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ABSTRACT: The RASopathies constitute a family of
autosomal-dominant disorders whose major features
include facial dysmorphism, cardiac defects, reduced
postnatal growth, variable cognitive deficits, ectodermal
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and skeletal anomalies, and susceptibility to certain
malignancies. Noonan syndrome (NS), the commonest
RASopathy, is genetically heterogeneous and caused by
functional dysregulation of signal transducers and regula-
tory proteins with roles in the RAS/extracellular signal-
regulated kinase (ERK) signal transduction pathway. Mu-
tations in known disease genes account for approximately
80% of affected individuals. Here, we report that missense
mutations altering Son of Sevenless, Drosophila, homolog
2 (SOS2), which encodes a RAS guanine nucleotide ex-
change factor, occur in a small percentage of subjects with
NS. Four missense mutations were identified in five unre-
lated sporadic cases and families transmitting NS. Disease-
causing mutations affected three conserved residues lo-
cated in the Dbl homology (DH) domain, of which two are
directly involved in the intramolecular binding network
maintaining SOS2 in its autoinhibited conformation. All
mutations were found to promote enhanced signaling from
RAS to ERK. Similar to NS-causing SOS1 mutations, the
phenotype associated with SOS2 defects is characterized
by normal development and growth, as well as marked
ectodermal involvement. Unlike SOS1 mutations, how-
ever, those in SOS2 are restricted to the DH domain.
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Introduction
Aberrant signaling from RAS has been causally linked to a fam-

ily of clinically related developmental disorders, collectively termed
the RASopathies, which are characterized by facial dysmorphism,
a wide spectrum of cardiac defects, reduced growth postnatally,
variable cognitive deficits, ectodermal and musculoskeletal anoma-
lies, and increased risk for certain malignancies. The shared mech-
anism of disease for this group of disorders is dysregulation of
the RAS/extracellular signal-regulated kinase (ERK) and/or phos-
phoinositide 3-kinase/AKT signaling pathways [Tartaglia and Gelb,
2010]. Among the RASopathies, Noonan syndrome (NS; MIM
#163950) is the most common and clinical variable [Roberts et al.,
2013]. So far, missense germline mutations in genes encoding pro-
teins of the RAS family of GTPases (KRAS, NRAS, RIT1, and RRAS),
modulators of RAS function (PTPN11, SOS1, CBL, RASA2, and
SHOC2), or downstream signal transducers (RAF1, BRAF, and
MEK1), resulting in gain-of-function (GOF) effects on RAS/ERK
signaling, have been reported to underlie approximately 80% of NS
or related conditions [Tartaglia and Gelb, 2010; Aoki et al., 2013;
Chen et al., 2014; Flex et al., 2014]. Genotype–phenotype associa-
tions have been established for several of these genes. For example,
individuals with mutations in Son of Sevenless, Drosophila, ho-
molog 1 (SOS1; MIM #182530), which encodes a member of the
son-of-sevenless family of RAS guanine nucleotide exchange fac-
tors (GEFs), typically have near-normal stature and neurocognitive
development but show striking ectodermal involvement [Pandit
et al., 2007; Roberts et al., 2007], whereas certain mutations affect-
ing RAF1, a serine/threonine kinase functioning as a RAS effector
and initiator of the RAF/MAK/ERK cascade, and possibly those
affecting RIT1, a RAS subfamily GTPase, are generally associated
with early-onset hypertrophic cardiomyopathy [Pandit et al., 2007;
Razzaque et al., 2007; Aoki et al., 2013].

During the last 10 years, we and others have been using a candi-
date gene approach, focused on genes encoding signal transducers
and regulators with a role in the RAS signaling cascade to resolve the
unexplained proportion of cases of NS and the other RASopathies.
Since our discovery of SOS1 as a NS disease gene [Roberts et al.,
2007; Tartaglia et al., 2007], Son of Sevenless, Drosophila, homolog
2 (SOS2; MIM #601247), which encodes a protein with similar func-
tion in RAS signaling, was considered an excellent candidate. Our
first screening efforts, however, did not identify putative disease-
causing variants, suggesting that activating mutations in this gene
do not cause RASopathies or that they account for a relatively small
proportion of affected subjects. To address the latter hypothesis, we
initiated a multicenter collaborative screening effort using larger
numbers of mutation-negative RASopathy cohorts. While this work
was in progress, one paper reported the identification of heterozy-
gous SOS2 variants in a cohort of 50 subjects with NS without
an identifiable mutation in previously known disease genes [Ya-
mamoto et al., 2015]. Among these, one was found to occur de
novo in a sporadic case, and two cosegregated with the trait in two
small-sized families. Here, we report that SOS2 mutations under-
lie a small proportion of NS cases and are associated with a clin-
ical phenotype overlapping that resulting from SOS1 mutations.

Furthermore, we demonstrate that SOS2 mutations promote en-
hanced activation of RAS and ERK, similar to what was observed
for NS-causing SOS1 mutations [Roberts et al., 2007; Tartaglia et al.,
2007]. Unlike NS-associated SOS1 mutations, however, SOS2 defects
in NS are not found in multiple domains of the GEF, but specifically
cluster within the Dbl homology (DH) domain.

Materials and Methods

Clinical Data and Biological Material Collection

Clinical data were obtained and biological materials were col-
lected and stored in accordance with the ethical standards of the
institutional review boards (Ospedale Pediatrico Bambino Gesù,
Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy; Isti-
tuto Mendel, Rome, Italy; Policlinico S. Orsola-Malpighi, Bologna,
Italy; Hôpital Robert Debré, Paris, France; Hôpital SUD, Rennes,
France; Hôpital d’Enfants, Dijon, France; Hôpital d’Enfants de
la Timone, Marseille, France; University Hospital of Magdeburg,
Magdeburg, Germany; Boston Children’s Hospital, Boston, MA; Ic-
ahn School of Medicine at Mount Sinai, New York, NY) and after
written informed consent. All subjects exhibited features fitting NS
(cohort 3) or within the RASopathy phenotypic spectrum (cohorts
1 and 2), and had tested negative for mutations in previously identi-
fied RASopathy genes. The clinical diagnosis was made on the basis
of standardized clinical criteria as assessed by experienced clini-
cal geneticists. Genomic DNA was isolated from peripheral blood
leukocytes and buccal mucosal epithelial cells using standard proto-
cols. Permission was obtained to publish the photographs of subjects
shown in Figure 1.

DNA Sequencing and Mutation Analysis

Mutation scanning of the entire SOS2 coding sequence
(NM 006939.2; NC 000014.9 [50117128..50231878, complement])
was performed by Sanger sequencing at the US Department of En-
ergy’s Joint Genome Institute (Walnut Creek, CA), Istituto Superi-
ore di Sanità and Ospedale Pediatrico Bambino Gesù, as previously
described [Tartaglia et al., 2007].

Whole-exome sequencing (WES) was performed on 54 probands
as part of the NHGRI-sponsored Centers for Mendelian Genomics
program at the Yale Center for Genome Analysis (New Haven, CT)
[Bamshad et al., 2012]. The WES analysis pipeline was based on
the 1000 Genomes Project data analysis data pipeline, was com-
posed from the widely used open source software projects bwa
0.7.5a [Li and Durbin, 2009], Picard 1.96, GATK 2.7 [McKenna
et al., 2010; DePristo et al., 2011], snpEff 3.0 [Cingolani et al., 2012],
BEDTools 2.16.2 [Quinlan and Hall, 2010], and custom-developed
software, and implemented the “GATK Best Practices,” including
indel realignment, deduplication, and base-quality score recalibra-
tion. Short reads were aligned to a gender- and pseudo-autosomal
region-masked build of the hg19 human reference genome using
bwa mem. The exome capture targets were expanded with 100-bp
flanks for variant calling. Single-nucleotide variants (SNVs) and
indels were called jointly with the GATK HaplotypeCaller. Variant
quality score recalibration (VQSR) was used to estimate the prob-
ability that an SNV is a true variant instead of an artifact and to
set the corresponding variant filter thresholds. The PASS threshold
for VQSR was set to capture 99.5% of known true positives. We
observed that this threshold offered a good compromise between
precision and recall. Mean coverage and fractions of bases at dif-
ferent coverage levels were calculated with the unflanked intervals;
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Figure 1. Mutations affecting residues located in the Dbl homology domain of SOS2 cause Noonan syndrome (NS). A: Clinical features of
subjects carrying a mutated SOS2 allele. B: Three-dimensional structure (above) and domain organization (below) of SOS proteins and positions
of NS-causing mutations. Proteins are shown in the inactive conformation of SOS1 (residues 6–1,045) (PDB ID: 3KSY) [Gureasko et al., 2010] and
the homology model derived for SOS2 (residues 6–1,043). Protein domains are color-coded: histone-like folds (cyan), Dbl homology (DH) (brown),
pleckstrin homology (pink), helical linker (gray), RAS exchange motif (REM) (green), and CDC25 (blue). The cyan plane indicates the membrane
position. The side chains of mutated residues (this study and [Lepri et al., 2011]) are shown in the SOS structures, whereas the NS-causing amino
acid substitutions identified in SOS2 and the distribution of SOS1 mutations reported in 83 NS subjects [Lepri et al., 2011] are shown above and
below the scheme, respectively. C: The DH–REM interface is shown with the surface of the REM domain colored by its electrostatic potential and
the Cα trace of the DH domain as a ribbon with the mutated residues colored in red (upper panel). Interactions at the DH/REM interface occurring
in the SOS2 model (lower panel, left) and SOS1 X-ray structure (right). The residues participating in the interdomain interactions are shown as
color-coded atoms (O: red; N: blue; C: gray; S: yellow). The ribbon is colored red at mutated residues. The interface is stabilized by several salt
bridges, and is anionic at the DH domain (Asp263, Glu266, Asp269, Glu270, Asp283, Glu366), and cationic at the REM domain (Arg623, Arg686, Arg692,
His693, His697, Lys726, Lys733). Met267 interacts hydrophobically with Leu685 and Trp727. Thr264 stabilizes the structure of the DH domain at the
interface with REM by forming an H-bond with Cys280 (black dashed line).

the callable coverage of RefSeq coding exons was calculated with the
flanked intervals.

The third cohort of subjects was screened by targeted resequenc-
ing. Primer pairs were designed with the IntegraGen (Evry, France)
internal pipeline. Samples were amplified on an Access Array system
(Fluidigm, San Francisco, CA), and equimolar pools of amplified
products were sequenced on a MiSeq instrument (Illumina, San
Diego, CA), using MiSeq Reagent Kit V2 cycles and paired end 2
× 150 bp. Image analysis and base calling were performed using
the Real Time Analysis pipeline v. 1.14 (Illumina). Alignment of
paired-end reads to the reference human genome and variant call-
ing were carried out using the CASAVA v.1.8 pipeline (Illumina).
Variant annotation was achieved using an in-house pipeline by In-
tegraGen. Sequencing at 25× depth covered at least 96.8% of SOS2
in all patients.

All variants identified by WES and targeted sequencing were con-
firmed using Sanger sequencing. When parental genomic DNAs
were available, their status vis-à-vis the relevant variant was sim-
ilarly assessed. When possible, paternity was confirmed by simple
tandem repeat (STR) genotyping, using the AmpF/STR Identifier
PCR Amplification Kit (Applied Biosystems, Waltham, MA) or the
PowerPlex 16 System (Promega, Fitchburg, WI).

The frequency of the identified SOS2 variants in the gen-
eral population was assessed using the Exome Aggregation Con-
sortium’s database (ExAC; http://exac.broadinstitute.org). The

likelihood that variants were deleterious was evaluated using
the combined annotation-dependent depletion method (CADD;
http://cadd.gs.washington.edu/info) [Kircher et al., 2014], reported
as scaled C-scores. A C-score threshold of 15.0 was used for declar-
ing likely pathogenicity of missense variants. The SOS1 and SOS2
variants observed in human cancers are reported in the Catalogue of
Somatic Mutations in Cancer (COSMIC; http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/).

Structural Modeling

A homology model of SOS2 (residues 6–1,043) was ob-
tained based on the crystallographic structure of SOS1 (residues
6–1,045, pdb code 3KSY; http://www.rcsb.org/pdb/home/home.do)
[Gureasko et al., 2010]. The sequence alignment was performed by
using Clustal W [Larkin et al., 2007] (identity 78%) and checked
manually. The structure model was built by using the Swiss Model
Workspace [Arnold et al., 2006]. The software Chimera [Pettersen
et al., 2004] was used for electrostatic calculations and for the struc-
tural representations reported in the figures.

Biochemical Studies

A SOS2 cDNA (Transomics, Huntsville, AL) was amplified by
PCR, with the addition of a FLAG tag at the N-terminus. The
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amplified PCR product was subcloned into the expression vector
pcDNA5/FRT/TO (Invitrogen, Carlsbad, CA). NS-associated muta-
tions were introduced by site-directed mutagenesis.

HEK-293T cells (ATCC, Manassas, VA) were maintained in
DMEM containing 10% (v/v) FBS and 100 units/ml penicillin-
streptomycin (Invitrogen). Cells were seeded for 1 day before trans-
fection with wild-type or mutant SOS2 plasmids, along with a
hemagglutinin (HA)-tagged ERK expression construct at a 4:1 ra-
tio, using FuGENE HD transfection reagent (Promega), accord-
ing to the manufacturer’s protocol. This design eliminates trans-
fection efficiency as a variable, by ensuring that all cells analyzed
for HA-ERK phosphorylation also express the relevant SOS2 al-
lele. For assessing RAS activation, we generated stable transduc-
tants. Briefly, Flp-In T-REx 293 cells (Invitrogen) were cotrans-
fected with the appropriate pcDNA5/FRT/TO expression plasmid,
and the Flp recombinase-expressing plasmid pOG44 (Invitrogen)
using FuGENE HD (Promega). Stable pools of transfectants were
selected in hygromycin (250 μg/ml). Expression of exogenous SOS2
was induced with 1 μg/ml tetracycline 24 hr before analysis. Cells
were maintained in 10% serum or serum-starved overnight, before
stimulation with EGF (20 ng/ml) for various times, as indicated.

Total cell extracts were prepared in radioimmunoprecipita-
tion assay buffer (50 mM Tris–HCl [pH 7.5], 150 mM NaCl,
2 mM EDTA, 1% NP-40, 0.5% Na deoxycholate, 0.1% SDS),
supplemented with a protease and phosphatase inhibitor cocktail
(40 μg/ml phenylmethylsulfonyl fluoride, 20 mM NaF, 1 mM
Na3VO4, 10 mM β-glycerophosphate, 10 mM sodium pyrophos-
phate, 2 μg/ml antipapain, 2 μg/ml pepstatin A, 20 μg/ml leupeptin,
and 20 μg/ml aprotinin). Lysates (20–25 μg protein) were resolved
by SDS-PAGE and analyzed by immunoblotting using the following
antibodies: anti-FLAG, clone M2 (Sigma–Aldrich, St. Louis, MO);
anti-phospho-p44/42 MAPK and anti-phospho-MEK1/2 (Cell Sig-
naling Technology, Beverly, MA); anti-ERK2, clone D-2 (Santa Cruz,
Biotechnology, Dallas, TX); anti-ERK1/2 (Millipore, Billerica, MA).
Binding of primary antibodies was detected by using IRDye infrared
secondary antibodies and the Odyssey Infrared imaging system (Li-
Cor Biosciences, Lincoln, NE). Quantification was performed using
Odyssey V3.0 software.

RAS loading was assessed using a RAS activation assay kit (Milli-
pore), according to manufacturer’s instructions. RAS-GTP was re-
covered from lysates using the GST-tagged RAF-Ras binding domain
of RAF1 as bait in pull-down experiments followed by SDS-PAGE
and immunoblotting for RAS.

Statistical Analysis

The biochemical data for the SOS2 mutants and wild-type con-
trols were compared using an ANOVA or a Fisher exact test, as
appropriate; the threshold for declaring significance was set at P
< 0.05. A Bonferroni post-hoc correction was applied to all of the
ANOVA P values.

Results

SOS2 Mutation Scanning in the RASopathies

We scanned SOS2 for mutations in 150 individuals with clinically
diagnosed RASopathy who had screened negative for previously dis-
covered disease genes. We identified 19 individuals harboring nine
missense variants, of which five were known polymorphisms and
four were novel (Supp. Table S1). Among the latter, each observed
once, three were deemed benign, as two were inherited from unaf-

fected fathers and one was likely tolerated. The remaining variant,
c.1127C>G, predicting the p.[Thr376Ser] amino acid change (Supp.
Fig. S1A) had not been observed in greater than 120,000 alleles
from the ExAC’s database and was deemed likely deleterious using
the CADD method [Kircher et al., 2014]. The variant was inherited
from his mother, who exhibited features suggestive of NS. Geno-
typing of the mother’s parents documented its de novo origin and
confirmed paternity (Supp. Fig. S1A). Of note, mutation of the cor-
responding SOS1 residue, Thr378, had been previously reported to
cause NS [Denayer et al., 2010].

Next, we scanned WES data with excellent SOS2 coverage (Supp.
Fig. S1B) from another 54 mutation-negative RASopathy cases. We
identified five SOS2 missense variants, including four likely poly-
morphisms, two recurrent and two inherited from unaffected par-
ents. The remaining individual had a different missense nucleotide
substitution affecting codon 376 (c.1126A>T, p.[Thr376Ser]), in-
herited from her affected mother, in whom it arose de novo (Supp.
Fig. S1A). Consistent with the causative role of the SOS2 lesion in the
family, no other variant affecting previously identified RASopathy
genes was annotated in WES data from Subject 2.

Because the clinical features of the three affected individuals were
consistent with NS (Fig. 1A; Table 1) (see below), we screened
SOS2 in a third cohort, which included 61 mutation-negative sub-
jects with clinical diagnosis of NS, using targeted resequencing.
Sequencing at 25× depth covered at least 96.8% of the SOS2 cod-
ing sequence in all patients. We found a c.791C>A (p.[Thr264Lys])
and two independent c.800T>G (p.[Met267Arg]) variants (Supp.
Fig. S1A) that were deemed likely pathologic due to high CADD
scores, correspondence to an NS-related SOS1 mutational hotspot
(p.[Thr266Lys], p.[Met269Arg], and p.[Met269Thr]), and proba-
ble GOF effects on GEF activity, based on SOS1 structural studies
and expression of p.[Met269Arg] [Pandit et al., 2007; Roberts et al.,
2007]. The c.791C>A allele arose de novo in that sporadic case, for
whom paternity was confirmed.

All SOS2 variants described in this report have been submit-
ted to the NSEuronet mutation database (https://nseuronet.com/
php/index.php).

Molecular Modeling of NS-Associated SOS2 Mutations

Similar to the structurally and functionally related SOS1, SOS2
stimulates the release of GDP from RAS, promoting the conversion
of the GTPase from the inactive, GDP-bound to the active, GTP-
bound form [Nimnual and Bar-Sagi, 2002]. SOS2 is a large mul-
tidomain protein characterized by an N-terminal regulatory portion
including two tandemly arranged histone-like folds, which are fol-
lowed by DH domain and a pleckstrin-homology (PH) domain,
and a C-terminal catalytic region comprising the RAS exchanger
motif (REM) and CDC25 domains, followed by a tail containing
docking sites for adaptor proteins required for receptor anchoring
(Fig. 1B). In SOS1, GEF activity is controlled principally by two
binding sites for RAS: the catalytic site, which is located within the
CDC25 domain, and a distal site involving two adjacent regions of
the CDC25 and REM domains. The latter domain positively mod-
ulates GEF activity by promoting a conformational change at the
active site that allows GDP-RAS to bind [Margarit et al., 2003].
The majority of SOS1 mutations causing NS affect residues that are
implicated in the maintenance of SOS1 in its autoinhibited confor-
mation [Roberts et al., 2007; Tartaglia et al., 2007; Lepri et al., 2011].
Among these, a class of mutations involves residues that participate
in the autoinhibitory interaction of the DH and REM domains that
blocks RAS access to the allosteric site. These mutations directly
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Table 1. List of Clinical Features of SOS2 Mutation-Positive Subjects

Case 1 2 (mother of case 1) 3 4 (daughter of case 3) 5 6 7

Mutation (cDNA)a 1127C>G 1127C>G 1126A>T 1126A>T 800T>G 791C>A 800T>G
Mutation (protein) p.[Thr376Ser] p.[Thr376Ser] p.[Thr376Ser] p.[Thr376Ser] p.[Met267Arg] p.[Thr264Lys] p.[Met267Arg]
Sex M F F F F M M
Age (years) 13 34 30 6 6 24 42
Perinatal findings

Polyhydramnios + na na + – na na
Fetal macrosomia – – + + + na na
Other prenatal – – – – INT – –

Neonatal/infantile growth failure + na – – – – –

Birth weight (kg)/birth weight SD 2.9/–1.13 na na na 4.29/+1.89 3.5/–0.06 na
Birth length (cm)/birth length SD na na na na 51/+0.61 51/+0.31 na
Birth HC (cm)/birth HC SD na na na na 35/+0.12 36/+0.12 na
Poor sucking + + – – + na na

Height (cm)/height SD 114.6/–2.53 161.5/–0.50 158/–0.82 113/–0.99 112/–0.97 180/+0.44 165/–1.65
Weight (kg)/weight SD na n.a. na na 17.9/+1.48 na 53/–2.03
GH deficiency + n.a. – – na na na
Craniofacial features

Tall forehead + + + + – + +

Sparse eyebrows + + + + + + +

Downslanting palpebral fissures + – + + + – –

Hypertelorism/telecanthus + + + + – – –

Epicanthal folds + + + + – – –

Palpebral ptosis + – + + + – +

Flat nasal bridge + – + + – – –

Prominent philtrum – – + + + – –

Thick lips – + + + – – +

Low-set/posteriorly rotated ears + + + + + – +

Thickened helix + + + + + – –

Large, thick ear lobe – + + + – – –

Cardiac anomalies
Pulmonary valve stenosis – – – – – – +

Pulmonary valve dysplasia – – – – – – –

Hypertrophic cardiomyopathy – – – – ISH – +

Septal defects VSD – ASD – ASD – –

Other defects – – – – RM – –

Dermatologic findings
Hyperpigmented skin – – – – – – –

Keratosis pilaris/dry skin – – + + + + –

Sparse/absent scalp hair + – + + – + na
Sparse/absent eyebrows + – + + na +b +

Ulerythema ophryogenes – – + + + + na
Curly hair – + + + – + +

Deep palmo/plantar creases – – – – – – +

Other features – – – – HS Lentiginesc –

Musculoskeletal features
Short webbed neck + + + + + na –

Cubitus valgus – – + + na na na
Hyperextensible joints – – + + – na +

Pectus deformity + – + + +d +d +d

Central nervous system features
Intellectual disability –e – – –f – – –

Brain MRI abnormalities – – – na na – na
Seizures/EEG abnormalities – – – – – – –

Ophthalmological anomalies +g – – – +h – na
Gastrointestinal anomalies – +i – – na – –

Cryptorchidism + + +

Urogenital anomalies – – – na +j

Hematologic anomalies – – – – na +k –

Lymphatic anomalies – + – – +l +m –

Miscellaneous – – – – +n BIH +o

aPosition referred to the A of the ATG translation initiation codon in the reference cDNA sequence (NM_006939.2).
bNormalized by 24 years.
cMultiple lentigines spread on the face and neck.
dExcavatum.
eMild learning difficulties.
fIQ 120.
gHyperopia.
hRight: posterior embryontoxin; left: enlarged corneal nerves.
iGastric malrotation.
jBilateral uretero-pelvic junction stenosis.
kEasy bruising.
lMarked lymphedema of the right leg (around 6 years).
mLymphedema of hands and feet (onset at 15 years).
nSuperinfection of right buttock cyst.
oCharcot-Marie-Tooth disease type 2, onset in infancy (unidentified gene), hypereosinphilia.
BIH, bilateral inguinal hernia; HC, head circumference; HS, hyperelastic skin; INT, increased nuchal translucency; ISH, isolated septal hypertrophy; NA, data not available; RM,
rhabdomyoma of the right ventricle (spontaneously resolved); SD, standard deviation (based on CDC growth charts 2000).
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affect the stability of the inactive conformation of the GEF directly
by disrupting the inhibitory interdomain bonding network at the
distal site.

To analyze the functional impact of the three disease-associated
missense variants, all altering conserved residues in the DH do-
main (Fig. 1B), a model of autoinhibited SOS2 (residues 6–1,043)
was obtained using the crystallographic structure of SOS1 (residues
6–1,045, pdb code 3KSY) as the template [Gureasko et al., 2010].
Based on this model, the p.[Thr264Lys] and p.[Met267Arg] sub-
stitutions insert positively charged residues in the anionic DH
region that interfaces with a cationic region of the REM do-
main, thereby reducing electrostatic attraction (Fig. 1C). Similar
to what was observed for SOS1 mutations affecting certain residues
(p.[Thr266Lys], p.[Met269Arg/Thr], p.[Lys728Ile], p.[Trp729Leu],
and p.[Ile733Phe]), these substitutions were predicted to activate
SOS2 by destabilizing the DH–REM interaction, allowing RAS to
access the allosteric site [Sondermann et al., 2004]. Thr376 is solvent-
exposed, so the effect of the p.[Thr376Ser] substitution was unclear.

Functional Effects of NS-Associated SOS2 Mutations

To test the GOF role of NS-associated SOS2 mutations predicted
by our molecular modeling analysis, the effects exerted by these
mutations on RAS-ERK signaling were assessed by comparing the
levels of ERK and MEK phosphorylation as well as that of GTP-
bound RAS in transient transfection assays. Consistent with the
predicted activating role of the three amino acid substitutions, ex-
pression of the SOS2Thr264Lys, SOS2Met267Arg, and SOS2Thr376Ser mu-
tants promoted enhanced phosphorylation of both endogenous and
exogenous ERK compared with that observed in cells expressing the
wild-type protein (Fig. 2A). Similarly, enhanced activation of en-
dogenous MEK was observed in cells expressing these SOS2 mutants.
Of note, the SOS2 mutants engendered different degrees of hyperac-
tivation. ERK and MEK were constitutively active in SOS2Thr264Lys-
and SOS2Met267Arg-expressing cells, whether randomly growing or
serum-starved. By contrast, cells expressing the SOS2Thr376Ser mu-
tant exhibited enhanced and protracted activation of these kinases,
but activation remained dependent on growth factor stimulation.
The increased GEF activity of the NS-associated SOS2 mutants is
consistent with the structural analyses. Moreover, our biochemical
analyses indicate a differential impact of NS-associated mutations
at the level of SOS2 activation.

We also assessed RAS activation by generating stable transduc-
tants in Flp-In T-Rex 293 cells, which allow tetracycline-inducible
expression of SOS2 constructs at near endogenous levels. Compared
with the effects of wild-type SOS2, expression of all three SOS2 mu-
tants led to increased RAS activation, shown as higher levels of
GTP-bound RAS. These findings are consistent with a direct GOF
effect on the RAS-GEF activity of NS-associated SOS2 mutations.

Overall, these data provide evidence that, similar to what has
been reported previously for NS-causative SOS1 mutations, NS-
associated SOS2 mutations promote enhanced activation of RAF-
MEK-ERK signaling cascade, an effect that is directly mediated by
their enhanced RAS-GEF activity.

Clinical Features Observed in NS due to SOS2 Mutations

Detailed clinical data were collected for the six affected indi-
viduals with the four SOS2 missense mutations to explore possi-
ble genotype–phenotype correlations. All subjects displayed typi-
cal NS facial features (Fig. 1A). Notably, height was normal in all
but one individual, and all individuals exhibited normal or nearly

normal neurocognitive status at 6–42 years (Table 1). By contrast,
ectodermal involvement was striking and similar to that seen in
SOS1 mutation-associated NS patients, including facial keratosis pi-
laris, sparse scalp hair, and ulerythema ophryogenes (Fig. 1A; Table
1). Cardiac involvement was typical for NS. Overall, the genotype–
phenotype associations observed with the SOS2 mutations resem-
bled those established for SOS1 mutations.

Discussion
Here, we report that SOS2 is mutated in NS, confirming the recent

report of a Brazilian cohort from Yamamoto et al. (2015). We pro-
vide the first data indicating that disease-causing SOS2 mutations
promote enhanced GEF function in SOS2, resulting in enhanced
signaling through RAS and the RAF-MEK-ERK cascade. Finally, the
available clinical records support the idea that SOS2 mutations are
associated with a phenotype resembling that previously associated
with SOS1 mutations.

Mutations in SOS1 constitute approximately 10% of NS cases.
In contrast, SOS2 mutations are estimated to account for a far
smaller percentage of cases in the three cohorts we analyzed. Re-
markably, all of the eight independent SOS2 mutations underlying
NS were found to alter only one of three amino acids (i.e., Thr264,
Met267, and Thr376), all located in the DH domain. This is strik-
ingly different from NS-associated SOS1 mutations that arise at
multiple hotspots (Fig. 1B) [Pandit et al., 2007; Roberts et al., 2007;
Lepri et al., 2011]. The two SOS proteins are nearly 70% homol-
ogous, expressed ubiquitously, and activate RAS proteins. SOS2,
however, has weaker biological effects. For example, Sos1 deficiency
in mice is embryonic lethal, whereas mice without Sos2 are normal
[Esteban et al., 2000; Qian et al., 2000]. SOS2 has been shown to be
much less stable than SOS1 because of its accelerated degradation
via a ubiquitin-dependent process [Nielsen et al., 1997]. Further-
more, expression of myristoylated SOS1 promotes cell transforma-
tion, whereas similarly tagged SOS2 cannot. Consistent with this
idea, several germline NS-causing SOS1 GOF mutations at three
major hotspots within the DH and PH domains as well as the he-
lical linker occur as sporadic mutations in cancers (as reported in
COSMIC), whereas cancer-associated SOS2 mutations only affect
the DH domain. The driving force behind the SOS2 DH domain
“hotspot” shared with SOS1 is likely biochemical, not genetic. Both
mutants are constitutively active; neither mutation arose at a CpG
dinucleotide and both are transversions. Although the precise mech-
anism is unclear, the same is likely true of the two nucleotide changes
resulting in the p.[Thr376Ser] substitution, which also did not arise
at CpG dinucleotides, are transversions and for which a comparable
SOS1 substitution has been observed once in cancer.

Our data, which represent the first biochemical characterization
of NS-causing SOS2 mutations, suggest that different mechanisms
likely drive the functional dysregulation of SOS2 and, in turn, aber-
rant RAS activation. Mutations affecting Thr264 and Met267, which
are located in the surface of the DH domain that mediates the
autoinhibitory interaction with the REM domain, were shown to
constitutively upregulate MEK and ERK activity. The correspond-
ing residues in SOS1, Thr266 and Met269, are among the most
common site of mutations in NS. In particular, Met269, which is
mutated in approximately 10% of cases bearing SOS1 mutations,
interacts directly with residues of the REM domain implicated in
RAS binding [Sondermann et al., 2004]. As previously documented
for SOS1, these mutations are predicted to affect the stability of
the inactive conformation of the protein directly by disrupting the
inhibitory interdomain bonding network at the distal site [Lepri
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Figure 2. Noonan syndrome-associated SOS2 mutants cause enhanced MEK/ERK activation. A: SOS2 mutants enhance MEK/ERK activation.
FLAG-SOS2 and HA-ERK1 expression constructs were cotransfected into 293T cells. Cells were randomly growing (RG), or starved and then
stimulated with EGF (20 ng/ml), as indicated, prior to lysis. Left: a representative immunoblot. Right: quantification of MEK and ERK phosphorylation
from three biological replicates (mean ± s.d; ∗∗P < 0.01, ∗P < 0.05, Bonferroni post-test when ANOVA was significant). B: SOS2 mutants increase
RAS activation. Flp-In T-REx 293 cells stably expressing FLAG-SOS2 constructs were starved, stimulated with 20 ng/ml EGF, and RAS loading was
assessed. Left: a representative immunoblot. Right: quantification of RAS loading pooled from two biological replicates (mean ± s.d; ∗P < 0.05,
one-tailed Student’s t-test).

et al., 2011]. On the other hand, a different pattern of signaling
dysregulation was observed in cells overexpressing SOS2Thr376Ser. In
these cells, ERK activation was enhanced and protracted but re-
tained dependence on EGF stimulation. While the solvent-exposed
position of Thr376 suggests a possible role in the interaction of the
GEF with signaling partners and/or modulators, the available struc-
tural data do not allow us to recognize any functional clue for this
recurrent NS-causing SOS2 substitution.

Analysis of the clinical data documented that mutations in SOS2
are associated with a consistent phenotype that unambiguously falls
within the NS clinical spectrum, but is apparently characterized by a
high prevalence of ectodermal features and low occurrence of short
stature and cognitive impairment compared with what is observed in
the NS general population. Overall, the SOS2-associated NS pheno-
type closely resembles that associated with SOS1 mutations. Notably,
both groups of patients enjoy excellent neurodevelopment, which is
likely attributable to the developmental stage-dependent expression
of RAS GEFs. While SOS proteins activate RAS downstream from
N-methyl-D-aspartate glutamate receptors in cortical neurons of the
developing and neonatal central nervous systems (CNS), there is a
switch to RAS guanine nucleotide-releasing factors 1 and 2 later in

life [Tian et al., 2004]. Consistent with evidence that NS-associated
PTPN11 mutations perturb CNS homeostasis, not brain develop-
ment [Pagani et al., 2009; Lee et al., 2014], restoration of normal
CNS RAS signaling in children with SOS mutations enables normal
development. Hence, our findings provide further hope that thera-
pies reducing RAS signaling in children with NS-causing mutations
in non-SOS genes would improve their developmental trajectories.

Overall, the present work provides evidence that a narrow spec-
trum of activating missense mutations in SOS2 account for a small
proportion of NS, and that subjects heterozygous for a germline
SOS2 mutation exhibit a distinctive phenotype resembling that of
SOS1 mutations, providing new clinically valuable information for
diagnosis and more effective patient management.
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