Assembly, assembly stats, virulotyping, serotyping

Valeria Michelacci

Bioinformatics training, July 2019

Assembly (e.g.: SPAdes)

Short sequencing reads

Partially assembled genome (contigs)

.fastq file

@HWI-ST700693:238:B0224ACXX:1:1101:1218:1982
NACACTTGCTTTGGTGACAGCGGGGGCATCCTCAAGC
+
#1=DDDDDDHAFF?GEFGIIIIIIIIIIIIIIIII
@HWI-ST700693:238:B0224ACXX:1:1101:1161:1986
NGATTTGACCTCTCCAGTTCCTTAACACTTG
+
#1:BDFFFGHHHGJJJIIJHIJJJJJJJJJJJJJJJJ
@HWI-ST700693:238:B0224ACXX:1:1101:1193:1989
NTATCCAGCCTGCGGTGCTACTTGGTGGAAGAGGAT
+

#1=DDFFFHGHGGJJFGHJJIJJIEGECHDFHCC? @HWI-ST700693:238:B0224ACXX:1:1101:1440:1981 NTCAAGAATCCAAGTGGGGGCCAGCATAATGTACGCT

#1=DDFFFHGHDFDAEGIIFGIICGGHGBFGEFDHI @HWI-ST700693:238:B0224ACXX:1:1101:1367:1983 NATTAGAACAGATCGCTACTTCGCCCGAAGATACAT +

#4BDFFFFHHHHHJGIJIJJJJJJJJJJJJJJJJ @HWI-ST700693:238:B0224ACXX:1:1101:1395:1988 NTGGAAACGTTTTTAAACGCGGAGACAGCGTGGAGT

#1=DDFFFHCFFHJJJIJJIJJJJJGGIFHIGI7
@HWI-ST700693:238:B0224ACXX:1:1101:1285:1994
NCTTTGCTGTATTGACCGTTTGTAGATTTGAATCTT
+

#4=DDFFFHBHHHHIGIJFHIJFGGGIGIHIJIJII @HWI-ST700693:238:B0224ACXX:1:1101:1632:1989 NTCTATGAATGTTCAAGCGGTAGCTGAGGAGAGTCC

FastqSize ≈ GenomeSize x Coverage x 2

At least 0.5 GB per genome

.fasta file

>NODE_1_length_449_cov_4.835189

ATCTTTCGCGCCTTCCAGCTCCAGCCATTCGGAACCGTTCGCCAGAAAACCGGCCGTAATC GGGTAAGACATAGCGCGGGTTTGTACGGCGCATGACCTTCAAACATATCGCAGATTACACC TTCATCCAGCGCGCGGCGGGCGTCGGCAGGAAGCTGTGGGGAAAGGCAGATTGTTTCTGC TTCCAGTGCCAGAAAATGGCGCTTCGGCCGGCTAAGCACTGGGCTGGTGACAATTG CTGGCAACGTTGTTGCAGTGCATTTCATGAGAAGTGGGCATCTTCTTTTCCTTTTATGC CGAAGGTGATGCGCCATTGTAAGAAGTTCCGTGATGTCACCTTGGATCCTGATGCGCTTG CCACCACTGACGCCATTGTAAGAAGTTTCGTGATGTCACCAGTGCACATTACAGTGATG CCACCACTGACGCATTCATTGAAAGTGAATTATTTGAACCAGATCGCGCATTACAGTGATG CAAACTTGTAAGTAGATTTCCTTAATTGTGATGTGTATCGAAGTGTGTTGCCG >NODE_2_length_309_cov_4.686084

>NODE 3 length 101 cov 3.346535 AGCGCATGAGCGCGCGCGCCGCCGTTACGTGGTGCATCAGCATGATGTTGGCCGGAGAG TACAGAGACTCCCCTTCATCCATGATGCCCTCTTTCACCAGCAGTTCTTCAATCATCACC

AGACC

>NODE_4_length_311_cov_3.610933

CATCAACGCTAĂAAGCCAGATGACGCAGACCGCAAGCTTCCGGTCGGCTGGGTCGTTCCG GCGGGAACGGAAATGAGAAAAGCTCAATCACATATTGCCCATTAAGCGCCAAATCCCCTT TCCATGAGTCGCGCGCTTCGCGTCGCATGCGTTGCAGCGTGAAACCAAGAATATCGC AGTAGAAAGCTTTGCTCACCGCATAATCCGTCGCAATAATCGCAAATATGGTGAACCTGTT TTAAACCCAGCATAACGTCCCTTTATTTGTTAACAGCACGTTACTCGCCCGGAAGCCGC TCTGGCAAGTTATCCCGCCATTTTAGGACTCGTA

>NODE_5_length_186_cov_4.973118

CGAAGATATAAĞAAAGCGAACCAGAAAGAATGCCGGAGAACTTCATCAATTCATCACCTG CATTGAGCAGATTTTGCAGGTTCTCAATAACCGGTAATCCAGCCCCAACGTTGGTGTCAT AGAGGAATTTACGCCGCGGATTTTCCGCCGCGTAACCGCAACTGATGGTAGTAATCCATCG ACGAGGTGTTGGCCTTTTTGTTCGGCGTGA

FastaSize for E. coli contigs

~5.5 MB

Filter SPAdes repeats/1

Input: contigs file & file with contigs stats

Coverage cut-off ratio:

This is the average coverage ratio cutoff. For example: if the average coverage is 100 and a coverage cut-off ratio of 0.5 is used, then any contigs with coverage lower than 50 will be eliminated.

Repeat cut-off ratio:

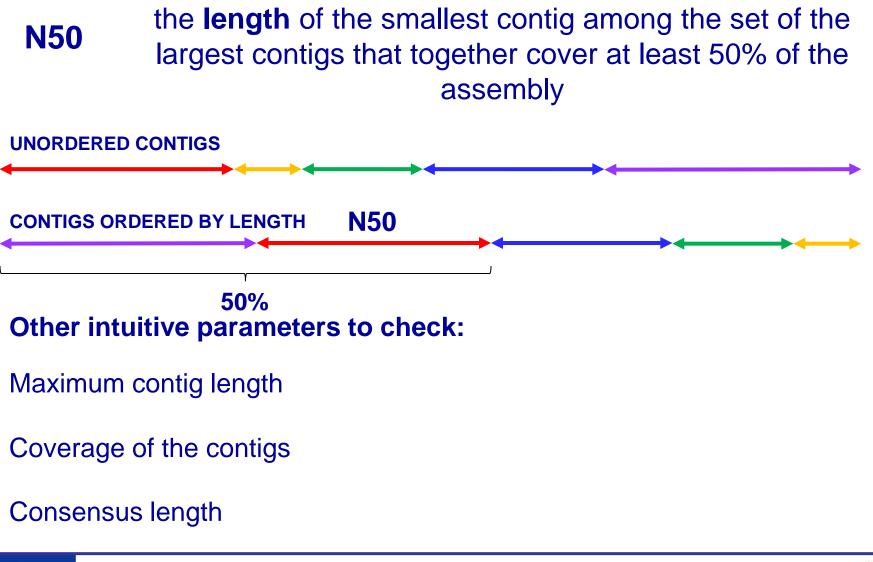
This is the coverage ratio cutoff to determine repeats in contigs. For exmaple: if the average coverage is 100 and a repeat cut-off ratio of 1.75 is used, then any contigs with coverage more than or equal to 175 will be marked as repeats.

Length cut-off

Length for average coverage calculation (default = 5000)

What does it do?

Using the output of SPAdes (a fasta and a stats file, either from contigs or scaffolds), it filters the fasta files, discarding all sequences that are under a given length or under a calculated coverage. Repeated contigs are detected based on coverage.


Output

- Filtered sequences (with repeats)
- Will contain the filtered contigs/scaffolds including the repeats. These are the sequences that passed the length and minumum coverage cutoffs.
- For workflows, this output is named output_with_repeats
- Filtered sequences (no repeats)
- Will contain the filtered contigs/scaffolds excluding the repeats. These are the sequences that passed the length, minimum coverage and repeat cutoffs.
- For workflows, this output is named output_without_repeats
- Repeat sequences
- Will contain the repeated contigs/scaffolds only. These are the sequences that were exluded for having high coverage (determined by the repeat cutoff).
- For workflows, this output is named repeat_sequences_only
- Discarded sequences
- If selected, will contain the discarded sequences. These are the sequences that fell below the length and minumum coverage cutoffs, and got discarded.
- For workflows, this output is named discarded_sequences
- Results summary : If selected, will contain a summary of all the results.

Assembly stats

Pilon – contigs refinement

PROCESS	RESULT	
Pilon protocol	Assembly improvement (Fasta)	Variation detection (VCF)
Evaluate alignment pileups TAATGGGGGCGGTGCCATATCATGAGA TAATGGGGCCGGTGCCATATCATGAGA TAATGGGGCCGGTGCCATATCTAGAGA TAATGGGGCCGGTGCCATATCATGAGA	Identify and fix base errors	Identify SNPs and small indels
Scan read coverage and alignment discrepancies	Identify potential local misassemblies	Identify larger insertions and deletions
Reassemble across gaps and discrepant regions	Attempt to fill gaps and fix local misassemblies	Attempt to build out the full sequence of larger insertions

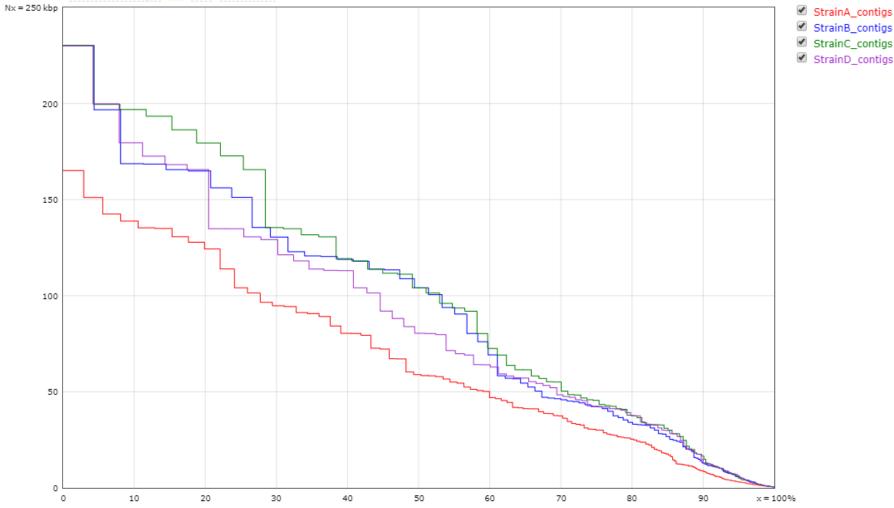
Realignment of the reads on a «reference sequence»:

we use Bowtie2 as alignment tool and the contigs as ref seq

Pilon uses the result of the alignment to improve the assembly:

it outputs better assembled contigs

Assembly stats: check bacterial contigs


# Contigs Evaluator v1.0 on file dataset_126093.dat		
Estimated genome size:	5000000 bp	
Assembled nucleotides:	5754440 bp	
Estimated coverage:	1.15 x	
N. contigs:	818	
Average contig length:	7035	
Median contig length:	457	
Maximum contig length:	165129	
N. contigs >= 200 bp:	572 (69.9 %)	
N. contigs >= 2,000 bp:	204 (24.9 %)	
N50:	58429	
NG50:	72678	

Assembly stats: Quast

Plots: Cumulative length Nx NGx GC content

