

External Quality Assessment of Molecular typing of Shiga toxin-producing *Escherichia coli* 2022

Susanne Schjørring and Nadia Boisen M.Sc, Ph.D

Statens Serum Institut Sektion of foodborne infection

Background

- 2021: 6 534 confirmed cases of STEC infection were reported by 30 EU/EEA countries
- The EU/EEA notification: 2.2 cases per 100 000 population
- 37.5% increase compared with the previous year
- The five most frequently reported serogroups:
 - O157 (15.1%), O26 (14.7%), O103 (8.4%), O145 (4.6%), O146 (3.7%)
- Among HUS cases the most frequently reported serogroups:
 O26 (34%) and O157 (19.8%)
- The proportion of cases where no serotype could be retrieved was 25.9%
- Antigen H was reported for 2 496 confirmed cases (38.2%).

Molecular typing EQA

STATENS SERUM INSTITUT

Funded:

By European Centre for Disease Prevention and Control (ECDC)

Organised:

Statens Serum Institut, Denmark, Section of Foodborne Infections

- •2012-2016
- •2017-2020
- ·2022-2025

Main objective of the EQAs scheme:

- Assess the general standard of performance ('state-of-the-art')
- Assess the effects of analytical procedures (method principle, instruments, reagents, calibration)
- Support method development
- Evaluate individual laboratory performance
- Identify problem areas
- Provide continuing education
- Identify needs for training activities

Methods and study design EQA-11

Serotyping:

- Included 12 test strains

Virulence gene detection:

- Included 12 test strains

Molecular typing-based cluster analysis:

- WGS-derived
 - 12 test strain+8 provided FASTQ sequences
 - Detect cluster of closely related strains
 - QC observations and QCstatus decision

				וווכמוו			FEAN CENTRE FOR SP PRINSIPATION		
Method		Serotyping		Virulence profile	Cluster analysis				
No. strains/sequences		12 strains		12 strains	12 strains / 8 sequences				
Strain ID						ST	QC-status	Cluster	
Strain1		O26:H11		stx1a, stx2a, eae		21	-		
Strain2		O187:H28		stx2g, esta		200	-		
Strain3#‡		O157:H-/H7		stx1a, eae		11	-	Yes	
Strain4		O177:H-/H25	<u>je</u>	stx2a, stx2c*		342	-		
Strain5	yping	O91:H14	e prof	stx1a, stx2b		33	-		
Strain6	Strains for Serotyping	O80:H2	Strains for virulence profile	stx2d, eae		301	-		
Strain7#‡	is for	O157:H-/H7	or vir	stx1a, eae	Sis	11	-	Yes	
Strain8	Strain	O157:H-/H7	ains f	stx1a, stx2c, eae	analy	11	-		
Strain9		O128:H-/H2	1 22	stx2f, eae	Strains/sequences for cluster analysis	20	-		
Strain10		O145:H-/H28		stx2a, eae		32	-		
Strain11		O146:H21		stx1c, stx2b		442	-		
Strain12		O104:H4		aggR	edne	678	-		
Strain13^	-	O157:H7		stx1a, eae	ains/	11	С	NA	
Strain14	-	O157:H7		stx1a, stx2c, eae	£S	11	Α		
Strain15‡	-	O157:H7		stx1a, stx2c, eae		11	Α	Yes	
Strain16	-	O157:H7		stx1a, stx2c, eae		11	Α		
Strain17‡	-	O157:H7		stx1a, stx2c, eae		11	Α	Yes	
Strain18	-	O157:H7		stx1a, stx2c, eae		11	Α		
Strain19^	-	-		-		-	B/C	NA	
Strain20#‡	-	O157:H7		stx1a, eae		11	Α	Yes	

Participation

- 27 laboratories signed up
- 26 completed and submitted results
- 20/26 submitted both serotyping, virulence determination and cluster analysis

	Serotyping ¹	Virulence profile determination ²	Cluster analysis³
Number of participants	25	25	20
% of participants	96*	96*	77*

Participation (continue)

Detailed participation information for the parts of serotyping, virulence profile determination and molecular typing-based cluster analysis

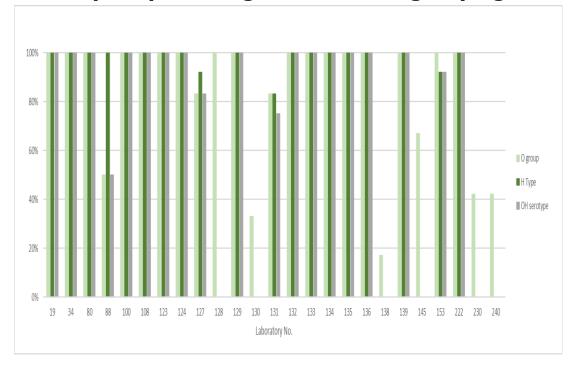
	Serotyping Virulence profile determination							Cluster analysis
	n=			n=20				
	O group	H type	aggR	eae	esta	stx1 and stx2	stx subtyping	WGS
Number of participants	25 #	19∆	22	24 19		25	22	20
Percentage of participants^	100%	76%	88%	96%	76%	100%	88%	100%
Percentage of participants *	96%	73%	85%	92%	73%	96%	85%	77%

^{^:} percentage of participants in respective part of EQA

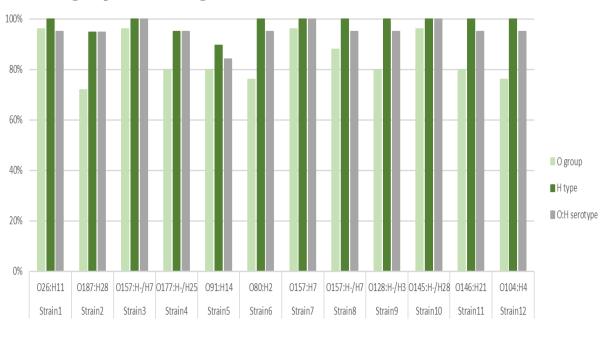
^{*:} percentage of total number of participating laboratories (26)

^{#:} phenotypic (n=9)/PCR-based (n=1)/WGS-based (n=15)

 $[\]Delta$: phenotypic (n=2)/PCR-based (n=1)/WGS-based (n=16)


Results: serotyping

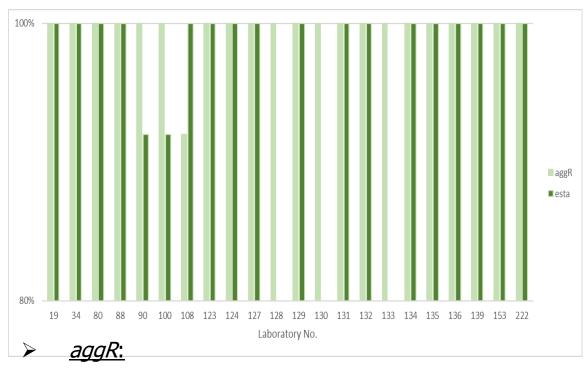
- 25 participants
- 17/25 correctly serotyped all 12 strains
- 85% average performance score


Participant percentage scores for O grouping

H typing:

- 19 participants
- 16/19 correctly serotyped all 12 strains
- 98% average performance score

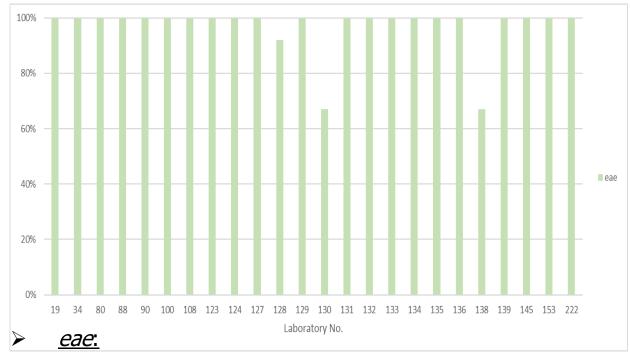
Average percentage test strain score for O and H



O group, H type, strain ID

Results: virulence profile determination

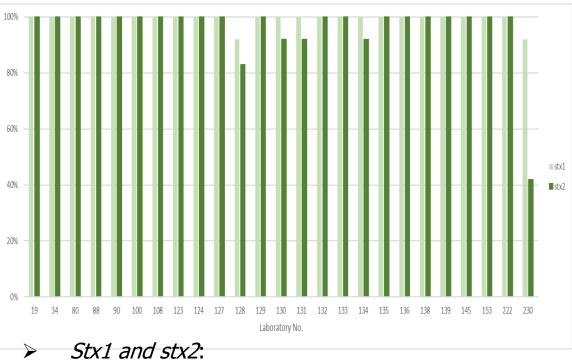
Detection of the EAEC (aggR), ETEC (esta), and eae



- 22 participants
- 21/22 correctly identified all 12 strains
- 100% average performance

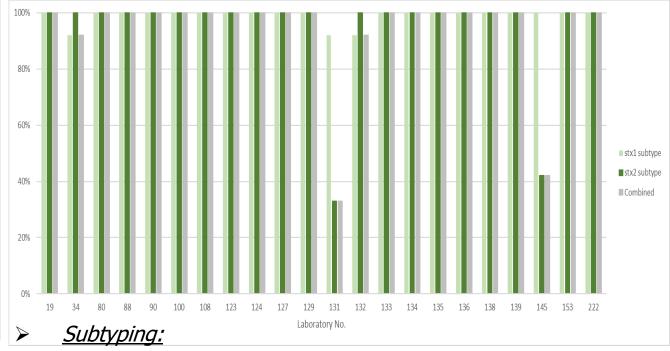
esta:

- 19 participants
- 17/19 correctly identified all 12 strains
- 99% average performance



- 24 participants
- 21/24 correctly identified all 12 strains
- 97% average performance

Results: virulence profile determination


Detection of virulence genes stx1 and stx2 and subtyping

- 25 participants
- *Stx1*: 23/25 correctly identified all 12 strains
- *Stx2*: 20/25 correctly identified all 12 strains
- Average performance

Stx1: 99% Stx2: 96%

- 22 participants
- Stx1 sub: 19/22 correctly identified all 12 strains
- Stx2 sub: 20/22 correctly identified all 12 strains
- Combined: 18/22 correctly identified all 12 strains
- Average performance Stx1: 99%, stx2: 94% combined: 93%

Results: virulence profile determination

> Subtyping of *stx2* (continue)

			Incorrect s	subtype results				
Strain ID	EQA provider	False negative	Incorrect	Total true errors	Errors by reporting ND#			
Strain1	Stx2a		stx2a; stx2c (1)	1				
Strain2	Stx2g		stx2a; stx2b (1)	1	1			
Strain3	-							
Strain4*	Stx2a; Stx2c							
Strain5	Stx2b		stx2a (2)	2				
Strain6	Stx2d		stx2a; stx2c; stx2d (1)	1	1			
Strain7	-							
Strain8	Stx2c		stx2a; stx2c; stx2d (1)	1	1			
Strain9	Stx2f	1		1	1			
Strain10	Stx2a		stx2a; stx2c (1)	1	1			
Strain11	Stx2b		stx2a (1)	1	1			
Strain12	-							
Total				9	6			

^{*} strain4 (*stx2a* and *stx2c*) was disregard, ND#: not done.

Results: cluster analysis

WGS-derived data (no PFGE)

- 20 laboratories
- 12 test strains and 8 additional strains (genomic sequences FASTQ files

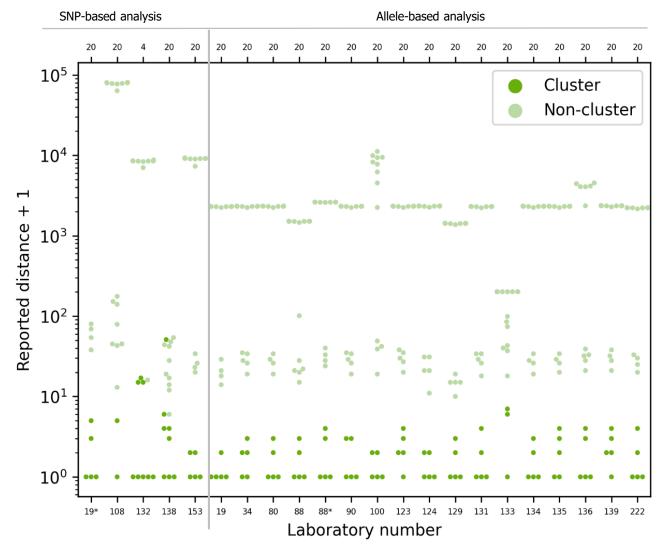
Method	Cluster analysis										
No. strains/sequences		12 strai	ns / 8 sequences								
Strain ID		ST	QC-status	Cluster							
Strain1		21	-								
Strain2		200	-								
Strain3#‡		11	-	Yes							
Strain4		342	-								
Strain5		33	-								
Strain6	/sis	301	-								
Strain7#‡	Strains/sequences for cluster analysis	11	-	Yes							
Strain8	ier a	11	-								
Strain9	clust	20	-								
Strain10	for	32	-								
Strain11	ces	442	-								
Strain12	luen	678	-								
Strain13^	/sed	11	С	NA							
Strain14	ains	11	Α								
Strain15‡	Str	11	Α	Yes							
Strain16		11	Α								
Strain17‡		11	Α	Yes							
Strain18		11	Α								
Strain19^		-	B/C	NA							
Strain20#‡		11	Α	Yes							

- EQA provider: found at most two allele differences or five SNPs between any two strains in the cluster.
- All downloaded sequences should be QC evaluated and included in an analysis with the own produced WGS data
- ##: closely related strains
- #: technical triplicates strains
- ST: sequence type
- ^modified sequences:
 - strain13, a non-cluster sequence with reduced coverage and removal of genes,
 - strain19, a non-cluster sequence contaminated with approx. 14% E. albertii
- NA: Not applicable
- A: Acceptable quality
- B: Quality only acceptable for outbreak situations (less good quality)
- C: Not acceptable quality strain not analysed

Results: cluster analysis

WGS-derived data

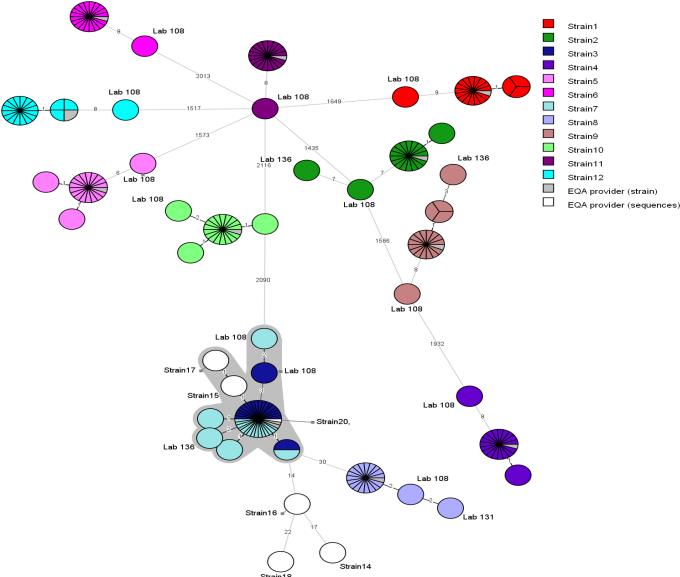
- Sequencing details:
 - 19 labs used their own laboratory, only one used an externally sequcing facility
 - Mix of platforms: 1 MiniSeq, 8 MiSeq, 7 NextSeq, 2 Novaseq, 1 Ion GeneStudio S5 System and 1 Ion Torrent
 - Commercial kits for library preparation
 - 16/20 Illumina's Nextera kit
 - Four participant listed changes volume from the manufactory protocol



											St	rain IC										
Lab No.	1	2	3‡#	4	5	6	7 ^{‡#}	8	9	10	11	12	13	14	15 [‡]	16	17	18	19	20‡#	Main analysis	Cluster identified
19	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based ^a	+
34	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	-	+	Allele based	+
80	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+
88	-	-	+	-	-	-	+	-	-	-	-	-	-	-	+	-	+	-	-	+	Allele based ^c	+
90	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	-	+	Allele based	+
100	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based ^b	+
108	-	-	-	-	-	-	-	-	-	-	-	-	ND	-	+	-	-	-	-	+	SNP based	No
123	-	-	+	-	-	-	+	-	-	-	-	-	-	-	+	-	+	-	ND	+	Allele based	+
124	-	-	+	-	-	-	+	-	-	-	-	-	-	-	+	-	+	-	ND	+	Allele based	+
129	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	-	+	Allele based	+
131	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	-	+	Allele based	+
132	-	-	+	-	-	-	+	+	-	-	-	-	-	+	+	+	+	+	ND	+	SNP based	No
133	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	-	-	-	-	-	+	Allele based	No
134	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+
135	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+
136	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+
138	-	-	+	-	-	-	-	+	-	-	-	-	ND	+	+	+	+	+	ND	+	SNP based	No
139	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+
153	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	SNP based	+
222	-	-	+	-	-	-	+	-	-	-	-	-	ND	-	+	-	+	-	ND	+	Allele based	+

Additional analysis: a = SNP based, b = single-nucleotide variant (SNV based), c = Allele based

Reported SNP distances or allelic differences for each test strain to selected cluster representative strain


- Participants were instructed to select Strain20 as reference (listed as "20" on the top scale).
- Dark green: reported cluster of closely related isolates
- Light green: not reported as part of cluster
- Only one of four laboratories identified the correct cluster when using SNP analyses, reported SNP with a maximum of 0--1 SNP distances

- Each of the strain1–12 test strains have a different colour.
- Grey: REF results from the EQA-provider
- White: provided sequences
- Technical triplicates: Strain3/strain7 and strain/sequence20

FASTQ evalutated by EQA provider QC-pipeline STATENS SERUM

				_						_				DISEASE PREVIOUS AND CONTROL
Ranges*	{Ec}			{5%}	{4.5-5.8}	{<250}	{>0}	{<1000}	{>50}					
Lab No.	Detected species	Species 1 (%)	Species 2 (%)	Unclassified reads (%)	Length at >25 x min. coverage (Mbp))	Length [1-25] x min. coverage (kbp)	Number of contigs at 25 x min. coverage	No. of contigs [1-25] x min. coverage	Average coverage	Number of reads (x1000) 2308.0-3443.0 6500	Average read length	Average insert size	N50 (LL 1)	QC status (Bifrost)
9	Ec	81.1-93.7	0.3-3.1	5.4-14.2	5.0-5.4	26.1-123.1	341.0-709.0	36.0-148.0	58.0-91.0	2308.0-3443.0				
34	Ec, Pt	72.7-88.7	5.0-11.1	5.7-13.9	5.0-5.5	0.0-0.0	173.0-451.0	0.0-0.0	143.0-319.0	6500 0				Warning
30	Ec, Pt	72.5-92.6	1.9-7.7	4.6-17.8	5.1-5.6	0.0-127.1	88.0-304.0	0.0-8.0	67.0-10-				-ci)	Warning
38	Ec	77.8-95.9	0.4-2.4	2.8-17.9	5.0-5.6	0.0-58.3	183.0-396.0	00-				nas to	laasii)	Warning
90	Ec	84.7-95.9	0.1-2.5	2.9-12.0	5.0-5.6	0.6-56.7	24.				ncolida	morias	25.0-62.0	
100	Ec	85.7-98.1	0.0-2.4	1.7-10.9	5.0-5.6	^-				, neri (or pseud	275.0-316.0	89.0-181.0	
L08#	Ec	89.6-97.9	0.4-1.6	1.4-7.1					الأوام	ella flexilici	238.0-305.0	0.0-0.0	2.0-12.0	
23	Ec	62.7-97.2	0.2-2.0						with Ship	1704.0-2455.0	239.0-260.0	275.0-327.0	53.0-140.0	Warning
124	Ec	90.1-98.1		-0		(200/0)	-tm	ination	258.0-288.0	6000.0-6000.0	251.0-251.0	400.0-416.0	91.0-199.0	
.29	Ec	:-05	• -	helow 50	irashold	(20,0)	Conacii	3.0-39.0	74.0-166.0	2690.0-6347.0	144.0-149.0	296.0-387.0	24.0-106.0	
31	Mar	UILIA2.	rage" 15	shove th	nes.	ow as is	89.0-321.0	0.0-0.0	132.0-160.0	4758.0-5982.0	148.0-149.0	263.0-342.0	72.0-168.0	
.32	110.	rage cove	'alu	e abo	ed	0.0-2257.1	89.0-352.0	0.0-66.0	26.0-201.0	927.0-7833.0	138.0-148.0	224.0-492.0	40.0-166.0	Warning
.33	" " Ave	unclassifie	3U _ "%	uncias	5.1-5.6	0.0-0.0	79.0-262.0	0.0-0.0	101.0-187.0	1965.0-3820.0	279.0-289.0	337.0-402.0	86.0-181.0	Warning
134	Ec "0/0	checies !	2.3	1.7-16.4	5.1-5.6	0.0-3.4	93.0-294.0	0.0-3.0	38.0-95.0	1362.0-3459.0	144.0-148.0	294.0-325.0	72.0-180.0	Warning
135	Ec 110/0	Spc3.	0.1-2.1	3.1-25.1	5.1-5.6	0.0-0.0	106.0-331.0	0.0-0.0	130.0-223.0	5092.0-7873.0	149.0-149.0	300.0-319.0	72.0-160.0	Warning
L36	Ec	86.3-97.1	0.2-3.2	2.3-8.7	5.1-5.6	0.0-0.0	74.0-254.0	0.0-0.0	219.0-1421.0	8638.0-51514.0	146.0-149.0	326.0-492.0	90.0-169.0	
L38	Ec	73.0-98.4	0.1-2.3	1.4-23.6	5.1-5.6	0.0-0.0	91.0-344.0	0.0-0.0	540.0-906.0	19386.0-31809.0	148.0-150.0	236.0-347.0	86.0-166.0	Warning
139	Ec	88.0-96.1	0.2-3.2	3.2-6.9	5.0-5.6	0.0-13.9	216.0-480.0	0.0-13.0	132.0-356.0	4853.0-13157.0	143.0-143.0	356.0-429.0	34.0-81.0	Warning
53	Ec	63.6-97.6	0.1-2.2	1.9-33.7	0.3-5.5	0.0-5124.7	99.0-280.0	0.0-229.0	32.0-50.0	1161.0-1742.0	148.0-149.0	310.0-356.0	59.0-157.0	Warning
222	Ec	90.4-97.5	0.2-2.7	2.0-5.8	5.1-5.6	0.0-0.0	81.0-281.0	0.0-0.0	219.0-586.0	7798.0-20849.0	151.0-151.0	337.0-375.0	84.0-166.0	

QC observation and status for strain 13-20 (Genomic sequences):

- A = Acceptable quality
- B = Quality only acceptable for outbreak situations (less good quality)
- C = Not acceptable quality strain not analyzed

Modified strains:

- Strain13
- Strain19

Results of the participants' QC assessment of the EQA modified provided sequences

Genome	Characteristics	EQA Provider	A	В	С
Strain13	A nonCluster sequence with massive reduced coverage and removal of genes	С	0	4	16
Strain19	A nonCluster sequence contaminated with approx. 14% E. albertii	B/C	3	4	13

Summary

STATENS SERUM NSTITUT

Participation:

- 26 Laboratories participated
- 25 (96%) performed serotyping
- 25 (96%) performed virulence gene determination
- 20 (77%) performed cluster analysis

Serotyping

- O group: 85% average performance, H typing: 98% and O:H serotyping:95%
 - O187:H28, O80:H2, and O91:H14 hard to identify phenotypicly

Virulence profile determination

- aggR: 100%, always had a high performance
- esta: 98%, high performance eventhough it is a new gene in the EQA scheme
- eae: 97%, always had a high performance score above 96% since EQA-4
- Stx1: 99%, always had a high performance
- Stx2: 96%, Iways had a high performance
- Stx Subtyping: 99% (stx1), 94%* (stx2) and 93%* combined (disregarding strain4)

Summary (continue)

Cluster analysis

- Only WGS analysis no PFGE
- Some QC warnings of the submitted FASTQ files from the participant, overall acceptable quality

Modified sequences (QC issues):

- All of the 20 laboratories did not in some degree identified the massive reduced coverage
 - 16 Not acceptable quality, 4 acceptable for outbreak situations
- 3/20 did not identified the contamination with approx. 14% *E. albertii*
 - Some laboratories need to include a contamination cheek

Cluster of closely related:

- 16/20 (80%) correctly identified the cluster
 - 3 Laboratories using SNP and 1 using Allele based analysis did not identify the correct cluster (incl. 2 new user of WGS)
- 16/20 (80%) used allele based
- 4/20 (20%) used SNP based

Two main challenges:

- Difficulty in comparing SNP with cgMLST
- Variations between SNP analyses

Evaluation of the EQA scheme

Results of evaluation of the EQA scheme

Questions	Response (Yes)	Comments /actions
1) Used for accreditation/licensing purposes?	13/15 (87%)	One reported applying for accreditation last year.
2) Satisfied with the format/comments?	15/15 (100%)	One reported that the available PCR kit they applied did no obtain the expected results. One reported that for molecular analysis there were some confusements and remained unclear. One reported that it was clear and useful.
3) Differed any of your analytical test results?	7/15 (47%)	One reported that they will apply a new PCR kit for subtyping the VTEC. One reported that they made an error in stx subtyping and use this result to fine tune our pipeline. One reported that one result was a mistake. One reported that they decided to use a new PCR-based test in order to improve the detection of the key virulence gene markers.
4) Usefulness of the manipulated sequences?	12/14 (86%)	One reported that it was useful for them.
5) Usefulness of the QC-status of your submitted sequences?	13/14 (93%)	One reported that it is a useful comparison taking into consideration the lack of standardized QC criteria.
6) Improvements/remarks		Less labour extensive please. It is not the only EQA we have to do. We did like pool-format. The questions were really too many. Too many details on the analysis performed are requested, which would only be justified if an accurate discussion about this part would be made in the final report. The more details we receive in the evaluation report regarding what was expected from us (in fact, technical guidance), the better to figure out what to focus our attention on. Consider to include direct detection from clinical specimens.

Suggestions for improvements

- ECDC's EQAs more evenly distributed around the year
- guideline with standardized QC criteria?
- cut-off' discussion?
- detection from a clinical specimen?
- make the cluster analysis (WGS) a bit more challenging?