www.iss.it/anna

Supplementary Materials for

Application of effect-based methods (EBMs) in a river basin: a preliminary study in Central Italy

Walter Cristiano, Ines Lacchetti, Kevin Di Domenico, Margherita Corti, Laura Mancini and Mario Carere

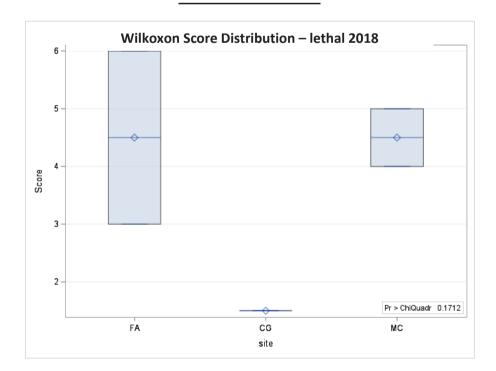
Corresponding author:

Walter Cristiano, Unità Ecosistemi e Salute, Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy. E-mail: walter.cristiano@iss.it.

Published on

Ann Ist Super Sanità 2020 Vol. 56, No. 1: 114-121 DOI: 10.4415/ANN_20_01_16

This PDF file includes: Detailed description of the statistical analysis performed with the aid of the SAS[®] software and of the related boxplots


Fish Embryo Toxicity (FET) Test

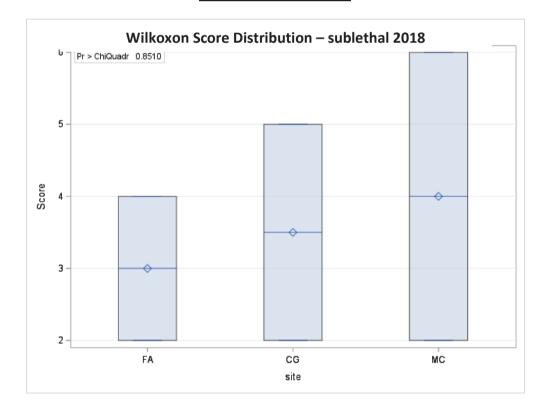
We performed non-parametric tests for our statistical analysis. We considered the ranks (for N data, the highest value is N and the lowest is 1). The Kruskal-Wallis Test allow the comparison among the sampling sites in the two different years (2018 and 2019) and the different time pattern showed by the Delta (values of 2019 – values of 2018). Four variables were considered: lethal 2018, lethal 2019, sublethal 2018 and sublethal 2019. The statistical analysis was not significant for all the considered variables (significance is expressed as Pr > Ch-square and it has to be equal to ≤ 0.05 . The boxplots show the data. A boxplot was built for each variable. Histograms are associated to the groups and they report a bar indicating the median. The highest and lowest values are reported over and under the bar and they are expressed as scores.

1	The procedure NPAR1WAY					
Wilcoxon score (sums of the ranks) for the variable <i>lethal2018</i> classified by the variable <i>site</i> .						
site	N	Sum of the scores	Expected under H0	Standard deviation under H0	Mean score	
FA	2	9.0	7.0	2.129163	4.50	
CG	2	3.0	7.0	2.129163	1.50	
MC	2	9.0	7.0	2.129163	4.50	

Mean scores were used for the equivalent values.

Kruskal-Wallis TestChi-square3.5294DF2Pr > Chi-square0.1712

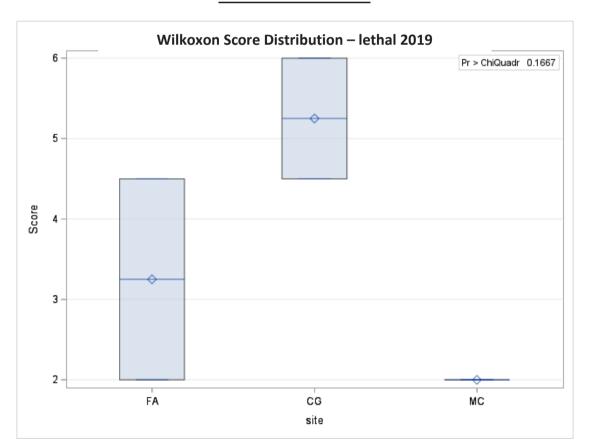
The procedure NPAR1WAY Wilcoxon score (sums of the ranks) for the variable <i>sublethal2018</i> classified by the variable <i>site</i> .					
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score
FA	2	6.0	7.0	2.033060	3.00
CG	2	7.0	7.0	2.033060	3.50
MC	2	8.0	7.0	2.033060	4.00


Mean scores were used for the equivalent values.

 Kruskal-Wallis Test

 Chi-square
 0.3226

 DF
 2


 Pr > Chi-square
 0.8510

	The procedure NPAR1WAY					
Wilcoxon score (sums of the ranks) for the variable <i>lethal</i> 2019 classified by the variable <i>site</i>						
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score	
FA	2	6.50	7.0	2.0	3.250	
CG	2	10.50	7.0	2.0	5.250	
MC	2	4.00	7.0	2.0	2.000	

Mean scores were used for the equivalent values.

Kruskal-Wallis Test			
Chi-square	3.5833		
DF	2		
D (11)	0.4.4.5		

Pr > Chi-square 0.1667

The procedure NPAR1WAY

Wilcoxon score (sums of the ranks) for the variable *sublethal* 2019 classified by the variable *site*

site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score
FA	2	9.00	7.0	2.097618	4.500
CG	2	4.50	7.0	2.097618	2.250
MC	2	7.50	7.0	2.097618	3.750

Mean scores were used for the equivalent values.

Kruskal-Wallis Test

Chi-square 1.5909

2

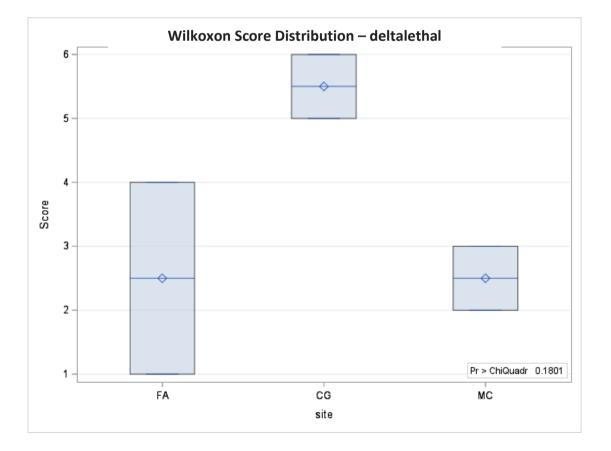
DF

Wilkoxon Score Distribution – sublethal 2019

Pr > Chi-square 0.4514

	The procedure NPAR1WAY					
Wilc	Wilcoxon score (sums of the ranks) for the variable <i>deltalethal</i> classified by the variable <i>site</i>					
Sum of the Expected site N core H0 under H0 sco						
FA	2	5.0	7.0	2.160247	2.50	
CG	2	11.0	7.0	2.160247	5.50	
MC	2	5.0	7.0	2.160247	2.50	

Mean scores were used for the equivalent values.

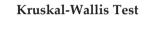

Kruskal-Wallis Test

Chi-square 3.4286

OF

2

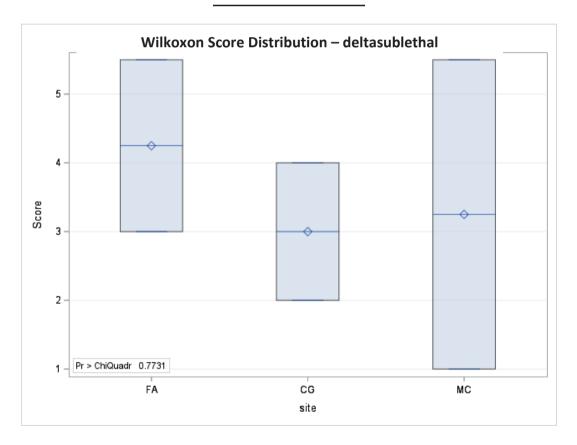
Pr > Chi-square 0.1801



The procedure NPAR1WAY

Wilcoxon score (sums of the ranks) for the variable *deltasublethal* classified by the variable *site*

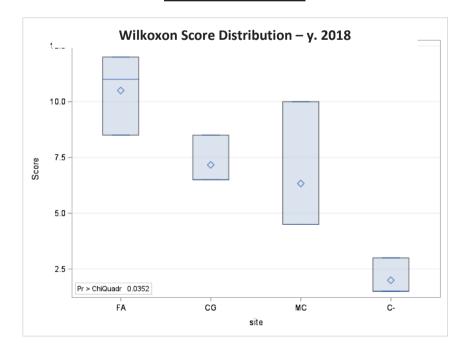
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score
FA	2	8.50	7.0	2.129163	4.250
CG	2	6.00	7.0	2.129163	3.000
MC	2	6.50	7.0	2.129163	3.250


Mean scores were used for the equivalent values.

Chi-square 0.5147

DF

Pr > Chi-square	0.7731
-----------------	--------


Daphnia magna Immobilisation Assay

We performed non-parametric tests for our statistical analysis. We considered the ranks (for N data, the highest value is N and the lowest is 1). The Kruskal-Wallis Test allow the comparison among the sampling sites in the two different years (2018 and 2019) and the different time pattern showed by the Delta (values of 2019 – values of 2018). The statistical analysis was significant (yellow mark) for the variables *y2018* and *delta* (significance is expressed as Pr > Ch-square and it has to be equal to ≤ 0.05). However, these test only offer an indicative value because the samples are too few. The boxplots show the data. A boxplot was built for each variable. Histograms are associated to the groups and they report a bar indicating the median. The highest and lowest values are reported over and under the bar and they are expressed as scores.

	The procedure NPAR1WAY						
W	Wilcoxon score (sums of the ranks) for the variable <i>a</i> 2018 classified by the variable <i>site</i>						
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score		
FA	3	31.50	19.50	5.370373	10.500000		
CG	3	21.50	19.50	5.370373	7.166667		
MC	3	19.00	19.50	5.370373	6.333333		
C-	3	6.00	19.50	5.370373	2.000000		
	Management of the second sector is the second sector is the second sector is the second sector is the second						

Mean scores were used for the equivalent values.

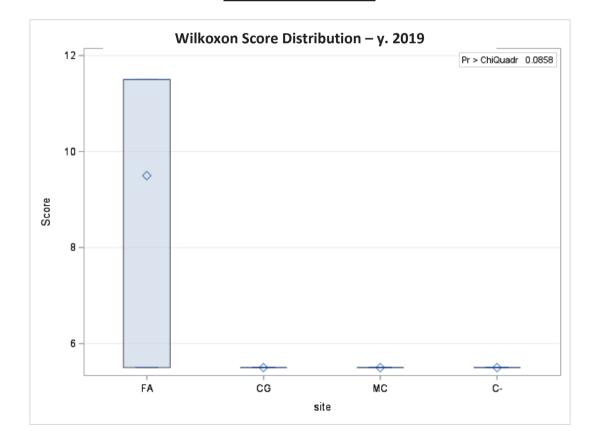
Kruskal-Wallis Test				
Chi-square	8.5946			
DF	3			
Pr > Chi-square	0.0352			

The procedure NPAR1WAY

Wilcoxon score (sums of the ranks) for the variable *a2019* classified by the variable *site*

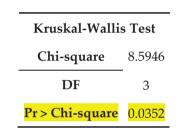
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score
FA	3	28.50	19.50	3.503245	9.50
CG	3	16.50	19.50	3.503245	5.50
MC	3	16.50	19.50	3.503245	5.50
C-	3	16.50	19.50	3.503245	5.50

Mean scores were used for the equivalent values.


Kruskal-Wallis Test

Chi-square 6.6000

3


DF

Pr > Chi-square 0.0858

The procedure NPAR1WAY					
Wilcoxon score (sums of the ranks) for the variable <i>delta</i> classified by the variable <i>site</i>					
site	N	Sum of the core	Expected under H0	Standard deviation under H0	Mean score
FA	3	7.50	19.50	5.370373	2.500000
CG	3	17.50	19.50	5.370373	5.833333
MC	3	20.00	19.50	5.370373	6.666667
C-	3	33.00	19.50	5.370373	11.000000

Mean scores were used for the equivalent values.

