-γδ+ T cells, which are mostly DN 

T cells, are potentially related to combating bacterial and viral infections. In cases of infec-

tion, such as with the influenza A virus or the Francisella tularensis bacterium, they expand 

rapidly and secrete high amounts of IFN-γ and IL-17A [176]. Our data suggested that pe-

ripheral DN and Vδ2 T cells might have a role in the global cellular response, and are 

inversely correlated with subjects’ age, in agreement with several reports showing their 

expansion in childhood, and an age-dependent reduction in the periphery [160]. 

In addition to the already present donor–donor variability, other factors such as age, 

gender, and body mass index are likely to affect the proportion of DP T cells in the blood. 

Both DP2 and DP1 T cells were shown to be more prevalent in the blood of healthy older 

adults compared to young and middle-aged individuals, potentially reflecting long expo-

sures to chronic antigenic stimulation such as cytomegalovirus (CMV). DP T cells were 

found to be increased in patients with viral infections such as HIV and COVID-19, indi-

cating a potential role of this minor T cell population in the clearance of viruses [54]. Pe-

ripheral DP T cells were significantly reduced in severe COVID-19 disease presentations 

and may be a useful marker to predict disease severity [55]. According to Nascimbeni et 

al., DP2 are predominantly CM T cells [177]. Indirectly, we could reckon that CM DP2 

subset could have a role in favoring the global cellular response in our subjects. 

As stated, we found that Omicron infected individuals appeared more prone to de-

velop a virus specific immune response and were associated to a lower number of symp-

toms, in particular to the absence of the confusion symptom, which can mirror a more 

severe illness, characterized by neurological compromission. In our cohort, we can assume 

that the immune response was mainly influenced by the number of vaccine doses, which 

in turn was mostly associated to elderly and Omicron infected subjects. Consequently, 

Delta subjects resembled a “younger” T cell phenotype, rich in N, DN, and Vδ2 T cell 

elements, and showed a certain degree of association with the anti-NP antibodies, anti-

thetically to the cellular and humoral response variables. The success of each VOC com-

pared to the previously dominant is mostly due to altered intrinsic functional properties 

of the virus and changes in virus antigenicity that allow it to evade a primed immune 

response [1]. Several studies showed that the overall T cell response induced by infections 

and first-generation vaccines is preserved against most VOCs, despite the loss of specific 

responses due to mutations in the immunodominant epitopes that occurs in new variants. 

Another key reason for the modest impact of variants on T cell immunity is the broad 

response generated. Each individual mounts responses to 30–40 different epitopes follow-

ing infection. It appears that antibody evasion and increased transmissibility will continue 

to be the primary drivers of emerging VOCs rather than significant T cell escape. It is 

uncertain whether we will observe a gradual and sequential loss of CD8+ T cell epitopes 

over time, similar to the long-term adaptation seen in H3N2 influenza [178]. There were 
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no significant variations in antibody levels between different breakthrough infection 

groups based on the vaccine status [179]. 

Recreational athletes, engaging in regular sports activities for 5–6 h per week, en-

rolled in our study appeared to exhibit a more favorable cellular immune response, asso-

ciated with a predominance of peripheral DN and Vδ2 T cells but not with N CD8 T cells, 

these last appearing to be more associated with young age than with intensive sport prac-

tice. Furthermore, they exhibited a reduced number of symptoms during the infection. In 

general, regular exercise has been related to a reduced risk of moderate COVID-19 sever-

ity [180]. Moreover, the severity of COVID-19 in elite athletes, who engage in high-inten-

sity training every day, is predominantly mild and without complications [181] and high-

intensity exercise induces strong differential mobilization of CD8 T lymphocyte subsets 

that exhibit a high effector functionality as well as increased NK levels [182–184]. Mild-

intensity exercise during COVID-19 improves low-grade systemic inflammation and it is 

an effective therapeutic strategy to mitigate the severe inflammatory response mediated 

by SARS-CoV-2 and its consequences, also by modulating Th1/Th2 ratios, often unbal-

anced in persons at risk of infection and mortality; on the contrary, high-intensity aerobic 

exercise during the infection may have adverse effects on immune responses [185,186]. All 

these things considered, we strongly agree with the authors who have emphasized that 

public health leaders should incorporate physical activity into pandemic control strategies 

[187]. 

4.1. Pitfalls 

The present study exhibits obvious limitations. Despite the statistical significance of 

some of the data reported herein, the limited sample size has constrained an evident pit-

fall. To strengthen the statistical validity of the results, it is desirable to include a larger 

number of participants. Moreover, the study is limited by the lack of basal and follow-up 

samples as well as by the lack of an uninfected and an unvaccinated subject control group. 

Only three out of fourteen enrolled subjects were males, making it practically impossible 

to perform gender-based statistical considerations. Furthermore, the entire set of less-

studied peptides with a high affinity prediction for other alleles of the MHC-I system re-

mains unexplored, as we exclusively selected HLA-A*02:01 subjects. 

4.2. Open Issues and Perspectives 

Notwithstanding the numerous published studies on the search for immunogenic 

epitopes within viral proteins, the huge number of possible epitopes as well as the sub-

stantial variability in individual response leave room for the identification of new immu-

nogenic peptides potentially useful for diagnostic and vaccination purposes. In this con-

text, the study of peptide LA-9 could be further explored to ascertain whether it can in-

deed be considered as a potential additional candidate for a peptide vaccine formulation. 

The identification of an immunogenic peptide in a subset of breakthrough COVID-

19 cases prompts the exploration of underlying mechanisms and factors contributing to 

immune response heterogeneity. Factors such as host genetics, prior exposure to related 

coronaviruses, and variations in immune cell phenotypes may influence the differential 

immune recognition and response to specific epitopes and deserve more a�ention to en-

hance the understanding of immune dynamics and optimize vaccine strategies. Further 

investigation into the potential of the identified peptide as a vaccine component or as a 

part of multivalent vaccine formulations is warranted and needed to evaluate the efficacy 

and safety of peptide-based interventions in clinical se�ings. Continued exploration of 

alternative antigens and their potential inclusion in vaccine formulations may enhance 

overall protection against COVID-19 and related variants. 

Other non-structural proteins would have deserved to be tested, such as NSP-6, 

which has been recently recognized as a key determinant of viral a�enuation [188]. 

Our study did not address the possibility of multiple infections with different SARS-

CoV-2 variants within the cohort. Given that participants had a single clinically confirmed 
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infection with a narrow time window between testing positive and negative, multiple var-

iant infections seem unlikely. However, this could be an important consideration for stud-

ies with different designs. Investigating multiple infections and their impact on outcomes 

could offer valuable insights into infection dynamics and vaccine effectiveness [189]. 

Further investigation is necessary to fully understand the mechanisms underlying 

the relationships observed between individual characteristics, the immune response to the 

peptides under study, and their implications in disease progression. This can also help to 

find vaccination strategies appropriate to the most vulnerable populations. We believe 

that the determination of the immune profile linked to the memory status of lymphocytes 

is relevant not only in an infectious context such as COVID-19, but also in other similar 

scenarios. An in-depth study of immunophenotype and the collection of more life-related 

information such as physical activity, dietary habits, sleep, hygiene, and so forth, could 

help increase the effectiveness of immunization strategies. Considering physical activity 

at various levels of intensity (moderate, intensive, and elite/competitive) could be also of 

interest [190]. Furthermore, it would be worthy to extend our observations to individuals 

with different HLA alleles, varying disease stages, presence of comorbidities, and genetic 

factors. Also, it would be interesting to study the enrolled subjects over time to determine 

if any cases of long COVID-19 have developed among them and to search for the correla-

tion between the immune response and the persistence of symptoms. 

5. Conclusions 

In conclusion, this paper proposes a novel peptide to be used in the context of peptide 

vaccine platforms. The identification of new peptides could be important also for moni-

toring the persistence of the immune response following vaccine-induced immunization 

and / or infection, for clinical or research purposes. Peptide vaccines may provide long-

term cellular immune protection mediated by cytotoxic T cells creating superior resistance 

to viral mutations, which are currently the greatest threat to the global vaccination cam-

paign. Regarding in silico design of peptide-based vaccines, our opinion is that predictive 

algorithms are a good selection tool, but they are not sufficient to establish peptide immu-

nogenicity. In fact, our results confirmed the necessity of experimental validation through-

out biological assays. 

Moreover, a comprehensive understanding of the role of cellular immunity in 

COVID-19 is crucial for elucidating the pathogenesis of the disease, predicting outcomes, 

and informing public health interventions. Our results provide valuable insights into the 

intricate link between alterations in memory T cells and other parameters. To our 

knowledge, our study can represent a proof-of-concept of the importance of some indi-

vidual features, such as the peripheral DN/Vδ2 T lymphocyte frequency and the intensive 

sport activity contribution, to the cellular specific response. Finally, to be prepared for 

new, undesirable epidemics and pandemics, it is crucial to emphasize the importance of 

refining studies focused on identifying viral immunodominant peptides and compre-

hending the individual characteristics that can support effective immune protection 

against viruses. 
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