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Abstract
The article takes as a starting point the observation of a deep and long-standing gap be-
tween the views of biologists/physicians and that of physicists/data scientists when deal-
ing with life sciences. This gap has been exacerbated by the advent of large-scale -omics 
technologies. Here, we focus on the impact of this gap in the field of precision medicine 
that impedes dialogue between omics data analysts and precision medicine physicians. 
To try to overcome this cultural divide, here we suggest a new possibility through the 
use of network science as a shared language composed of a vocabulary of words that 
have different meanings in each discipline but refer to the same biological entity. By do-
ing so, one can move from biological concepts to network patterns and algorithms and 
backwards, thus generating a dialogue between “life scientists” and “number scientists”. 
The article presents several simple network concepts with a straightforward biological 
interpretation as a starting point for such interdisciplinary dialogue.

INTRODUCTION
There is a growing awareness of the large and in-

creasing gap between two visions of life: the vision of 
research scientists like biologists, physicians, molecu-
lar biologists, and so on, and that of research scientists 
like physicists, engineers, mathematicians, and so on 
[1]. For the sake of simplicity, we can call the first “life 
scientists” and the second “number scientists”. The two 
groups are just an idealized and simplified classification, 
and a wide variety of different approaches are included 
in the same group, as well as a continuum between the 
two extremes is conceivable. Nevertheless, life scientists 
share a common vision that is well defined in the words 
of Ernst Mayr: “Owing to their complexity, biological sys-
tems are richly endowed with capacities such as reproduction, 
metabolism, replication, regulation, adaptedness, growth, 
and hierarchical organization. Nothing of the sort exists in 
the inanimate world” [2]. The fundamental separation be-
tween the two visions is just in front of us every day. It 
suffices to quote the philosopher of science Evelyn Fox 
Keller who wrote: “I have had ample opportunity to observe 
failures of communication virtually whenever experimental 
and mathematical biologists happened to be in the same 
room” [3]. Life scientists vision is centered on “concepts” 
like for example evolution, adaptation, development, 
speciation, purpose, which are not amenable of a rigor-
ous and immediate mathematical formalization, while 
number scientists’ vision is centered on fitting “patterns” 
to data [4]. Furthermore, it is a common belief that biol-
ogy is subject to “universal laws” (yet to be discovered), 

and that from these laws one can derive mathematical 
models, and consequently computations on data, i.e., 
algorithms. In other words, the underlying idea is that, 
to make sense of biological data we need to find uni-
versal patterns and “general mathematical theories” of 
biology, just like in physics. Number scientists believe 
that biological information can be obtained from data 
only by establishing an all-encompassing mathematical 
framework from which derive equations that naturally 
lead to some calculation on data. Simply put, from this 
perspective, the path from biological properties to algo-
rithms on data is necessarily mediated by a “universal 
mathematical theory” provided by the coming of the 
“Newton of biology” and guided by the “law of parsi-
mony” (Ockham’s razor) [5]. By contrast, life scientists 
have an opposing view of the problem of making sense 
of biological data. The only “law” of biology, although 
not written in the language of mathematics, is evolution, 
and their vision is centered on the uniqueness of life as 
a scientific discipline, with its own language and con-
cepts [2], often (if not always) not amenable of precise 
mathematical formulation. Apart from the biochemical 
elements that make life possible on earth (e.g., DNA 
structure or protein structure), the life scientists usu-
ally strongly oppose universality, as clearly explained by 
Steven Jay Gould “If nature teaches us any lesson, it loudly 
proclaims life’s diversity. […] In any case, bursting diversity 
is nature watchword; it should never be submerged by care-
less abstraction” [6]. Our aim is not to reconcile such vi-
sions or to take the side of one or the other, but to focus 
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on the almost complete absence of dialogue between 
life scientists and number scientists caused by an ob-
jective gap between the two cultures. Certainly, we do 
not support both the idea that biology’s dignity as a sci-
ence depends on its degree of mathematization and the 
opposite vision that considers mathematics as a simple 
tool-generator, so that the life scientist must choose the 
“best” one for his/her purposes, without any interactive 
dialogue with the number scientist.

Here, we focus on the impact of this gap in the field 
of precision medicine by presenting an alternative view 
and propose a contribution to reduce the gap (that we 
call the “complex data divide”) and allow a dialogue, 
by looking at network science as a vocabulary genera-
tor (not tools). It is not enough to fit data to patterns 
if the patterns do not match a biological concept, and 
vice-versa. Mathematical patterns may be elegant but 
lacking biological plausibility (like, for example, the Tur-
ing mathematical model of morphogenesis [3] just to 
cite the most popular), and biological concepts may not 
result in a significant mathematical pattern on available 
data. Precisely, here we propose networks as a way to 
represent omics (large scale) data by focusing on rela-
tionships among elements and discuss some network 
pattern (the words of the language) as suggestive of bio-
logical features so that, the life scientist and the number 
scientist, can speak the same language even though they 
give a different meaning to the same words. It is worth 
noting that the recently introduced concept of “networks 
of networks” [7] can be fruitfully used to generate new 
“words” of the network vocabulary at different scales.

Here, we review some of the most promising exam-
ples of “words” of the network language and their preci-
sion medicine counterpart and show how they can be 
used to link biological concepts to algorithms on net-
works and vice versa, without the need for any “general 
theory” and, most importantly, to stimulate a truly inter-
disciplinary dialogue between life scientists and number 
scientists. As a final comment, we note that the network 
vocabulary is still in its infancy, but there is growing evi-
dence that such network-based dialogue can effectively 
reduce the complex data divide.

“OMEXITY”: OMICS DATA EXPLOSION  
AND DISEASE COMPLEXITY

Complexity as emergence. A complex disease is the 
result of many intertwined factors that include poly-
genic risk variants, physiological and environmental 
stresses, lifestyle habits, and many others. Moreover, 
even Mendelian disorders do not adhere to the one 
gene – one phenotype model, so that the awareness that 
virtually all diseases share these properties is increasing 
[8]. For these reasons, complex diseases have increas-
ingly become the focus of modern medicine, especially 
in western countries, where age-related pathologies 
(cardiovascular and respiratory diseases, cancer, or type 
2 diabetes) are the leading causes of death globally. Ac-
cording to the World Health Organization (WHO), 7 
of the 10 leading causes of death are the so-called “non-
communicable diseases”. These seven causes accounted 
for 44% of all deaths or 80% of the top 10 and, together, 
accounted for 74% of deaths globally in 2019 [9]. Non-

communicable diseases (NCDs) are chronic patholo-
gies, that is they tend to develop and persist over a long 
period. Most importantly, they are all complex diseas-
es, in that their onset and development are inherently 
multi-factorial. 

Complexity in disease onset and development can be 
fully considered the “rule” rather than “the “exception”. 
Indeed, the definition itself of a “complex” disease as 
“caused by the interaction of multiple genes and envi-
ronmental factors” (taken from NIH glossary of genet-
ics term), calls to mind the concept of interconnection 
among factors. As such, complexity arises from the 
crosstalk among a variety of molecular factors and path-
ways that prevents the understanding of pathogenesis 
as a linear causal route from genotype to phenotype. 
Complex diseases emerge from the interplay of many 
actors working together [10]. Such multi-factorial char-
acter implies that most causal players have just “weak” 
effects on the disease, whereas mainstream research 
studies assume the presence of risk elements with a 
“strong” effect [11]. 

The emergence of disease as a complex phenomenon 
makes it intractable from a reductionist perspective, 
which is the idea that systems can be understood by 
looking at every single component and disease as a lin-
ear chain of molecular interactions [12]. For example, 
using the terminology borrowed from complexity the-
ory, cancer onset and progression is characterized by 
many “emergent” properties that reveal its behavior as 
an adaptive, self-organized system. The hallmarks of 
cancers include triggering proliferative signaling, evad-
ing growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, and 
activating invasion and metastasis [13]. These biologi-
cal properties cannot be traced back to a single cell or 
component, but to the web of interconnections of many 
factors that lead to the “emergence” of both normal and 
pathological cell behavior.

Omics networks. As already mentioned, a complex 
disease is also a complex system, in that its properties 
“emerge” from the interactions between components 
and the environment. From this perspective, it is quite 
natural to represent complex systems as networks where 
nodes represent parts (components), and links repre-
sent interactions or, more generally, associations among 
nodes [14], as illustrated in Figure 1.

The explosion of omics data has revolutionized the 
study of complex diseases. The big data produced by 
omics technologies are pervasive, and their variety 
and availability increase every day. They include ge-
nomics, transcriptomics, proteomics, epigenomics, 
microbiomics and many others. For example, Next 
Generation Sequencing (NGS) devices allow the study 
of inherited genetic factors using exome or targeted 
panels, or the effects of specific lifestyles by detecting 
changes that impact the global expression pattern, as-
sessing epigenetic mechanisms (methylation, non-cod-
ing RNAs). It also allows to study the impact of envi-
ronmental factors, such as the microbiome composition 
and its interactions with the immune system, to identify 
biomarkers and personalized drug response. The cur-
rent situation is often referred to as era of “big” data, 
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and emphasis is given on the quantitative aspect, rather 
it should be clear that the real challenge is that such 
large amounts of data are linked to one another in very 
complex ways, so they should be called “complex data” 
to better highlight the key question at stake which is not 
merely quantitative, as discussed in what follows. 

Types of omics networks. It would be unreasonable 
to give an exhaustive list of all possible networks that 
can be constructed using omics data. Indeed, besides 
interaction networks, that is networks in which a link is 
present due to physical interactions between the two 
biological entities represented by nodes, e.g., map of 
protein-protein interaction (PPI), it is very common to 
build association networks where links represent any kind 
of association rule, thus making the universe of all pos-
sible association networks virtually infinite. Associations 
between two elements (the nodes of the network) can 
be derived in many ways, by looking at any commonal-
ity between them. For example, interesting association 
networks are the so-called “human disease network” or 
“diseasome” [15], which is a disease-disease network 
where diseases are connected if they share a common 
genetic component (a mutation) or the “patient similar-
ity networks” [16] in which patients are linked based 
on their similarities in various clinical features, includ-
ing genomic profiles. A comprehensive list of molecular 
networks of both types can be found in a recent review 
by Silverman et al. [17]. 

More is different. Omics data are certainly impor-
tant because they provide an unprecedented view of a 
cell’s life at the molecular level, but equally important 
is the role of the availability of large quantities of infor-
mation, i.e., the large-scale feature of omics data. In-
deed, as anticipated by Philip Anderson in 1972, “more 
is different” [18], which means that when we deal with 
a large number of highly interconnected entities, the 
properties of the single part fade into the background 

and new emergent properties arise, i.e. quantitative dif-
ference may become qualitative. This point is illustrated 
by Figure 2. 

Omics technology explosion developed independent-
ly of awareness of the complexity of diseases. Indeed, 
complexity theory originated from the studies of the 
early fifties of the last century initiated by von Berta-
lanffy [19] and Boulding [20] in the field of holistic 
general dynamic systems theory [21], while the omics 
revolution started in the seventies of the last century 
fostered by discoveries in the field of biotechnology like 
recombinant DNA technology and Sanger sequencing 
[21, 22]. Interestingly, those two independent lines of 
research have now met in a single pathway leading to 
precision medicine. In other words, the omics/complex-
ity (that we might call “omexity”) era has just begun. 

Omexity and precision medicine. The rise of “preci-
sion medicine” is crucially related both to widespread 
awareness of the complexity of virtually all pathologi-
cal conditions and to the availability of increasingly 
large amounts of molecular omics data which call for 
improved information processing capabilities to extract 
relevant information [23]. Medical research in the era 
of precision medicine cannot but include data analy-
sis and integration of large and heterogeneous sources 
like DNA/RNA sequencing, proteomics, imaging, digi-
tal pathology, laboratory medicine, vital signs, medical 
records, and so on. Simply put, complexity and omics 
together, naturally lead to the development of an inte-
grative medical mindset that merges clinical observa-
tion and data pattern recognition. The real challenge 
of omexity and the associated precision medicine ap-
proach, is the buildup of abilities from somewhat sepa-
rate worlds, i.e., the computational sciences and the 
life sciences. This amounts to saying that a new kind of 
interdisciplinary mindset is needed to tackle omexity, 
that is the ability to establish a dialogue between the 

a b

c d

node

link

Figure 1
Networks. A network is a collection of nodes and links that connect them. The network representation simplifies reality in that 
it focuses on relationships, rather than on element properties. In fact, a) DNA-DNA associations may be obtained, for example, if 
mutations on a pair of genes are related to the same disease or if they are both targets of some transcription factors or miRNA or 
epigenetic modifier. b) A link between two organs may be established, for example, by considering comorbidities or for sharing 
some molecular driver. c) Two proteins could be linked if they interact, i.e., if they form a complex. d) the resulting abstract network 
is the same for all cases considered since the link pattern is the same, even though the elements are completely different. 
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“calculative” and the “meditative” mind, using a termi-
nology due to Martin Heidegger [24], that in our case 
corresponds to, on the one hand, the computational 
aspect of pattern recognition in omics data interpreta-
tion, and, on the other hand, to a more holistic view of 
disease and specificity of the single patient. It is per-
haps the greatest challenge of the healthcare sector over 
the coming decade to integrate all these resources and 
translate them into clinical practice [23]. Such a deep 
gap between the medical and the data analyst mindsets 
can be termed as the “complex data divide”. 

In the next section, the cultural origins of such a di-
vide will be discussed and possible roads will be sug-
gested to reduce this gap that stalls knowledge advance-
ment and interdisciplinary dialogue. As discussed in 
what follows, the network language could have a very 
special role in this dialogue.

THE “COMPLEX DATA DIVIDE”  
AND INTERDISCIPLINARY DIALOGUE

A document published in 1999 entitled Medical and 
societal consequences of the Human Genome Project [25] 
predicted that within 10 or 15 years, the impact of the 
human DNA sequencing would be a radical transfor-
mation of medicine. There is a general agreement that 
the genome project radically changed the rules of medi-
cal research, the way of practicing biological discovery, 
and the ubiquitous digitation of biological sciences. 
However, there is still a debate on whether there is a 
real impact on population’s life expectancy or any other 
public health measures [26]. The omics data explosion 
has increased public expectations on the utility of mo-
lecular big data and on artificial intelligence (AI) meth-
odologies for the discovery of new therapies for diseases 
which still lack effective treatments, like the vast major-
ity of complex diseases, e.g., cancer or diabetes. More-
over, the recent pandemic made it clear to the general 
public, the urgent need for a personalized treatment 
based on multi-level profiling able to take into account 
the large variety of responses observed in the CoViD-19 
manifestations, ranging from the absence of symptoms 
to pneumonia and death. This is a great challenge and 
an opportunity for omexity research. However, to meet 

such high expectations a radical perspective change is 
needed. 

A key issue is the huge gap between the historical and 
cultural milieu of researchers trained in computational 
sciences (computer science, statistics, engineering, etc.) 
and those trained in the life sciences (biologists, physi-
cians, biochemists, etc.). To tackle omexity, which lies 
at the interface between big heterogeneous omics data 
analysis (computation) and the extraction of relevant 
information (biological interpretation), a new interdis-
ciplinary or intercultural dialogue must be established. 
Although the strict separation of the two domains is well 
known and often referred to as the difference from theo-
retical and applied sciences, the situation evidenced by 
omexity has peculiarities that make it something very 
different from the past. The omexity challenge cannot 
proceed directly from theory to applications, simply be-
cause we do not have theories like in physics or gen-
eral quantitative laws that can provide an unambiguous 
framework for the development of the “best” algorithm 
for a given biological or medical question. A good illus-
trative example is the evidence that molecular systems of 
complex cells are inherently different from simple elec-
tronic circuits [27]. In other words, the role of mathe-
matics and computation (algorithms) in the life sciences 
is extremely different from that of physics or engineer-
ing. As regards omexity, the point at stake is not to find 
universal laws but to establish a dialogue between omics 
data analysis and its biological interpretations. In other 
words, what is needed is a sort of “mapping” or “bidirec-
tional flow” from emergent properties of data structures 
and emergent properties of biological systems. This key 
point is illustrated in Figure 3.

This mapping can be obtained, for example, by us-
ing “metaphorical projections”, which is a metaphorical 
correspondence that can be established between two 
separate worlds, so that the finding in one domain can 
be translated into the other domain and vice versa. It 
is worth noting that such mapping cannot be devoid 
of any “theory” since a mechanistic explanation of the 
mapping is required to provide a solid background of 
such mapping. In other words, this is not the end of the-
ory [28], but (hopefully) the beginning of a peer-to-peer 

a b

Figure 2
More is different. a) The binding of two proteins can be a very complicated process involving many spatial and biochemical prop-
erties of the subunits and the environment. b) When millions of binding events occur, new properties of the ensemble arise, and 
the properties of the whole cannot be attributable to single parts. Simply put, “more is different”.
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dialogue between separate domains, each with its own 
rules and procedures that may be theories (like in statis-
tics or physics) or interpretations in the light of biologi-
cal concepts, like evolution, natural selection, reproduc-
tion, metabolism, replication, regulation, adaptedness, 
growth, hierarchical organization and so on, none of 
which have counterparts in the inanimate world. As 
pointed out by Ernst Mayr, the most fundamental dif-
ference between biology and the hard sciences is that 
biology theories are based on “concepts”, while in the 
physical sciences they are based on “natural laws” [2]. 
Indeed, data do not speak for themselves since science 
is not about finding patterns but (biological) explana-
tions for those patterns [29]. Most importantly, the goal 
is not the discovery of a unifying general theory but the 
finding of a link (a mapping of some sort) between the 
two domains, each with peculiar theories no matter 
how mathematical or conceptual they are.

Here we support the idea that network language, as 
defined and explained in the following sections, can 
effectively function as a bridge between the computa-
tional and the living domains, i.e., able to define single 
entities that can have a valuable, although different, 
meaning in both fields of research. Precisely, the large 
amounts of complex omics data and the awareness of 
disease complexity, lead straightforwardly to a true in-
ter-disciplinarity dialogue which is possible only in the 
presence of a common language, like that of networks, 
and that results in a calculation or algorithm on data to 
implement precision medicine. This process is pictori-
ally described in Figure 4.

THE NETWORK LANGUAGE
A metaphorical projection

A “network” is not necessarily a “real” thing, rather it 
must be considered a “cognitive schema” [30], which is 
an abstract collection of concepts used to make sense 
of the unknown world of life. Precisely, a general char-
acterization of a network can be defined by a bunch 

of “nuclei” (where matter, as well as other activities are 
far more concentrated) linked to each other by edges 
(streets, power cables, etc.) passing in a much less 
dense environment [31], just like a lumped-element 
model of a spatially distributed physical system. From 
this perspective, in a more abstract sense, nodes are 
non-dimensional points and edges are one-dimensional 
lines. But, protein-protein interactions are not “lines” 
between “points” but very complex phenomena where 
many spatial and energetic factors are at work. For ex-
ample, by substituting proteins with nodes and bind-
ings with links, one is “projecting” the network schema 
onto the protein-protein interaction network and thus 
performing a “metaphorical projection” [30, 32]. The 
network is a functional abstraction, a way of render-
ing complex systems comprehensible using an over-
simplified representation of data. And yet, at the same 
time, only through this distortion of reality operated by 
a metaphorical projection, the protein-protein interac-
tion network becomes amenable to computations on 
data. The key point here is that “distortion” is by no 
means a re-creation of reality but, rather the inevitable 
re-organization of available knowledge into meaningful 
forms able to indicate solutions or useful directions of 
research for a specific purpose or problem of interest. An 
example of a successful metaphorical projection is the 
London underground map as designed by Harry Beck 
in 1933. “The map is not the territory” or “the menu is 
not the meal” are popular expressions to remember that 
we cannot confuse models of reality with reality itself. 
The construction of a map is not an easy task, since 
the goal is to represent only “relevant” information for 
the end-user. From the more general perspective of the 
scientific enterprise, it is worth quoting Gaston Bach-
elard’s statement: “Contemporary science maintains that 
quantities which are negligible must be neglected. It is not 
enough to say they can be neglected.” [33, p. 220]. In the 
early 1930s, the map of the London underground was 
purely geographic and metro stations were represented 

Biological feature

Omics network feature

Bi-directional mapping
(metaphorical

projection)

Network language

genome

transcriptome

proteome

metabolome

Figure 3
The complex data divide: networks as mediators from biology to omics and back. The bi-directional mapping (or metaphorical 
projection) from biological to network features is mediated by the network language. The availability of a set of words (language) 
that have a precise meaning, although different, both for the life scientist and the number scientist, makes the interdisciplinary 
dialogue possible.  
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on a true scale together with the city’s street network, at-
tractions, public institutions, parks, and waterways. The 
information content was overwhelming, and passen-
gers found it difficult to use it. When the first abstract 
map developed by Beck was presented to Londoners in 
1933, they found it useful and easy to understand [34]. 
The basic idea was to place stations without any direct 
correspondence with “true” geographic positions and to 
use only straight lines and orientations of 0o, 90o, or 45o 
degrees. An example of the resulting map is reported 
in Figure 5.

Beck’s map is considered by many the most celebrated 
graphic design of the 20th century [34] and it is a perfect 
example of a metaphorical projection of “real data” (i.e., 
the geographic map) on an abstract and oversimplified 
representation which must serve the primary function 
of helping users to extract the information they need, 
without too many details that might lead the end-user 
astray. And this is not a specific problem with maps, but 
a general paradigm of how scientific enterprise proceeds 
by neglecting what must be neglected. Indeed, network 
representation of relationships among omics data is cer-
tainly an oversimplified vision of the tremendous com-
plexity of life, but it is a necessary step to make sense 
of huge amounts of complex data. Once abstraction 
of concrete is performed to form representational ele-
ments (nodes and links), integration of these elements 
can be used to identify structures or patterns which, in 
turn, represent the words that constitute the “network 
language” able to express a global configuration, i.e. the 

act of arranging all the informational elements and their 
structures to create a whole: this “pattern language” ap-
proach is known as “theory of centers” and it has been 
developed for the design of visual artifacts [34].

In sum, a network is a visual representation of data 
focused on relationships (links) among elements 
(nodes) and link configuration is what really matters, 
whereas peculiarities of the nodes are neglected. The 
goal is therefore to identify network “patterns” to be 
metaphorically projected onto biological concepts, thus 
providing a language that may be able to overcome the 
complex data divide and allow computational and the 
biomedical researchers to talk to each other about the 
same reality from different perspectives. The next sec-
tion is devoted to the illustration of three popular exam-
ples of network patterns that have been used to make 
sense of omics data in the recent literature.

The three C’s of network language
When studying a network, many properties can be of 

interest, depending on the particular problem at hand. 
For example, in 1736, when Leonhard Euler studied 
the bridges of Konigsberg, he was interested in find-
ing a path through the city that would cross each of its 
seven bridges over the river Pregel only once. However, 
special focus has been given by researchers in social 
and biological networks on three properties that are key 
if we consider the metaphorical projection on a situa-
tion in which “messages” or “information” flows from 
node to node through the links. Not surprisingly, a cell 

Inter-disciplinarity Network language

Multi-omics data

AlgorithmPrecision medicine

genome transcriptome proteome metabolome

COMPLEX
DISEASE

GENETICS ENVIRONMENT

LIFESTYLE

Figure 4
Network language for precision medicine. The network language enables a true interdisciplinary dialogue among the many 
skills required by the availability of complex data, like omics data. Questions on complex diseases can be answered using omics 
data through interdisciplinarity that, using the network language, may directly provide algorithms on data to provide answers 
without resorting to abstract theories of any kind.



Lorenzo Farina

O
r

ig
in

a
l
 a

r
t

ic
l

e
s
 a

n
d

 r
e

v
ie

w
s

336

is considered an “information processing unit” by many 
influential molecular biologists [35, 36]. From this per-
spective, it is customary to consider three features of 
a network: the modular organization in communities, 
the presence of “influential” (or central) nodes in a net-
work or a community, and the presence of nodes con-
necting different communities. Therefore, the three C’s 
of network analysis are communities, centralities, and 
connectors (see Figure 6).

Besides centrality measures, there are many other 
important topological properties tightly linked to bio-
logical concepts of special interest for precision medi-
cine. The most promising certainly is the “interactome 
disease module” perturbation model of disease onset 
and development proposed by Barabasi, Gulbahce and 
Loscalzo [37] which has been validated on several real 
cases [38]. Here we focus on the 3C’s for the sake of 
brevity, but the same arguments apply to any pattern 
that can enrich the vocabulary of the network language 
for precision medicine.

Communities. Using network science terminology, 
modularity is often referred to as having a “community 
structure”, i.e., their vertices are organized into groups, 
called communities, clusters, or modules [39] as shown in 
Figure 7a.

Modularity is a key feature of living systems. Every 
cellular event, such as signaling or DNA replication, is 
the result of the presence of “modules” composed of 
several molecular machineries or regulatory structures, 
coordinately interacting directly or indirectly [40]. In-
deed, at the molecular scale, the presence of modules is 
often described as an ensemble of gene products highly 
coordinated at the functional level, interacting physi-
cally and subject to co-regulation [41, 42]. Moreover, 
modularity may support evolutionary forces and sustain 
change. The organization of functions in discrete mod-
ules (possibly partially overlapped) provide robustness 
to change but permit changes by modifications of the 
interconnections among modules. This is key to allow 

evolvability in uncertain and noisy environments and, at 
the same time, maintain adaptability [40, 43]. Modular-
ity is an omnipresent property of genomic data of all 
living systems which can be found in many kinds of ex-
perimental datasets, such as protein-protein or protein-
DNA interactions, gene expression measurements, and 
many others [44]. The modularity structure of a network 
and identification of communities can be formally char-
acterized in many ways. The most widely used one is 
the “modularity measure” defined by Newman as the 
fraction of edges that belong to the given communities 
minus the expected fraction whether links were ran-
domly distributed [45]. Community finding algorithms 
using the modularity measure are based, for example, on 
maximum likelihood [46] or local greedy approach [47].

The identification of modules in a network may pro-
vide useful information on how it is organized by em-
phasizing regions with a sort of “degree of autonomy” 

Figure 5
Metro map as metaphorical projection. The London Metro map is a paradigmatic example of a “metaphorical projection”. Real 
geographic coordinates have been eliminated in favor of greater readability. The purpose of the map is not to faithfully reproduce 
reality but to represent relevant information suitable for finding the best route between stops.  

3C’s

community

community

connector
node central

nodes

Figure 6
The three C’s of network analysis. The most used “words” in 
the network language correspond both to mathematical pat-
terns (community, centrality, connector) and biological con-
cepts (co-operation, influence, mediator). 
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or “self-organization” within the network. It allows the 
classification of nodes, based on their “importance” with 
respect to their module. For example, we can highlight 
nodes that are totally embedded within their module 
from those which lies on the frontier between modules, 
which may act as “connectors” between them and, as 
such, play a key role both in holding them together and 
in the dynamics of spreading “information” throughout 
the network. Indeed, many tools to identify and study 
the biological/medical significance of modules are avail-
able in the literature, the most widely used are the 
weighted gene co-expression network analysis (WGC-
NA) [48] and the switch miner algorithm (SWIM) [49]. 
There is a long list of biological and clinical applications 
of the “module” identification, for example, WGCNA 
has been applied to hepatocellular carcinoma [50], cal-
cific aortic valve disease [51], cervical cancer [52], and 
pulmonary artery hypertension [53], just to cite a few. 
SWIM algorithm has shown key modules (the so-called 
“switch genes”) in drug response [54], miRNA cancer 
networks [55], glioblastoma stem cells [56], chronic 
obstructive pulmonary disease [57], breast cancer [58], 
cancer-miRNA networks [55] and disease/genes asso-
ciations [59]. 

Centralities. A fundamental question when studying 
networks (both at the whole network-level or communi-
ty-level) is to find candidate nodes for being the “most 
influential” of the whole network or of the community 
it belongs to. In the network science language, they are 
referred to as “central nodes”, whilst the “mapped” bio-
logical concept can be that of a “key driver”, “critical”, 
“switch” gene or mutation, a drug “target” or a “lethal” 
protein, depending on the context. Therefore, measures 
of “centrality” summarize a node’s involvement in or 

contribution to the cohesiveness of the network [60]. 
Most importantly, centrality values depend solely on the 
network topology, i.e., on its structure defined by how 
links and nodes are set up to relate to each other. A com-
monly used description of a node’s centrality is based on 
three main properties: its connectedness, its role as a 
mediator, and its closeness to other nodes [61]. The first 
property may be metaphorically projected onto an in-
terconnected social group exchanging messages (infor-
mation), thus corresponding to its degree of potential 
communication activity, the second may be viewed as 
the potential to control such activity, and the third its 
efficiency in passing messages to all other nodes [62]. 

Degree centrality. One of the most popular ways to 
characterize node importance in terms of its connected-
ness is to compute its “degree centrality”, i.e., the num-
ber of connections it has to other nodes (see Figure 7c). 
The underlying idea is clear and simple: degree central-
ity is a measure of importance based on the number of 
connections, the more the better. A typical metaphorical 
interpretation is that of an individual with many friends 
in a social network or that of an airport with many 
flights. A mapping between network properties and bio-
logical concepts is the well-known “lethality-centrality” 
correspondence in protein networks [63-65]. The under-
lying idea is that a single protein, although working as a 
catalyst or signaling molecule, or building block in a cell, 
also have a role defined by the network of interactions 
with other proteins (or DNA/RNA) in which it has a cel-
lular function within functional modules [40]. By study-
ing the Saccharomyces cerevisiae PPI, Jeong et al. [63] 
found that the phenotypic consequences of single gene 
deletion are affected by the number of interactions of its 
protein product, i.e., by its degree centrality in the PPI 

Highest degree Highest betweenness Highest closeness

c

a b

Figure 7
Network patterns. a) Network communities. Apart from computational aspects, modular networks reflect the inherent modu-
larity of living systems and the network language provides a straightforward mapping from a biological concept (cooperating 
sub-units for a specific purpose or function) and topological properties and, the latter can be translated in an algorithm on data. 
b) Distance and shortest path(s) between two nodes in a network. The distance between source and target nodes is 4 (minimum 
number of hops) but there are two shortest paths with the same number of  “hops” (green detour). c) Network centrality measures. 
Three ways to characterize “importance” from a network perspective (degree, betweenness, closeness) and from a biological per-
spective (e.g., lethality, integrity of functional cordination, effective information flow). 
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network. They showed that nodes degree is very inho-
mogeneously distributed with most proteins having few 
connections and a few of them being highly connected. 
The latter, it is argued, play a central role in mediating 
interactions within the global network. Highly connect-
ed proteins (called “hubs”) are three times more likely 
to be essential than proteins with only a small number 
of links to other proteins [63]. The biological interpre-
tation of hubs in the PPI network is still debated [66], 
but to our purposes, it is important to realize how the 
network language can function as a mapmaker between 
“computation on data” (degree of the PPI network) and 
“biological concept” (essentiality of a protein). The bio-
logical significance of degree centrality is witnessed by 
several publications identifying hubs as a critical feature 
of the interactome for disease as in diabetes mellitus 
[67], nephropathies [68], allergic response [69] or can-
cers [70-73]. Also, other types of networks have shown 
the relevance of degree centrality as in the gene-inter-
action network [74-76], miRNA-target gene networks 
[77], RNA-RNA networks [78], developmental regula-
tory networks [79], co-expression networks [49, 80, 81] 
or in the human brain network [82, 83].

Distance and shortest path. Other popular measures of 
importance are the so-called “betweenness” and “close-
ness” centralities. Before we discuss the mapping pro-
vided by these network characterizations, we prelimi-
nary need to define the concept of “shortest path” and 
“distance” between two nodes in a network (see Figure 
7b). Given a set of nodes and links connecting them 
(i.e., a network) the “distance” between two nodes 
is usually defined as the minimum number of “hops” 
(links) needed to move from the source node to the 
target node and the corresponding path(s) are termed 
“shortest paths”. Even if multiple shortest paths can be 
identified on the network from source to target nodes, 
the minimum number of links is a single value. An ex-
ample of the mapping of the concept of “shortest path” 
on a biological problem, is that of finding repurposable 
drugs. The best candidate drug for a given set of pro-
teins associated with a given disease, is that “close”, i.e., 
having the smallest shortest paths, to its targets [84]. 
Now we can define the concept of “betweenness and 
closeness centrality” of a node in a network.

Betweenness centrality. A popular measure of “impor-
tance” of a node in terms of its ability as a “mediator”, is 
called “betweenness centrality”. It depends on its ability 
to allow nodes to reach other nodes, i.e., the extent to 
which a node lies between other nodes which depend 
on it [62]. Its formal definition coincides with the sum 
of the fractions of shortest paths passing through it 
(they may be more than one as previously shown) for 
all pairs of nodes [62]. A metaphorical projection on 
the concept of “information flow” is that a node with 
a high betweenness is potentially able to control such 
flow, that is it can facilitate, impede, or bias the “trans-
mission” of “messages” [85] or, more generally, “infor-
mation”. Interestingly, using PPI data, Samokhin et al. 
[86] identified NEDD9 as a critical node in the phe-
notype transition from adaptive to pathogenic fibrosis 
using betweenness centrality, Joy et al. [87] found that 
proteins with high betweenness are more likely to be 

essential and that evolutionary age of proteins is posi-
tively correlated with betweenness and Duron et al. 
[88] showed results indicating robustness of between-
ness centrality in the identification of target genes for 
drug development. Using mammalian transcription 
networks, Potapov et al. [89] showed that the top list 
of genes displaying high degree and high betweenness, 
such as P53, C-FOS, C-JUN, and C-MYC, is enriched 
with genes that are known as having tumor-suppressor 
or proto-oncogene properties.

Closeness centrality. The last example to show the use 
of the most popular measures of importance of a node, 
we consider now the so-called “closeness centrality”. 
The terminology makes it clear that it provides informa-
tion about the property of a node to be “close” to all 
other nodes, i.e. to be at the center of a network. The 
formal definition consists of two steps: first, the sum of 
its distances to other nodes is computed and, second, 
its value is defined by the inverse of such a value. In this 
way, high closeness values correspond to nodes that are 
close to all others, and the smaller the total distance of 
a node to other nodes, the higher its closeness is. Us-
ing the already mentioned metaphorical projection of 
a network as a web of “information flow”, a node with 
a high closeness may be considered important since 
information can rapidly spread to all other nodes very 
quickly. In biological terms, one may think, for exam-
ple, of a protein-protein interaction network where a 
misfolded protein may produce a perturbation that can 
produce some effect (e.g., by decreasing or increasing 
the binding strength) to its interaction partners and so 
on, thus resembling the situation in which a message 
rapidly spreads over a web of people starting from its 
“center”. For example, Ozgur et al. [75], using closeness 
centrality in a gene interaction prostate cancer network, 
inferred the presence of 18 new potential disease genes 
and Amitai et al. [90], using a residue interaction net-
work where amino acid residues are the nodes and their 
interactions with each other are the links, found that 
active site, ligand-binding and evolutionarily conserved 
residues, typically have high closeness values. Ma and 
Zeng [91] showed that nodes with a high closeness in 
a metabolic network belong to the central metabolism, 
namely the glycolysis and citric acid cycle pathway. 

Clearly, many other centrality measures can be de-
fined to characterize some topological property of a 
network. For example, we can mention barycenter, clus-
ter rank, decay, diffusion degree, geodesic k-path, lever-
age, lobby, radiality, eccentricity, Kleinberg’s authority 
scores, and Harary graph, just to cite a few [92]. The 
proliferation of centrality measures is not a problem, 
on the contrary, this is the normal and positive develop-
ment of a language, where new words are “invented” 
every day thus increasing the vocabulary of the network 
language. We envisage the birth of a large dictionary 
of thousands of words that can be used as the building 
blocks for expressing biomedical properties in this new 
language. The situation resembles that of sign language 
for hearing and speech impaired people, where gestures 
are used to express concepts, feelings, and ideas. The 
key advantage of the network language is that, once the 
biologist/physician has found the way of expressing his/
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her ideas on the medical problem of interest in terms of 
networks, then an algorithm on data can be readily ob-
tained, thus avoiding the intermediate step of a unifying 
general theory of disease and network science.

The key issue here discussed is that the “network 
language” may be able to provide biological interpreta-
tions of such properties therefore drawing the atten-
tion of the experimentalist to specific nodes for further 
analysis.

Connectors. Connectors are nodes in the network 
that connect modules. This broad definition that needs 
to be precisely quantified – as discussed in the follow-
ing – to set up an algorithm, is very interesting from a 
biological perspective. Indeed, communities of nodes 
(genes, proteins, etc.) are there because they cooper-
ate for some purpose or function in a cell (a functional 
module). However, groups of cooperating entities can-
not work in isolation, but they must be coordinated for 
proper global function. In other words, self-organization 
is required for an appropriate response to internal or ex-
ternal stimuli. The simplest way to map this biological 
feature on a network is to consider nodes through which 
different communities can “communicate”, thus using 
the usual “information flow” metaphor. Such nodes are 
usually referred as “connectors”, as shown in Figure 6. A 
very interesting application of this property is reported 
by Niss et al. [93] where the protein-protein interactome 
of dendritic cells has been studied. They found an in-
triguing group of 294 proteins each forming a “bow-tie” 
structure, that is a single protein connecting the major-
ity of protein complexes. The latter are “communities” 
on the network, and such “knot” proteins at the center of 
the bow tie, act as connectors. Such proteins resulted to 
have fundamental biological properties, like multifunc-
tional capabilities, enrichment in essential proteins, and 
wide expression in other cells and tissues [93].

Since connector nodes, at the community level, may 
not be connectors on a global scale, they do not have 

necessarily a high betweenness centrality value. There-
fore, new formal definitions are needed and the most 
popular measures to characterize “connector nodes” 
have been provided by Guimerà and Amaral [94] and 
by Paci et al. [49]. To characterize connectors nodes in 
a modular network, Guimerà and Amaral [94] suggest 
considering two parameters: a measure of internal con-
nectivity called “within-module degree” defined as the 
degree of a node by counting its links to members of 
the same community, and a measure of external con-
nectivity called the “participation coefficient”, which is 
defined in such a way that its values are close to one if 
its links are uniformly distributed among all the mod-
ules (or communities) and zero if all its links are within 
its own module. It is therefore clear, that connector 
nodes can be computationally identified as those hav-
ing a low within-module degree and a high participation 
coefficient, as shown in Figure 8. Moreover, the figure 
makes it clear that four regions can be identified and 
the other three node’s roles identified: local hubs, global 
hubs, and peripheral nodes.

Using the “clusterphobic coefficient” to measure 
external connectivity as in [49], instead of the partici-
pation coefficient, we can also identify on the co-ex-
pression network, a specific class of connectors called 
“switches” which has been shown to be associated with 
transitions of cell’s state [54-57, 95].

CONCLUSIONS
There is a growing awareness of the large and increas-

ing gap between two visions of life: that of the “life 
scientists”, like biologists, physicians, molecular biolo-
gists, and so on, and that of the “number scientist” like 
physicists, engineers, mathematicians, and so on. Biolo-
gists’ vision of life is centered on “concepts” like for ex-
ample evolution, adaptation, development, speciation, 
purpose, which are not amenable of a rigorous and im-
mediate mathematical formalization, whilst physicists/
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local hub

peripheral connector

global hub

Figure 8
Connectors and other roles in modular networks. A “cartography” of a modular network can be constructed using measures of 
internal and external connectivity (degree). Given the modules, each node of the network corresponds to a point on the map and 
each quadrant corresponds to different roles. High external and internal connectivity (first quadrant) correspond to global hubs, 
low external and high internal connectivity (second quadrant) correspond to local hubs, low external and internal connectivity 
(third quadrant) correspond to peripheral nodes and high external and low internal connectivity (fourth quadrant) correspond to 
connectors. 
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data scientists’ vision is centered on fitting “patterns” to 
data using “universal laws” or “universal organizing prin-
ciples”. The aim of the article is not to reconcile such 
visions or to take the side of one or the other, but to 
focus on the almost complete absence of dialogue and 
on how to stimulate effective interaction between the 
two in the field of precision medicine. An alternative 
view is suggested and a contribution to its solution is 
presented aiming to reduce the gap (that we called the 
“complex data divide”) and allow a dialogue, by looking 
at network science as a vocabulary-generator filled with 
“words” that have different meanings in each discipline 
but refer to the same “thing” (cell behavior, health, dis-
ease, etc.). In this way, each researcher can continue to 
study his/her own discipline independently and, at the 
same time, engage in a true inter-disciplinary dialogue to 
implement precision medicine in a clinical setting.
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