

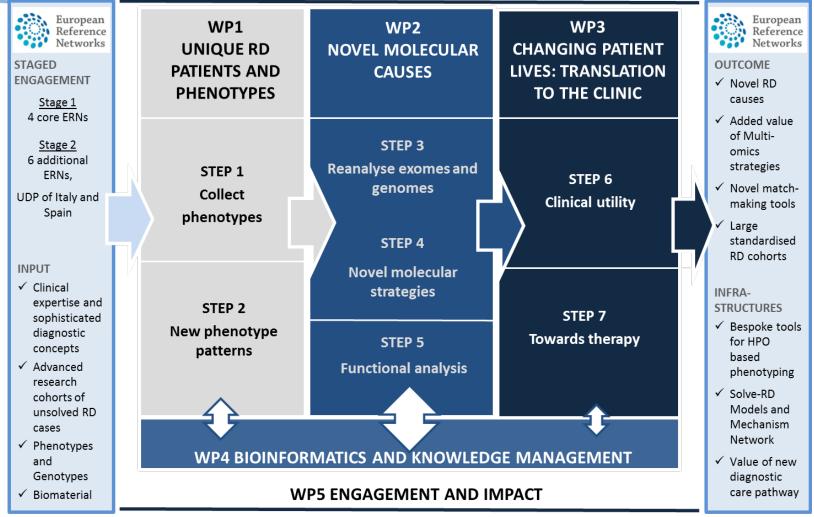
Solving the unsolved Rare Diseases

The Solve-RD project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 779257.

Solve-RD – solving the unsolved rare diseases

- EU funded research project
- 1.1.2018 31.12.2022 (5 year project)
- 22 partners from 10 countries
- Coordinated by Olaf Riess & Holm Graessner (Tübingen)
- Co-coordinated by Han Brunner (Nijmegen) and Anthony Brookes (Leicester)

Project partners


2 Sti 3 Ur 4 Ur	berhard Karls Universitaet Tuebingen tichting Katholieke Universiteit Nijmegen	EKUT RUMC	Germany
3 Ur 4 Ur		RUMC	
4 Ur		Nome	Netherland
	niversity of Leicester	ULEIC	U.K.
	niversity of Newcastle upon Tyne	UNEW	U.K.
5 Ce	entral Manchester University Hospitals NHS Foundation Trust	MUH	U.K.
6 Ce	entre Hospitalier Reg Universitaire Dijon	DIJON	France
7 Fu	undacio Centre de Regulacio Genomica	CRG-CNAG	Spain
8 EU	URORDIS – European Organisation for Rare Diseases Association	EURORDIS	France
9 Ins	stitut National de la Sante et de la Recherche Medicale	INSERM	France
10 Un	niverzita Karlova	CUP	Czech Republic
11 Eu	uropean Molecular Biology Laboratory	EMBL-EBI	U.K.
12 Th	ne Jackson Laboratory Non Profit Corporation	JAX	USA
13 Kir	ing's College London	KCL	U.K.
14 Un	niversity College London	UCL	U.K.
15 Ur	niversiteit Antwerpen	UA	Belgium
16 Un	niversita degli Studi della Campania Luigi Vanvitelli	Uni Naples	Italy
17 Un	niversita degli Studi di Ferrara	UNIFE	Italy
18 Ur	niversitaetsklinikum Bonn	UHB	Germany
	ATIMUP – Instituto de Patologia Eimunologia Molecular da Universidade do orto PCUP	UoP	Portugal
20 Ac	cademisch Ziekenhuis Groningen	UMCG	Netherlands

Resources and infrastructures

- Core group of 4 European Reference Networks: ERN-RND, ERN-EURO-NMD, ERN-ITHACA, ERN-GENTURIS
- Associated networks: 6 additional ERNs and 2 Undiagnosed Patient Programmes (Italy, Spain)
- Existing RD infrastructures: RD-Connect/ELIXIR, Orphanet, HPO, EuroGentest, Canadian Models and Mechanisms Network
- Patient organisations: EURORDIS, Genetic Alliance UK

Solve RD

10/06/2020

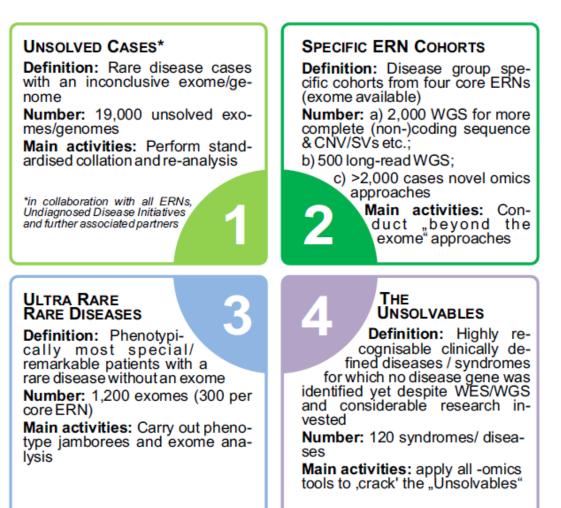
Solve-RD

Main implementation steps (1)

_		
		Accessibility of unsolved RD cohorts with of comprehensive henotypic data
1	Collect Phenotype s	 → Standardized genetic and phenotypic information of more than 19,000 unsolved RD cases from advanced research cohorts of ERNs will be pooled and harmonized → Identify novel ultra-rare RD entities through phenotype-jamborees in ERNs
2	New phenotype patterns	Creation of ontology of unsolved cases allowing for new diagnostic hypotheses.

Main implementation steps (2)

	nallenge 2: Ne Juses	ew and improved approaches for the discovery of novel molecular
3	Reanalyse exomes / genomes	 → Data mining on the variants and regions detected with Solve-RD standard analysis pipelines → Approaches: (i) a data driven approach, (ii) an expert driven approach.
4	Novel molecular strategies	 → Solve unsolved diseases from unique RD cohorts provided by 4 ERNs with unique phenotypes applying novel (multi-) omics tools → Solve ultra-rare diseases presenting with novel phenotypes by holding phenotype-jamborees' → ,Solve the unsolvable syndromes' with joined power of clinical ERN and genomics experts applying all available latest -omics tools



Main implementation steps (3)

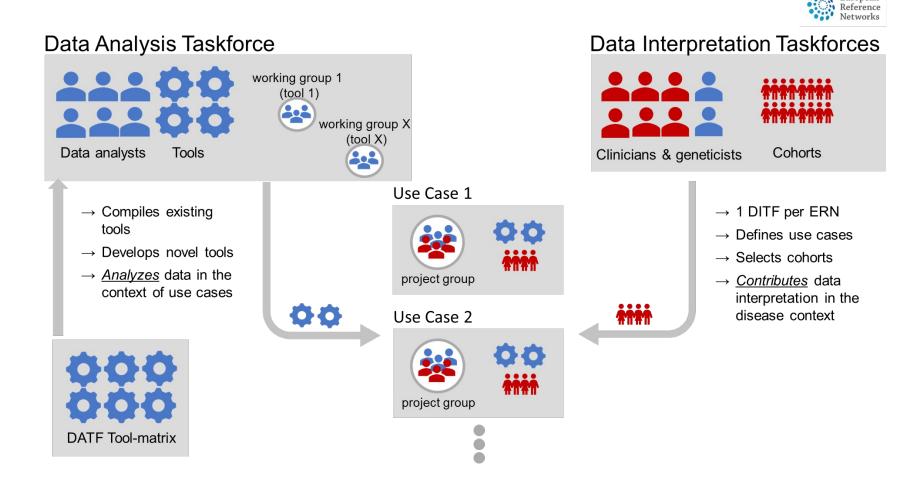
C	hallenge 3: T	ranslate discoveries to impacting clinical practice
6	Clinical utility	 Communication of (gen)omics test results to patients in an evidence-based manner Cost-effectiveness of –omics technologies in a diagnostic setting
7	Towards therapy	 Patient registration in registries and biobanks Treatabolome

Solve-RD cohorts

Unsolved cases – re-analysis

- 1st Data freeze: 30 September 2019
- Embargo: 12 months commencing data release in November 2019

Status upload of unsolved exomes/genomes:


• Status October 2019: 8612 data sets uploaded

ERN	uploaded data sets by October 2019
ITHACA	4165
RND	3011
NMD	1119
Genturis	317
	8612

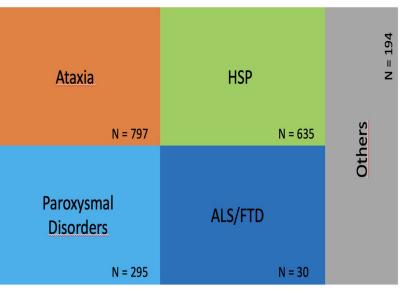
 Deliverable D1.7: Pooling of clinical, phenotypic and experimental data from 19.000 unsolved RD cases

Data Analysis Organisation

European

5 Working Groups

- 1. Relatedness and Runs of Homozigosity (lead: EKUT)
- 2. SNV and InDel standard filtering (lead: CNAG-CRG)
- 3. CNV analysis (lead: CNAG-CRG)
- 4. De novo trio analysis (lead: RUMC)
- 5. Meta-analysis (lead: RUMC)



- 1. Euro-NMD: lead Ana Topf
- ERN-RND: lead Rebecca Schüle-Freyer, Matthis Synofzik
- 3. GENTURIS: lead Richarda de Voer
- 4. ITHACA: lead Lisenka Visser
- 5. EpiCare

DITF: ERN-RND

upload by Sept 30, 2019

A. Reanalysis of exomes (cohort 1)

→ 4 complementary analyses approaches:

- i) family-by-family-based
- ii) gene-based
- iii) cohort-based
- iv) strategy-based

→ all orchestrated via specific **project templates** = basis for collaboration

within DITF, between DITF and DATF, transparency, accountability, harmonization of efforts

Specific ERN Solve-RD - Solving the unsolved Rare Diseases Cohorts

Ava	ilable in S	olve-RD					Novel	experimen	tal data 'b	eyon	d the	e exo	me'				
						V	VGS	RN	Aseq	me	me	ne	ES		ep moleci henotypir		
	WES available	WGS available		Cohort highlights	New WES	Short read	Long read	Short read	Long read	Epigenome	Metabolome	Proteome	Deep-WES	Peptide arrays	Histo- logy	Immune -seq	Description in STEF
Rare neurological disease (ERN-RND)	3,725	235														STEP3	
Hereditary ataxias	835	10	RNA pathology important, brain tissue, fibroblasts, iPSCs, PBMCs		250	100	30B;60F; 30I;60P	30B								STEP4b1; 4b2	
Hereditary spastic paraplegias (HSP)	1,210	75	Fibroblasts, iPSCs, PBMCs		300		60F;30I; 60P									STEP4b1; 4b2	
Paroxysmal movement disorders	165	NA	Fibroblasts, iPSCs		70		25F;25I									STEP4b1; 4b2	
Frontotemporal dementia	1,515	150	Brain tissue, fibroblasts, iPSCs, PBMCs		100		40B;30P	30B								STEP4b1; 4b2	
200 new ultra-rare RD entity cases				300(50trios)												STEP4a	
20 unsolvable syndromes/disorders						60 (20trios)	20		20	20	20	20				STEP4b6	
Neuromuscular disease (ERN-NMD)	3,958	674														STEP3	
Congenital muscular dystrophies & congenital myopathies (CMD/CM)	416	15	Muscle tissue		100		50				30					STEP4b1; 4b2; 4b4	
Limb girdle muscular dystrophies (LGMD) & adult onset myopathies	1,014	73	Muscle tissue		100	50	50	20			30					STEP4b1; 4b2; 4b4	
Congenital myasthenic syndromes (CMS) & muscle channelopathies	488	16	Muscle tissue		100		50				25					STEP4b1; 4b2; 4b4	
Inherited Peripheral Neuropathies	1,377	300	Muscle tissue		100		50				30					STEP4b1; 4b2; 4b4	
Mitochondrial diseases	663	270	Muscle tissue	000/501 :)	100		50				25					STEP4b1; 4b2; 4b4	
200 new ultra-rare RD entity cases				300(50trios)		450 (501)	50		50	50	50	50				STEP4a	
50 unsolvable syndromes/disorders						150 (50trios)	50		50	50	50	50				STEP4b6	
ITHACA	4,750	500														STEP3	
Unexplained ID	4,750	500	Collaboration to access >20,000 cases (DNA from ASID consortium)		640(200 trios,40 recessive)				150 (50 trios)	150						STEP4b1; 4b3; 4b4	
200 new ultra-rare RD entity cases				300(50 trios)	,											STEP4a	
50 unsolvable syndromes/disorders						150 (50trios)	50		50	50	50	50				STEP4b6	
GENTURIS	720	30														STEP3	
Rare hereditary colorectal cancer and polyposis syndromes	500	NA	Fresh colon mucosa (tumor/normal)				100 (50 tumor/ normal)					450	200	250	200	STEP4b1; 4b2; 4b5	
Rare hereditary diffuse gastric cancer	100	30	Fresh tumor material						90 (45 tumor/ normal)			150				STEP4b1; 4b2; 4b5	
Rare pheochromocytomas and paragangliomas	120		Fresh tumor material		80 (40 tumor- normal)				120 (60 tumor/ normal)			150				STEP4b1; 4b2; 4b5	
200 new ultra-rare RD entity cases				300(50trios)												STEP4a	
Other collaborators	3,000	Other ERNs	& undiagnosed disease networks														
TOTAL EXOMES/GENOMES (n)	16,153	2,848	TOTAL NEW OMICS	1,200	1,940	510	920	80	480	270	260	870	200	250	200		
B = brain tissue; F = fibroblast; I = iPSCs							-		-								

RND cohorts

Availat	Novel experimental data 'beyond the exome'												e'			
	WES availa ble	WGS availa ble	Cohort highlights	New WES	W	/GS	RNA	seq	E p i	M e t	P r o	D e e	m	Deep olecula notypi		Descripti on in STEP
					Sh ort re ad	Lon g read	Sh ort re ad	L o n g r e a d	g e n o m e	a b o l o m e	t o m e	p - W E S	P e p ti d e a rr a y s	H i s t o g y	I m m u n e s e q	
Rare neurological disease (ERN-RND)	3,725	235														STEP3
Hereditary ataxias	835	10	RNA pathology important, brain tissue, fibroblasts, iPSCs, PBMCs		250	100	30B 60F 30I 60P	3 0 B								STEP4b 1; 4b2
Hereditary spastic paraplegias (HSP)	1,210	75	Fibroblasts, iPSCs, PBMCs		300		60F 30I 60P									STEP4b 1; 4b2
Paroxysmal movement disorders	165	NA	Fibroblasts, iPSCs		70		25F 25I									STEP4b 1; 4b2
Frontotemporal dementia	1,515	150	Brain tissue, fibroblasts, iPSCs, PBMCs		100		40B 30P	3 0 B								STEP4b 1; 4b2
200 net 10 kR/a/raft2RD entity cases				Scice - R (50trio	D											STEP4a

- de novo trio WGS: candidate families will be submitted until Sept 30, 2019 → expected: 41 ataxia, 49 HSP families
- Structural and non-coding variants by WGS+RNAseq: expected 15 ataxia, 15 HSP families; submission deadline June 1st 2020
 Aut-dom WGS: 33 ataxia families, 50 HSP families; 3 affected family members (no unaffected!); submission deadline January 31st 2020
- 3. Repeat-expansions and retractions by long range WGS: 33 ataxia families, preferentially negative cases from aut-dom WGS project. Need to check SOP (DNA) fragmentation, will determine the timeline
- **4. Somatic brain mutations in FTD brains:** discovery cohort (brain + blood), followed by validation cohort (blood only). Collaborate with outside partners to increase numbers. Target: 33 brain+blood pairs.

Leveraging long-read WGS for unravelling novel ataxia genes

Ataxias: a unique target cohort for long-range WGS

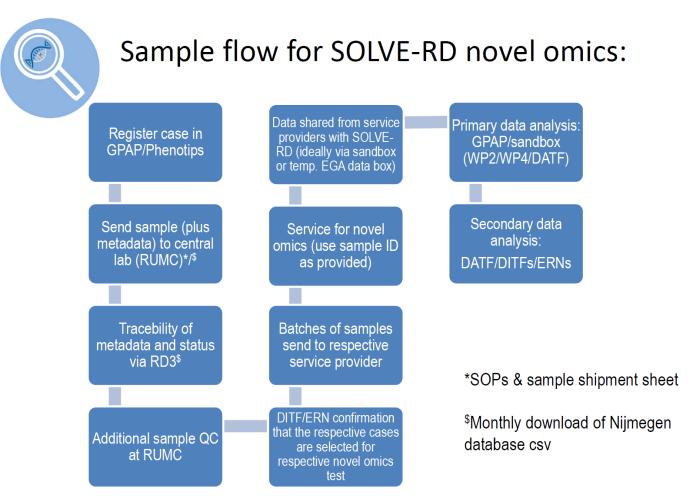
Background

- >25% of all autosomal-dominant and >50% of all autosomal-recessive ataxia patients remain unsolved *despite advanced WES analysis!*
- ataxias are unique: repeat-expansions represent the most frequent disease cause
- 1. 75% of all known *autosomal-dominant* ataxia cases are caused by repeat-expansions (exonic/coding: SCA1,2,3,7 and 17; non-coding: SCA8,12, 14)

2. 50% of all known *autosomal-recessive* ataxia cases are caused by repeat-expansions

distinguishes ataxias from almost all other neurological diseases (e.g. AD, PD, dystonias, HSP,....)

There is thus strong promise that a substantial share of repeatexpansion disorders are still to be found in the large share of still unsolved WES-negative ataxia cases


Ataxias: a unique target cohort for long-range WGS

SOLVE-RD project

- goal: demonstrate the power of long-range WGS to unravel novel repeat-expansion diseases
- method: long-range WGS from 33 family "triplets" from autosomaldominant ataxia families
- stringently enriched for novel repeat-expansion disorders:
 - only families where DNA from >2 affected + >2 non-affected family members are available
 - families must be negative not only on WES, but also on shortread WGS

Sample flow

Phenotypically most special/remarkable patients with a rare disease without an exome

Initial ideas:

- Ultra-rare patients seen by the entire ERN (some >100,000 cases)
- Selection by phenotype jamborees virtual/in person
- Usually no previous WES done yet (for majority)
- Last SC: WGS instead of WES
- Solving rare disease, not 'unsolved cases with known disease (e.g. last 20% Kabuki or similar)'

- ERN-RND call for ultra-rare cohorts/families
- Definition of what "ultra-rare" means for ERN-RND
- Submitting centres
 - University Medical Center Groningen
 - University Hospital Tuebingen,
 - University of Antwerp
 - UC London
 - Semmelweis University Budapest
 - ICM (Institut du Cerveau et de la Moelle épinière) Paris
 - University Hospital in Krakow
 - Hospital Sant Joan de Déu, Barcelona
 - Institute of Neurogenetics, Lübeck
 - Radboud university medical center, Nijmegen
 - Vall d'Hebron University Hospital, Barcelona
- 12 Cohorts, 51 families
- Status: peer review has been finalised
- Sample shipment will be initiated soon

RDMM-Europe

- 50 catalyst grants à 20.000 EUR open to ERNs and associated partners
- Database implemented same software as Canadian RDMM
- Activities:
 - Invitation to European researchers (via ERNs and beyond) to register at European RDMM database from September 2018 on
 - Pilot matchmaking in December 2018
 - Full operation from January 2020 on
- Collaboration with the Canadian RDMM Network

WP3 - Treatabolome

Congenital myasthenic syndromes

<u>Thompson R¹</u>, <u>Bonne G²</u>, <u>Missier P³</u>, <u>Lochmüller H^{4,5,6,7}</u>.

Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome._

Emerg Top Life Sci. 2019 Mar;3(1):19-37. doi: 10.1042/ETLS20180100. Epub 2019 Jan 28.

- Charcot-Marie-Tooth (Matt Jennings, Angela Lochmuller, Rita Horvath Cambridge)
- Genetic forms of Parkinson (Katja Lohman Lubeck)
- Early Onset Ataxias (David Gómez Andrés Barcelona , Matthis Synofizik -Tübingen)
- Channelopathies (Jean-François Desaphy and Bertrand Fontaine Bari, Paris)
- Laminopathies (Gisèle Bonne, Rabah Ben Yaou, Antonio Atalaia Paris)

Planned numbers

- Re-analysis of 19.000 exomes of unsolved cases
- 800 ultra-rare RD patients presenting new phenotypes that will undergo WES/WGS
- WGS for 2.000 cases to achieve a more complete coding sequence
- Long-read genomes for 500 cases with smartly chosen phenotypes such as anticipated repeat expansion disorders (SBMA; DM1 and DM2)
- Novel omics approaches (transcriptome, epigenome, proteome, metabolome, deep WES, deep molecular phenotyping) for more than 2.000 cases
- Multiomics approaches for 120 "unsolvable syndromes"

For more information visit <u>www.solve-rd.eu</u>

Follow us on Twitter!

