Basic characterization: Serotyping, 7-genes Multi Locus Sequence Typing (MLST) and Virulotyping

Federica Gigliucci

Bioinformatics course, 19-20 October 2020

Serotyping

Serotyping, the 1st level of strain characterization

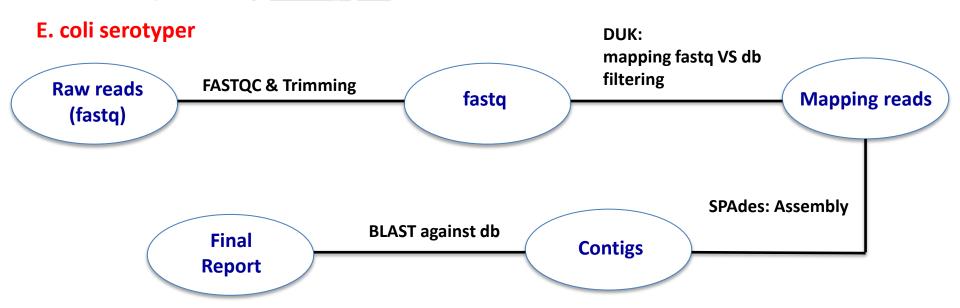
O: H
wzx, wzy, wzm, wzt fliC, flkA, fllA, flmA, flnA

Strong evolutionary marker, it consents immediate detection of clinically relevant pathogens

NGS era!

Alignment (mapping or BLASTn) of genomic sequences VS database of reference genes sequences Joensen et al. JCM 2015

E coli Serotyper Overview


This tool performs various operations:

- · Optionally: Quality assessment (FastQC)
- · Optionally: Trimming (FASTQ positional and quality trimming)
- · Optionally: Filtering (DUK)
- · Optionally: Assembly (SPAdes)
- Serotyping (Blast+ against serotype databases from the Center for Genomic Epidemiology CGE)

Istituto Superiore di Sanità

European Union Reference Laboratory (EU-RL) for Escherichia coli, including Verotoxigenic E. coli (VTEC)

Developer: Arnold Knijn arnold.knijn@iss.it

Serotyping - ARIES

Summary

O26:H11

Raw data quality check

FASTQC result forward: Webpage

FASTQC result reverse: Webpage

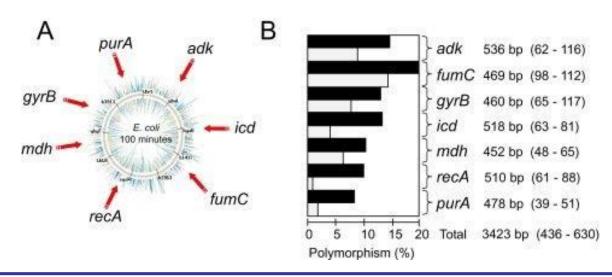
Best serotype match

FASTQC report, if the data analysed doesn't achieve minimum quality parameters O?:H11, O26:H?, O?:H?

Serotyping

sseqid	pident	length	positive
wzy_192_AF529080_O26	100.00	1023	1023
wzx_208_AF529080_O26	99.92	1263	1262
fliC_269_AY337465_H11	99.93	1459	1458
fliC_276_AY337472_H11	99.79	1459	1456

Choosing the best allele matching for each gene found (95% identity and with alignment length >800 bp)

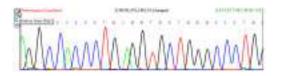

7-genes Multi Locus Sequence Typing (MLST)

Sequence Type (ST), the 2nd level of strain characterization

Deeper discriminatory power in case of outbreak investigation

MLST: Molecular typing of 7 house-keeping genes define the ST of bacterial strains

E. coli MLST scheme, by T. Wirth et al., Mol Microbiol 2006

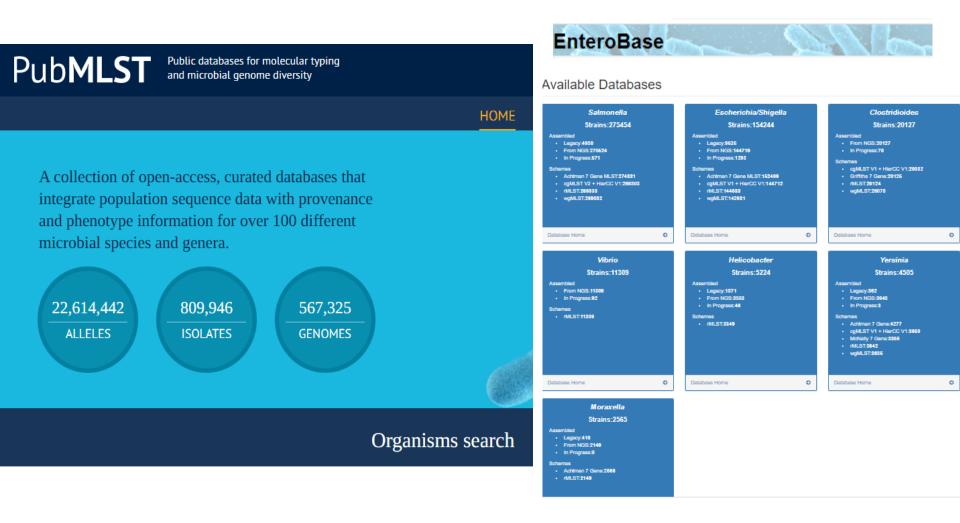

7-genes Multi Locus Sequence Typing (MLST)

Old era conventional Sanger sequencing

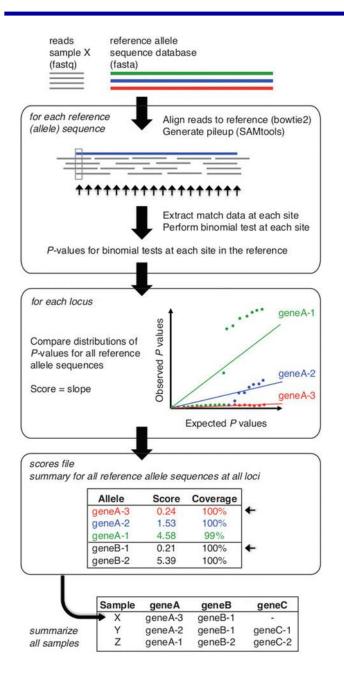
NGS era

PCR, sequencing, electropherograms analysis

Direct upload of WGS contigs on a webserver (e.g. ARIES)


Uploading sequences on a webserver to obtain the corresponding alleles and STs

Alleles are directly retrieved through blastn comparison with pre-installed database of alleles from University of Warwick with pre-compiled pipelines



Public databases hosting MLST schemes

SRST2

Read mapping-based tool, It derives the ST from reads

- •Reads are aligned to all reference sequences (using bowtie2) and each alignment processed (using SAMtools).
- •Statistical analysis: to determine which of all known reference alleles is most likely present at a given locus, the P value distributions for known alleles are compared. The slope of the fitted line is calculated and taken as the score for that allele.
- •For each locus, the allele with the lowest score is accepted as the closest matching allele (small arrows) and reported in the output table.

Inouye M et al., Genome Medicine 2014 6:90

Inouye M et al., Genome Medicine 2014 6:90

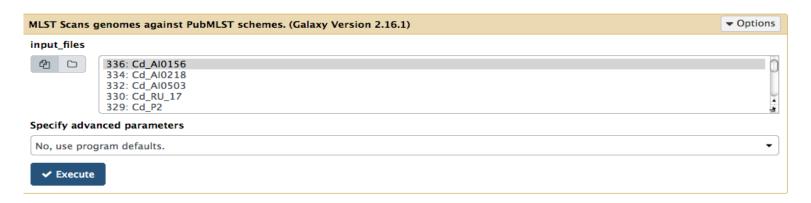
SRST2, output

1	2	3	4	5	6	7	8	9	10	11	12	13
Sample	ST	adk	fumC	gyrB	icd	mdh	purA	recA	mismatches	uncertainty	depth	maxMAF
readsall	17	6	4	3	17	7	7	6	0	-	139.33	0.141242937853

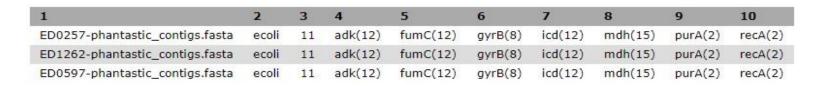
Depth coverage as indicator of the sequencing quality

- * indicates mismatches
- ? indicates uncertainty due to low depth in some parts of the gene
- indicates the gene was not detected (> %coverage threshold, --min_coverage 90)

MLST


- T. Seemann, 2016. mlst **Github** https://github.com/tseemann/mlst
- It scans contig files against traditional PubMLST typing schemes

Available PubMLST schemes


arcobacter bbacilliformis bcc bcereus bhampsonii bhenselae bhyodysenteriae bintermedia blicheniformis bordetella borrelia bpilosicoli bpseudomallei	cdiphtheriae cfetus cfreundii chelveticus chlamydiales chyointestinalis cinsulaenigrae clanienae clari cmaltaromaticum cronobacter csepticum csputorum	ganatis hcinaedi hinfluenzae hparasuis hpylori hsuis kaerogenes kkingae koxytoca kpneumoniae leptospira	Isalivarius mabscessus magalactiae mbovis mcanis mcaseolyticus mcatarrhalis mhaemolytica mhyopneumoniae mhyorhinis miowae mmassiliense mplutonius mpneumoniae msynoviae mycobacteria neisseria	psalmonis ranatipestifer rhodococcus sagalactiae saureus sbsec scanis sdysgalactiae	spyogenes ssuis sthermophilus sthermophilus_2 streptomyces suberis szooepidemicus taylorella tenacibaculum	vcholerae vcholerae2 vibrio vparahaemolyticus vtapetis vvulnificus wolbachia xfastidiosa yersinia ypseudotuberculosis yruckeri
•	•	•	•		•	

MLST

T. Seemann, 2016. mlst **Github** https://github.com/tseemann/mlst

- It scans contig files against traditional PubMLST typing schemes
- It auto-detects bacterial species, just uploading the sequences
- Output: it produces a tab-separated file which contains: the filename
 the closest PubMLST scheme name (bacterial species detected) the ST the allele IDs

Auto-detection good to find any possible contamination

MLST

MLST does not just look for exact matches to full length alleles. It attempts to tell you as much as possible about what it found using the notation below:

Symbol	Meaning				
n	Exact intact allele				
~n	Novel full length allele similar to n				
n?	Partial match to known allele				
n,m	Multiple alleles				
-	Allele missing				

Setting Output novel alleles to true will produce an additional novel_alleles.fasta file containing the novel alleles.

Scoring system

Each MLST prediction gets a score out of 100. The score for a scheme with N alleles is as follows:

- +90/N points for an exact allele match e.g. 42
- +63/N points for a novel allele match (50% of an exact allele) e.g. ~42
- +18/N points for a partial allele match (20% of an exact alelle) e.g. 42?
- 0 points for a missing allele e.g. -
- +10 points if there is a matching ST type for the allele combination

Virulotyping - ARIES

Virulence profile, the 3rd level of strain characterization

Do we have STEC strains?

■ Galaxy / ARIES

E coli Virulotyper Overview This tool performs virulotyping:

- Raw data quality check (FASTQC)
- Virulotyping (pathotyper from INNUENDO)

Istituto Superiore di Sanità

European Union Reference Laboratory (EU-RL) for Escherichia coli, including Verotoxigenic E. coli (VTEC)

Developer: Arnold Knijn arnold.knijn@iss.it

Virulotyping - ARIES

- Mapping (Bowtie2) of the sequencing reads on the database
- Database of reference virulence genes sequences (in multiple allelic variants each) E. coli virulence finder database, Joensen JCM 2014
- Conversion of the output in a sam file (tabular) to extract interesting info and sequences
- Grouping of all the reads mapping to the different alleles for each gene
- Choosing the best allele matching for each gene found basing on the number of mapping reads and calculating the coverage
 - Percentage gene coverage (Gene length (min 90))
 - Gene mean read coverage (Gene depth coverage (min 15))
 - Percentage gene identity (min 90)

E coli Virulotyper

Report for Strain2_S5_L001_R1_001.fastq.gz

2019-06-26 10:35 UTC

Istituto Superiore di Sanità

Department of Food Safety, Nutrition and Veterinary Public Health

European Union Reference Laboratory for *E. coli*

Summary

eae, stx2A, stx2B

Raw data quality check

FASTQC result forward: Webpage

FASTQC result reverse: Webpage

Best match for the main virulence genes associated with STEC

FASTQC report

Virulotyping

This table is filtered for results with >90% gene coverage, unfiltered results can be found here

#gene	percentage gene coverage	gene mean read coverage	percentage gene identity
espb_12_ecu65681	97.67	10.54	99.89
iss_13_cu928160	100.0	21.02	99.71
espb_13_af054421	97.57	11.39	99.67
nlec_6_ap010960	100.0	98.54	99.9
lpfa_3_ap010953	100.0	26.39	100.0
iss_11_ae014075	100.0	9.67	99.42
espa_22_fm201463	100.0	24.69	100.0
iss_7_cu928163	91.16	8.81	99.63
nlea_12_am422003	98.34	18.8	99.92
iss_8_cp001665	98.98	17.14	99.66
eae_45_ecu59503	97.66	36.98	99.89
prfb_13_cp002970	100.0	20.06	100.0
cif_2_ay128535	95.29	13.68	99.88
stx2b_27_ae005174_a	92.96	6.54	99.2
espj_1_ab303060	100.0	21.28	99.85
nleb_12_fm201463	92.93	12.39	99.89
nlec_3_ap010953	100.0	37.98	99.59
iss_12_cu928158	100.0	12.55	100.0

Complete list of the best allele matching for each gene found

- Percentage gene coverage (Gene length (min90))
- Gene mean read coverage (Gene depth coverage (min15))
- Percentage gene identity (min90)

stx subtyping - ARIES

E. coli Shiga toxin typer

Are the input files FASTQ or Contigs (FASTQ files are preferred and give more accurate results)

FASTQ

Is this single or paired library

Single-end

FASTQ file

521: ED1229_trimmed

Must be of datatype "fastqsanger"

Are the input files FASTQ or Contigs (FASTQ files are preferred and give more accurate results)

FASTQ

Whereions

Options

To priorite

Favorite

E coli Shigatoxintyper double-check version Overview

Comparison of the whole operon against the db

This tool performs various operations:

- Optionally: Quality assessment (FastQC v0.11.9)
- · Optionally: Trimming (Trimmomatic v0.39)
- Optionally: Filtering (DUK v20110303)
- Optionally: Assembly (SPAdes v3.14 and SKESA v2.3)
- · Optionally: Alignment (MUSCLE v3.8)
- Shigatoxintyping (Blast v2.9 against shiga toxin type databases from the Statens Serum Institut SSI and Technical University of Denmark DTU)

stx subtyping - ARIES

The tool accepts both raw reads (FASTQ) and contigs (FASTA)

Uploading contigs:

 Blastn search against the Shiga toxin subtype database (STSTDB) from the Statens Serum Institut SSI and Technical University of Denmark DTU (https://bitbucket.org/%7Bec84c234-a1e2-4442-8d73-bc3bdc479f29%7D/)

Uploading raw reads:

- FastQC and trimming of the raw reads
- Assembly and alignment of the contigs against the STSTDB, in order to construct stx consensus sequences on which the final blastn search will be performed
- Blastn search of *stx1* and *stx2* consensus sequences VS against the STSTDB, extracting the best matching sequence with an e-value < 0.001 and an identity > 95%.

stx subtyping - ARIES

E coli Shiga toxin typer

Report for ED1246_lonXpress_040_20190723.fastq.gz

2020-10-12 08:18 UTC

Istituto Superiore di Sanità

Department of Food Safety, Nutrition and Veterinary Public Health

European Union Reference Laboratory for *E. coli*

Summary

stx2c

Best stx subtype match (95% < identity <= 100%)

Raw data quality check

FASTQC result: Webpage

FASTQC report

Shiga toxin typing

 sseqid
 pident
 length
 positive

 stx2:52:AB015057:52
 100.000
 1241
 1241

Choosing the best allele matching for each gene found (95% identity and with alignment length >800 bp)