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Abstract: Type III interferons (IFN-III), also known as IFN-Lambda, have a pivotal role during SARS-
CoV-2 infection. IFN-Lambda response among individuals is heterogeneous and its association with
COVID-19 symptoms severity needs to be further clarified. We analyzed the genotype frequencies of
IFNL4 single nucleotide polymorphism (SNP) rs11322783 in patients with COVID-19 (n = 128), in
comparison with a validated data set of European healthy controls (n = 14152). The IFNL4 SNP was
also analyzed according to the haematological and clinical parameters of patients with COVID-19. The
distributions of IFNL4 genotypes among SARS-CoV-2 positive patients [TT/TT 41.4% (n =53), TT/AG
47.7% (n = 61) and AG/AG 10.9% (n = 14)] and healthy controls were comparable. Different levels of
white blood cells (p = 0.036) and neutrophils (p = 0.042) were found in the IFNL4 different genotypes
in patients with COVID-19; the AG/AG genotype was more represented in the groups with low
white blood cells and neutrophils. There were no differences in major inflammation parameters (C-
reactive protein, D-dimer, Albumin, and Lactate-dehydrogenase (LDH)] and survival rate according
to the IFNL4 genotypes. In conclusion, although patients with COVID-19 did not exhibit a different
distribution of the IFNL4 SNP, the AG/AG genotype was associated with a lower count of immune
cell populations. These findings need to be confirmed in larger groups of patients with COVID-19
and the role of IFNL4 SNP needs to be also investigated in other respiratory viral infections.

Keywords: COVID-19; IFN-Lambda4; single nucleotide polymorphism; rs11322783

1. Introduction

The interferon (IFN) response is the first line of defense against pathogens, including
respiratory viruses. Two types of IFN are essential to “interfere” with the initial viral
replication: type I IFN (IFN-I) and type III IFN (IEN-III), also known as IFN lambda
(IFENL) [1,2]. Four IFNL subtypes have been found in humans: IFNL1 (IL-29), IFNL2
(IL-28A), IFNL3 (IL-28B), and IFNL4. IFNL4 shares only ~28% amino acid identity with the
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other IFNL genes, leading to speculation IFNL4 may have been introduced via a separate
duplication event [1,2]. IFNLs are essential components of the mucosal innate immune
response, with reported in vitro antiviral activity against respiratory viruses including
highly pathogenetic coronaviruses, SARS-CoV-2 and MERS-CoV [1-5].

Genome-wide association studies have linked clearance of hepatitis C virus (HCV) to
genetic variations within IFN-III loci [6], and this subsequently led to the discovery of the
IFNL4 gene [7] Studies indicate that IFNL4 protein can induce IFN-stimulated genes (ISGs)
through activation of the Janus kinase (JAK)-signal transducer and activator of transcription
(STAT) pathway and exert antiviral effects [5,7]. Upon identification of the IFNL4 gene,
Prokunina-Olsson et al. found a dinucleotide genetic variant (TT/TT, TT/AG or AG/AG),
situated in the first exon of this gene [7]. Only individuals carrying the ancestral IFNL4-
AG allele of the single nucleotide polymorphism (SNP) named rs368234815, now merged
in rs11322783 [8], are able to synthesize the full-length functional IFNL4 protein [9]. By
contrast, IFNL4 TT, leads to a frameshift and therefore to aborted expression of IFNL4
protein [7]; the allele frequency for IFNL4-AG varies markedly by population (with a
frequency of 95% in Africa, around 50% in Europe, and 15% in Asia) and seems to be under
negative selection [7]. The rs11322783 SNP is in strong linkage disequilibrium with the
genetic variation, SNP rs12979860, located within intron 1 of IFNL4 and associated with
spontaneous and IFN therapy-induced HCV clearance [7,10-16]. In particular, carriers
of the CC genotype at rs12979860 or of the TT genotype at rs11322783 are more likely
to spontaneously clear acute HCV infection or to better respond to IFN treatments than
individuals with rs12979860 T or rs11322783 AG allele [7,10-16]. Given that the better
response to HCV is probably not the evolutionary driver against the expression of IFNL4
protein [2], many studies in other infectious diseases have been conducted, but only a few
reported associations with variants in the IFNL3 and IFNL4 region. Both the unfavourable
rs11322783 AG and rs12979860 T alleles were associated with impaired clearance of other
RNA viruses, including Rhinovirus and Enterovirus [17]. In partial disagreement, our
previous study in children bronchiolitis cases indicate that rs12979860 and rs8099917
SNPs had no impact on the clinical course of bronchiolitis with the only exception of the
rs12979860 TT genotype which increased the risk of hospitalization for bronchiolitis at an
earlier age [18].

As far as the impact of the IFNL4 SNPs in SARS-CoV-2 infection is concerned, Agwa
et al. observed that the CC genotype in IFNL4 SNP rs12979860 is more frequent in patients
with COVID-19 than in healthy controls in Egypt [19]. On the contrary, Saponi-Cortes et al.
found that the rs12979860 T allele was associated with COVID-19 incidence in Spain [20].
Additionally, patients who simultaneously expressed IFNL4 SNP (rs11322783 TT/TT) and
genotypes of other SNPs (1512979860 CC, rs12980275 AA, rs8099917 TT) were associated
to survivability to SARS-CoV-2 infection [19]. Moreover, SNP rs1297860 TT genotype and
SNP rs11322783 AG/AG genotype in patients with COVID-19 indicated a lower ability in
SARS-CoV-2 clearance [21].

Remarkably, heterogeneous IFN-III responses in relationship with severity of COVID-
19 has been observed. Multiple studies found that reduced expression levels of IFN-III
were associated with patients” worse outcomes, reducing SARS-CoV-2 clearance [22]. Our
previous study showed a general decreased expression of IFNL1-3, IFN-I, and ISGs-mRNAs
in critically ill patients with COVID-19 that required invasive mechanical ventilation [23].
In agreement, Sposito et al. reported that IFNL1, IFNL3, and ISGs expression is lower
in patients with severe COVID-19 [24]. Moreover, a negative correlation between IFNL2
gene expression levels and severity of symptoms has been shown [19]. In this regard, the
presence of IFNL4 SNPs has been associated with alterations in the expression level of
IFN-III and ISGs [25-27]: subjects carrying CC genotype in 151297860 SNP had a higher
expression of ISGs, although T allele was associated with increased expression of IFN« and
IEN [25]. However, data remains conflicting; indeed, ISGs expression is not influenced
by the presence of rs11322783 AG allele in HIV-1 infected patients [28]. More recently,
Azim Ansari et al. found that expression of Angiotensin-converting enzyme 2 (ACE2), the
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functional receptor for SARS-CoV-2 entry into host target cells, is negatively correlated
with IFNL4 production [29]. Remarkably, ACE2 transcripts’ level (all isoforms) in vivo
were correlated with those of ISG15, a marker of type I and III IFNs’ activation in patients
suffering from respiratory diseases not caused by SARS-CoV-2 [30].

Thus, in order to provide insight into the impact of the IFNL4 SNPs in SARS-CoV-2
infections, we investigated whether genotypes of rs11322783 SNP were differently dis-
tributed between patients with COVID-19 and the European validated group of healthy
controls [31]. We also examined whether the presence of the AG allele was associated
with demographic and clinical data, as well as with the rate of intensive care unit (ICU)
admission, and severe outcome of COVID-19.

2. Methods
2.1. Study Group

A total of 128 Caucasian patients (>18 years) were recruited at the Division of Infec-
tious Diseases, Department of Public Health and Infectious Diseases, Hospital of Sapienza
University of Rome (Italy) with laboratory-confirmed SARS-CoV-2 infection. Nasopharyn-
geal swabs were collected within 48 hours of hospital admission for SARS-CoV-2 detection.
Our study was delineated by eligibility criteria shared by all enrolled participants. Inclusion
criteria were as follows: (i) all individuals who provided informed consent prior to the
start of study procedure; (ii) male and female adults > 18 years of age; (iii) diagnosis of
SARS-CoV-2 at the day of hospital admission. Exclusion criteria were as follows: to have
not signed the informed consent; pregnancy status, human immunodeficiency virus (HIV)
infection, contraindications for taking blood samples.

All the hospitalized patients received therapeutic regimens including dexamethasone
(6 mg a day), low molecular weight heparin for prophylaxis of deep vein thrombosis as
recommended at the time by the Italian Society of Infectious Diseases [32] and standard of
care treatments. Amongst all participants, demographic and clinical data were obtained
from electronic medical records in the Hospital Electronic Information System. Variables
considered for the study included: age, gender, admission and discharge date from the
hospital, length of hospitalization; cardiovascular (CV) disease, haematological and inflam-
mation parameters [count of blood immune cell, C-reactive protein, D-dimer, Albumin,
Lactate-dehydrogenase (LDH)], thrombotic events, blood bacterial infection and bacterial
pulmonary superinfection. A predictive model, Comorbidity, Age, Lymphocyte count and
Lactate dehydrogenase (CALL), has been devised to estimate progression towards severe
forms of COVID-19 with optimal sensitivity and specificity. [33]. The CALL score ranges
from 4 (absence of comorbidity, age under 60 years, lymphocyte count over 1.0 x 10° /L,
LDH under 250 U/L) to 13 (presence of comorbidity, age over 60 years, lymphocyte count
under 1.0 x 10°/L, LDH over 500 U/L). Blood samples were collected from each patient
during the hospitalization. The study was approved by the institutional review board
(Ethics Committee of Umberto I General Hospital Rif. 5836, Prot. 0690/2021). All study
participants gave written informed consent.

2.2. IFNL4 Genotyping

Viral RNA was extracted from nasopharyngeal swabs using the Versant SP 1.0 Kit
(Siemens Healthcare Diagnostics, Milan, Italy). In particular, 10 pl of extracted RNA
was reverse-transcribed and simultaneously amplified using a real-time RT-PCR system
(RealStar SARS-CoV-2 RT-PCR, Altona Diagnostics, Hamburg, Germany), targeting E and
S genes of SARS-CoV-2. TagMan probe specific for the E gene is labeled with FAM reporter,
while TagMan probe specific for the S gene is labeled with Cy5 reporter, as previously
described [32]. Then, SNP genotyping was carried out on purified whole nucleic acids from
blood samples (DNeasy Blood and Tissue Kit, QIAGEN, Milan, Italy) collected from all
SARS-CoV-2 positive patients. Briefly, 100 L of blood sample were mixed with 20 pL of
Proteinase K and 100 pL of PBS. Then, 200 uL. of AL buffer were added and incubated at 56
°C for 10’ minutes. After the incubation, 200 pL of 96% ethanol were added, and transferred
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to the spin column. A centrifugation at 8000 rpm for 1 minute was performed and the flow-
through was discarded. Next, 500 uL of AW1 buffer were added and after a centrifugation
at 8000 rpm for 1 minute; the flow-through was discarded and the same step was repeated
with AW2 buffer performing a centrifugation for 2 minutes. Lastly, each column was eluted
in 200 uL of AE buffer. Genotyping allelic discrimination was performed by the TagMan
method (StepOne Plus Real-Time PCR System, A.B. Foster City, CA, USA) using specific
primers for the amplification of the polymorphic sequence and two TagMan-MGB probes
(VIC and FAM) specific for each allele (Express program and Genotyping assay service
Applied Biosystem) as previously reported [28]. In particular, TagMan probe with FAM
dye label recognized the wild type allele (TT) while the TagMan probe with VIC dye label
was complementary to the variant allele (AG). For one well, 5 puL of individuals DNAs
were added to a mixture of final volume of 15 uL containing 10 L 2x Probes Master Mix, 1
uL of SNP mixture and 4 uL of nuclease-free water. Allelic discrimination was evaluated
according to the variation of reported dye fluorescence signals among genotypes clusters.

2.3. Data Analysis

Genotyping was conducted in a blinded fashion relative to patient characteristics.
Before testing for SNP, samples were anonymized, and a unique randomly generated
identification code was assigned to each record and the correspondent swab. Researchers
performing genetic analyses were unable to identify patients at all stages, and no permanent
record linking these data to patient IDs was produced. For the present study, we relied
on genotype frequencies of IFNL4 single-nucleotide polymorphism rs11322783 from a
validated data set of European healthy subjects (n = 14152) [31]. All data were analyzed,
and graphs were generated using STATA software, version 17.0 (StataCorp LCC, College
Station, TX, USA). All measurements were expressed as median (Range). The demographic
and clinical characteristics of SARS-CoV-2-infected patients and healthy controls were
compared using the Chi-squared test and Mann Whitney U test. Survivability analyses
were performed according to Kaplan-Meier method and univariate Cox regression model.
Tests for deviation from Hardy-Weinberg equilibrium and Armitage’s trend tests were
used to evaluate deviation between observed and expected frequencies for identification
of unexpected population or genotyping biases in genetic frequencies of rs11322783 SNP
in the patients with COVID-19. A logistic regression model was used to determine the
allele and genotypes distribution in patients stratified by white blood cells (WBC) and
neutrophils groups (high, medium, low). A p-value below 0.05 was considered significant.

3. Results
3.1. Clinical Features of SARS-CoV-2 Infected Patients

We enrolled SARS-CoV-2-infected patients (n = 128), of which 49 (38.3%) were female,
with a median age of 64 years. Demographic and clinical features of patients with COVID-
19 are shown in Table 1. The median length of hospitalization was 19 days (Range: 1-86).
Amongst SARS-CoV-2-infected individuals, 24 (18.7%) required Intensive Care Unit (ICU)
admission because of pulmonary embolism. Moreover, 15 (11.7%) cases had thrombotic
events, 13 (10.2%) had a bacterial blood infection and 12 (9.4%) cases had bacterial pul-
monary superinfection. Patients were stratified in three groups according to the CALL
clinical score resulting in: 29 (22.6%) with low CALL (4-6), 45 (35.2%) with intermediate
CALL (7-9) and 54 (42.2%) with high CALL (10-13) severity score.
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Table 1. Demographic, clinical, and biochemical features of SARS-CoV-2 infected patients.

Features COVID-19 Patients (n = 128)
Age at diagnosis (years) (mean (range)) 63.9 (25-95)
Gender (N (percentage))
Male 79 (61.7)
Female 49 (38.3)
CALL score (N (percentage))
Low severity (4-6) 29 (22.6)
Intermediate severity (7-9) 45 (35.2)
High severity (10-13) 54 (42.2)
Clinical features (N (percentage))
ICU 24 (18.7)
Thrombotic events 15 (11.7)
Death 21 (16.4)
BSI 13 (10.2)
Bacterial pulmonary superinfection 12 (9.4)

Blood parameters (mean (range))
WBC cell/mm?
Neutrophils cell/mm?
Lymphocytes cell/mm?3
Monocytes cell/mm?

CRP pg/L
D-dimer pg/L
Albumin g/L
LDHU/L
Platelets cell/mm?

6293.6 (2110-19150)
4691.2 (1120-18000)
1067.7 (110-4760)
361.7 (150-1040)
98380 (300-540000)
1690 (176-4610)
36.9 (19-46)
335 (111-1249)
221 x 10 (65-516)

ICU: intensive care unit; BSI: bloodstream infections; WBC: white blood cells; CRP: C-reactive protein; LDH:
lactate dehydrogenase.

3.2. IFNL4 SNPs in Patients with COVID-19

The frequencies of IFNL4 rs11322783 genotypes in the patients with COVID-19 (n = 128)
and a validated data set of European healthy controls (n = 14152) [31] were as follows:
TT/TT 41.4% (n=53) vs. 45%, TT/AG 47.7% (n = 61) vs. 44.2% and AG/AG 10.9% (1 = 14) vs.
10.8%,; there was no statistically significant difference in the distribution of IFNL4 genotypes
(p > 0.05 for all the measurements). Then, we evaluated whether the distribution of the
IFNL4 rs11322783 genotypes in patients with COVID-19 varied according to the count of
blood immune cells (total white blood cells number, neutrophils, lymphocytes, monocytes,
platelets), levels of inflammation parameters (C-reactive protein, D-dimer, Albumin and
LDH), and the rate of ICU admission, thrombotic events, blood bacterial infection (caused
by E. coli, S. epidermidis, E. faecalis, S. aureus, A. baumannii and S. hominis), and bacterial
pulmonary superinfection (caused by P. aeruginosa and K. pneumoniae). Different levels
of white blood cells (WBC) (p = 0.036) and neutrophils (p = 0.042) were found in patients
with COVID-19 among the three different genotypes (Table 2). In addition, the logistic
regression model used to determine the allele distribution in the groups (medium, high,
low), showed that the AG/AG genotype was significantly more represented in those with
lower WBC and neutrophils (Table 3).

No other statistically significant relationships were observed for the remaining studied
variables concerning the IFNL4 genotypes.

3.3. Survival Analysis in Patients with COVID-19

Survival analysis showed that IFNL4 rs11322783 genotype distribution was not asso-
ciated with patients” outcome (Figure 1, Panel A). Moreover, survival analysis revealed
no significant differences according to the age, gender, and the CALL score assigned to
each COVID-19 patient (Figure 1, Panel B). As expected, those patients transferred to ICU
(p = 0.001) or with bloodstream infections (BSI, p = 0.018) had a worse overall survival
outcome compared to those not admitted to ICU and without BSI (Figure 1, Panel C and D).
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Table 2. Correlation between IFNL4 genotypes with counts blood immune cells, levels of inflamma-

tion parameters, and COVID-19 outcomes.

Features Ranges * IFNL4 SNP TT/TT IFNL4 SNP AG/TT IFNL4 SNP AG/AG p-Value
SARS-CoV-2 patients 53 (41.4) 61 (47.7) 14 (10.9)
45-11.0 x 10° 40 (75.5) 52 (86.7) 7 (50.0)
WBC cell/mm3 <45 x 10 7 (13.2) 5(8.3) 5(35.7) 0.036
>11.0 x 103 6 (11.3) 3 (5.0) 2(14.3)
1.5-8.0 x 103 43 (81.1) 52 (86.6) 8(57.1)
Neutrophils cell/ mm? <15 x 10° 3(5.7) 4(6.7) 4 (28.6) 0.042
>8.0 x 103 7 (13.2) 4(6.7) 2(14.3)
1.0-4.0 x 103 43 (81.1) 50 (83.3) 10 (71.4)
Lymphocytes cell/mm° <1.0 x 103 10 (18.9) 10 (16.7) 4 (28.6) 0.59
>4.0 x 103 - - -
0.1-0.7 x 103 49 (92.4) 60 (98.4) 14 (100)
Monocytes cell/mm? <0.1 x 10° 3(5.7) 1(1.6) 0 (0.0) 0.47
>0.7 x 10% 1(1.9) 0(0.0) 0 (0.0)
<8.0 x 10° 8 (15.1) 6(9.8) 3(21.4)
CRP ug/L >8.0 x 103 45 (84.9) 55 (90.2) 11 (78.6) 0.45
o <500 5(11.4) 9 (16.4) 2(14.3)
D-dimer ug/L 5500 39 (88.6) 46 (83.6) 12 (85.7) 0.78
35-55 30 (66.7) 30 (53.6) 8 (61.5)
Albumin g/L <35 15 (33.3) 26 (46.4) 5(38.5) 0.41
>55 - - -
80-300 x 103 16 (38.8) 21 (35.0) 4(28.6)
LDHU/L <80 x 10° 4(7.7) 1(1.7) 0(0.0) 0.47
>300 x 103 32 (61.5) 38 (63.3) 10 (71.4)
150450 x 10° 44 (83.0) 45 (76.3) 12 (85.7)
Platelets cell/mm? <150 x 10% 7 (13.2) 12 (20.3) 2 (14.3) 0.8
>450 x 103 2(3.8) 2(3.4) 0 (0.0
Low severity (4-6) 13 (24.6) 13 (21.3) 3 (21.4)
Call Intermec(:l;itge) severity 20 (37.7) 20 (32.8) 5(35.7) 0.94
High severity (10-13) 20 (37.7) 28 (45.9) 6 (42.9)
. yes 11 (20.7) 11 (18.0) 2(14.3)
ICU admission rate o 4 (79.3) 50 (82.0) 12 (85.7) 0.84
. Positive 509.4) 8 (13.3) 2 (14.3)
Thrombotic events Negative 48 (90.6) 52 (86.7) 12 (85.7) 0.78
Bloodstream infections Positive 6(11.8) 6 (10.7) 1(7.7) 091
(BSI) Negative 45 (88.2) 50 (89.3) 13 (92.3) :
Bacterial pulmonary Positive 6(12.2) 4(7.3) 2 (15.4) 0.57
superinfections Negative 43 (87.8) 51(92.7) 11 (84.6) ’

Data are represented as total numbers (percentage) of SARS-CoV-2 patients grouped by IFNL4 genotypes.
Statistical analyses were performed using Chi square test. In bold are represented significative p-values. * For WBC,
neutrophils, lymphocytes, monocytes, albumin, LDH and platelets, normal, low and high levels are shown
respectively. For CRP and D-dimer, normal and high levels are shown, respectively.

Table 3. Differences in IFNL4 allele and genotype frequencies among normal and abnormal ranges of
WBC and neutrophils in SARS-CoV-2 patients.

Heterozygous

Homozygous

Allele Allele . ,
. and and pr s Armitage’s
Frequencies Positivity
. Homozygous Homozygous . Trend Test
Comparison C & s Comparison
omparison Comparison
Normal levels allele T 0.22 0.33 0.04 0.95 0.20
WBC vs. low levels allele AG 0.22 0.003 0.04 0.005 0.20
Normal levels allele T 0.89 0.18 0.48 0.37 0.88
vs. high levels allele AG 0.89 0.08 0.48 0.20 0.88
Normal levels allele T 0.04 0.90 0.01 0.35 0.04
. vs. low levels allele AG 0.04 0.01 0.01 0.003 0.04
Neutrophils =\ 1 al levels allele T 0.82 0.25 0.63 0.41 0.81
vs. high levels allele AG 0.82 0.19 0.63 0.36 0.81

Data are shown as p-values calculated with test for association. Test for deviation from Hardy-Weinberg equilib-
rium (data not shown) showed no significative differences (p > 0.05). WBC: white blood cells.
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Figure 1. Survival rate according to IFNL4 rs11322783 SNP and clinical parameters in patients with
COVID-19 by Kaplan—-Meier Plotter. Survival Kaplan-Meier curves according with TT/TT, AG/TT
and AG/AG genotypes (p > 0.05, Panel (A)), CALL score categories (p > 0.05, Panel (B)), the presence
of BSI (p = 0.018, Panel (C)), and ICU admission (p = 0.001, Panel (D)).

4. Discussion

IEN-III represents the most recently discovered members of the IFN system. Similar
to IFN-I, IEN-Ls participate in defense against viruses mostly on cells of epithelial origin
such as bronchial epithelium, gastrointestinal epithelium, and keratinocytes, according to
the limited tropism of IFN-III receptor [1,2]. Moreover, as proof of the key role of IFN-III
in the regulation of antiviral immunity, SNPs in IFNL4 loci were associated with clinical
outcomes of different viral infections including those caused by SARS-CoV-2 [17,19,21].

In this study, we analyzed the distribution of the IFNL4 rs11322783 SNP in hospitalized
SARS-CoV-2 infected patients. Our results indicate that rs11322783 IFNL4 genotypes are
similarly distributed between patients with COVID-19 and healthy controls. Moreover, the
IFNL4 SNP seems to not influence the clinical outcome of COVID-19 being not related to
clinical severity (CALL score or ICU admission) and patients’ survival outcomes. IFNLs are
known to play a pivotal function during respiratory infections, including those caused by
Respiratory Syncytial Virus (RSV) [34], Influenza A [35], and also SARS-CoV-2 [36]. IFN-III
proper activation may control SARS-CoV-2 replication, promoting virus clearance and im-
pairing progression to severe forms of COVID-19 [36]; an heterogenous response has been
documented in patients with COVID-19, according to their clinical status [22,23]. The IFNL4
producing AG/AG genotype has been associated with higher viral loads in patients with
COVID-19 [37], but its contribution remains controversial [19,20]. Indeed, individuals who
carry CC genotype of SNP 1512979860 showed a higher incidence of COVID-19 compared
to the others [19]. On the other hand, the T allele of rs12979860 was overrepresented in
patients with COVID-19 with regard to the general healthy population, indicating that this
allele could be a risk factor for COVID-19 [20]. In this context, the CC genotype (rs12979860)
was significantly lower in patients with COVID-19 compared to healthy controls [20],
underlining the increasing complexity of this immunoregulatory network.
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In this study, we found different levels of total WBC and neutrophils among IFNL4 SNP
genotypes; in particular, patients with COVID-19 homozygous for the IFNL4-producing
allele were more represented in the group with low-counts of WBC and neutrophils.

Lymphopenia and higher levels of neutrophils and WBC have been frequently reported
as markers of disease severity and mortality in COVID-19 [33]. Moreover, it is known that
during early phases of viral infection, neutrophils are recruited from the circulation into the
infectious site, and promote oxidative damage, phagocytosis, and virus clearance [38]. In
this regard, an additional antimicrobial /antiviral function of neutrophils relies on a special
type of programmed cell death called neutrophil extracellular traps (NETs) formation [39].
These NETs correspond to extracellular filaments of uncondensed chromatin (an association
of DNA and histones) covered by numerous proteins of mainly granular origin [40]. An
abnormal formation of NETs has been observed during severe COVID-19 and has been
shown to contribute to lung damage and worse outcome of SARS-CoV-2 infection [41].
Increased plasma NET levels were observed in non-intubated patients with COVID-19, as
well as in endotracheally intubated patients with COVID-19, compared with healthy donors
and convalescent patients [42,43]. Accordingly, it has been demonstrated that SARS-CoV-2
is able to activate NETosis and increase levels of intracellular Reactive Oxygen Species (ROS)
in human neutrophils [44]. In this study, patients with AG/AG genotype presented lower
levels of neutrophils and white blood cells that could influence the outcome of COVID-19.
Indeed, during the early phase of SARS-CoV-2 infection, innate immunity, including that
associated with IFN-I [45] and III [46] response, might control the viral spreading, limiting
the rate of SARS-CoV-2 replication in the upper respiratory tract. Moreover, COVID-19
severe forms are characterized by the so-called “cytokine storm” and increased levels of
neutrophils [47,48]. Formation of NETs can induce the production of IL1f3 by macrophages,
and, simultaneously, IL1§3 can induce NETs formation [49] generating an IL13-NETs loop.
At the same time, neutrophils express stable IFN-L receptor (IFNLR) [50] and produce
ISGs during bacterial and viral infections [51,52]. It has been reported that deregulated
expression of ISGs in neutrophils during acute respiratory distress syndrome (ARDS)
is associated with worst outcome [51]. However, mice treated with IFN-L had reduced
migratory capacity of neutrophils in tissues. Indeed, it has been shown that IFN-L treatment
reduces neutrophils infiltration in arthritis [50] and these data was further confirmed in
mice with the observation of a lower migration of neutrophils in gut during autoimmune
diseases after treatment with IFN-L [53]. However, it remains unclear whether IFNL4 can
regulate neutrophil response and its impact on neutrophil functions and related IFN-III
pathways in COVID-19 individuals. Indeed, we did not find any differences in TT/AG
and TT/TT frequencies based on neutrophils and WBC levels (Table 3). Moreover, genome-
wide association studies (GWAS) did not find any correlations between IFNL4 SNP and
COVID-19 [54-56], suggesting that IFNL4 SNP might have a small or no impact during
SARS-CoV-2 infection. The latter aspect needs to be further investigated in a higher number
of patients with COVID-19; indeed, a previous study [21] found that the AG/AG genotype,
in an Iranian population suffering from COVID-19, is associated with low survivability.
Our results suggest that the role of IFNL4 in respiratory viral infections, including that
caused by SARS-CoV-2, deserves to be better characterized.
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