

Department of Veterinary Public Health and Food Safety Unit of Foodborne Zoonoses

Istituto Superiore di Sanità

Report of the 13th inter-laboratory study (PT13) on the identification and typing of Verocytotoxin-producing *E. coli* (VTEC) and other pathogenic *E. coli* strains - 2014

Edited by:

Susan Babsa, Alfredo Caprioli, Clarissa Ferreri, Fabio Galati, Laura Grande, Maria Luisa Marziano, Antonella Maugliani, Valeria Michelacci, Fabio Minelli, Stefano Morabito, Gaia Scavia, Rosangela Tozzoli

1. INTRODUCTION AND OBJECTIVES

The duties of the EU Reference Laboratory for *Escherichia coli* (EU-RL VTEC) include the organization of proficiency tests (PT) on the detection and typing of pathogenic *E. coli* for the designated National Reference Laboratories (NRLs) for *E. coli* in the EU Member States. The NRLs of the European Economic Area (EEA) countries, EU candidate countries, and third countries can participate in these tests on a voluntary basis.

In the past years, the EU-RL VTEC organized six PT rounds (PT1, PT2, PT5, PT6, PT10, and PT11) on the identification and typing of VTEC, as well as of strains belonging to other pathogenic groups of *E. coli*. These PTs aimed at evaluating and improving the capability of the NRLs to identify and characterize VTEC and other pathogenic *E. coli*. The reports of these PTs are available at the EU-RL VTEC www.iss.it/vtec, in the Proficiency Tests section.

The present study (PT13) was dedicated to the identification and typing of VTEC strains, as well as to the identification of *E. coli* strains belonging to the Enteropathogenic *E. coli* (EPEC) and Enteroaggregative *E. coli* (EAggEC) pathogenic groups.

Therefore, the objectives of the study were:

- 1. The detection of the main VTEC/EPEC virulence genes.
- 2. The detection of the EAggEC marker genes.
- 3. The identification of a range of relevant VTEC/EPEC serogroups.
- 4. The sub-typing of VT-coding genes.
- 5. The 3rd round of external quality assessment (EQA) for PFGE, in view of the start of the program for the collection of molecular typing data on VTEC strains of food and animal origin by the European Food Safety Authority (EFSA), to improve the EU preparedness to face foodborne outbreaks.

This document represents the evaluation report of the study, as far as the results on the identification of the *E. coli* pathogroups and the typing of VTEC virulence genes and O antigens are concerned. The PFGE results will be presented in a separate report.

2. DESIGN OF THE STUDY

The study was conducted according to the International Standard ISO/IEC 17043:2010 "Conformity assessment – General requirements for proficiency testing", and consisted of three parts:

- 1. The identification of the *E. coli* pathogroups by PCR amplification of the following target virulence genes:
- vtx1 group, vtx2 group, and the intimin-coding eae gene for VTEC
- the eae gene for EPEC
- the aaiC and aggR genes for EAggEC
- 2. Determination of the serogroups of the strains. Participants were requested to identify the strains belonging to any of the following 13 serogroups, selected on the basis of their epidemiologic or regulatory importance:
- O26, O103, O111, O145 and O157: the so called "top 5", most involved in severe human infections worldwide.
- O45 and O121: epidemiologically relevant and considered as adulterants in beef in the USA.
- O104: relevant after the 2011 German outbreak.
- O55, O91, O113, O128, O146: selected on the basis of their prevalence in human infections in Europe in the last years, according to the data provided by the European Centre for Disease Prevention and Control (ECDC).
- 3. Subtyping of the *vtx* genes harbored by the VTEC strains identified. Participants were requested to identify the subtypes of the *vtx1* group (*vtx1a*, *vtx1c* and *vtx1d*) and *vtx2* group (from *vtx2a* to *vtx2g*) genes detected.

3. PARTICIPANTS

Forty-one NRLs, representing all the 28 EU Member States, as well as Argentina, Egypt, Russia, Norway, Switzerland and Turkey participated in the study. Each NRL received its own individual laboratory numerical code, which was reported in the result tables.

The NRLs participating in the study were:

- Argentina, Consortium between Instituto Nacional de Enfermedades Infecciosas (INEI),
 ANLIS "Dr. Carlos G. Malbran" and Servicio Nacional de Sanidad y Calidad Alimentaria (SENASA)
- Argentina, Universidad Nacional de La Plata
- Austria, Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH
- Belgium, Scientific Institute of Public Health (also representing Luxembourg)
- Belgium, Veterinary & Agrochemical Research Centre (VAR CODA CERVA)
- Bulgaria, National Diagnostic and Research Veterinary Institute
- Croatia, Croatian Veterinary Institute

- Cyprus, Laboratory for the Control of Food of Animal Origin (LCFAO)
- Czech Republic, Veterinary Research Institute
- Denmark, National Food Institute, Technical University of Denmark
- Egypt, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Foods
- Estonia, Veterinary and Food Laboratory
- Finland, Finnish Food Safety Authority Evira, Helsinki
- Finland, Finnish Food Safety Authority Evira, Kuopio
- France, VetAgro Sup Campus Vétérinaire de Lyon
- Germany, Federal Institute for Risk Assessment (BfR)
- Greece, National School of Public Health & Central Laboratory of Public Health
- Hungary, Food and Feed Safety Directorate, National Food Microbiological Reference
 Laboratory
- Hungary, Food and Feed Safety Directorate, Feed Investigation National Reference
 Laboratory
- Ireland, Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine
- Italy, Istituto Superiore di Sanità
- Latvia, Institute of Food Safety, Animal Health and Environment BIOR
- Lithuania, National Food and Veterinary Risk Assessment Institute
- Netherlands, RIVM, Centre for Zoonoses and Environmental Microbiology
- Netherlands, Food and Consumer Product Safety Authority (NVWA)
- Norway, Norwegian Veterinary Institute
- Poland, National Institute of Public Health-National Institute of Hygiene
- Poland, Poland National Veterinary Research Institute
- Portugal, Instituto Nacional de Investigação Agrária e Veterinária (INIAV)
- Romania, Institutul de Igiena si Sanatate Publica Veterinara
- Russia, International Department State Research Center for Microbiology and Biotechnology, Obolensk
- Slovakia, Department of Food Hygiene, State Veterinary and Food Institute
- Slovakia, NRC of Environmental Microbiology, Public Health Authority of SR
- Slovenia, Veterinary Faculty/ National Veterinary Institute
- Spain, Laboratorio Central de Veterinaria de Algete (MAGRAMA)

- Spain, Centro Nacional de Alimentación, Servicio de Microbiología Alimentaria
 (AESAN)
- Sweden, National Food Agency (SLV)
- Sweden, National Veterinary Institute (SVA)
- Switzerland, Institute for Food Safety and Hygiene, University of Zurich
- Turkey, Ulusal Gida Referans Laboratuvar Müdürlügü, National Food Reference
 Laboratory
- United Kingdom (UK), Public Health England (also representing Malta)

4. MATERIALS AND METHODS

4.1. Sample preparation

The test materials sent to the NRLs were constituted by 7 *E. coli* strains (samples 1 to 7), selected among those present in the EU-RL VTEC reference collection and checked for the presence of all the required genetic and phenotypic features. The characteristics of the strains are reported in Table 1 and were considered as the gold standard.

Table 1: Characteristics of the *E. coli* strains included in the study

			Target virulence genes (vtx subtypes)							
Sample/Strain	Pathogroup	Serogroup	vtx1	vtx2	eae	aggR	aaiC			
1	VTEC	O145	vtx1a	-	+	-	-			
2	VTEC	O91	-	vtx2d	-	-	-			
3	EAggEC	O104	-	-	-	+	+			
4	VTEC	O146	vtx1c	vtx2a, vtx2b	-	-	-			
5	VTEC	O128	-	vtx2b	-	-	-			
6	VTEC	O157 (sorbitol fermenting)	-	vtx2a	+	-	-			
7	EPEC	O45	-	-	+	-	-			

As for the stability of the samples, previous experiences supported the assumption that the time range between the preparation of the specimens and the deadline for submission of results was short enough to assure the detection of all the strain characteristics.

The test samples were prepared on 2 and 3 April. They consisted of freshly prepared bacterial cultures seeded into soft (0.3 %) nutrient agar in plastic vials. The cultures were incubated 18 hours at 37 °C \pm 1 °C and labeled with randomly generated numerical codes (3 or 4 digits), different for each NRL. The test samples were stored at room temperature until 7 April, when the samples were sent to the participating laboratories by courier.

4.2. Laboratory methods

The identification of the *E. coli* patho-groups was carried out by PCR (end point or real time) amplification of their specific target virulence genes using the methods available in the EU-RL VTEC web site (http://www.iss.it/vtec), Laboratory Methods section.

For the determination of the serogroup, participants were allowed to use any serological or molecular method currently in use in their laboratories. However, a PCR (end point) procedure for detecting the genes associated with the serogroups that were in the scope of the PT was available in the EU-RL web site, Laboratory Methods section.

The subtypes of the *vtx* genes of the VTEC strains identified were determined by an end point PCR method based on the paper of Scheutz et al. (*J. Clin. Microbiol. 2012; 50: 2951-63*). The procedure was available in the EU-RL web site, Laboratory Methods section.

4.3. Collection and elaboration of the NRL results

The results were submitted directly through an on-line system, using a dedicated page in the "Restricted Area" of the EU-RL VTEC web site. The NRLs received their own user ID and password for the log-in procedure and a step-by-step procedure for the submission of the results. After the log-in, they had access to a dedicated section for submitting the test results. This section also contained a *Shipment form* with the list of the samples to be analyzed and the fields to collect the information on arrival date, temperature and quality of the sample, and with the possibility to write notes and to specify any problem with the sample delivery/packaging. At the end of the study, the participants could print their own instant-generated individual report, containing the submitted and the expected results, directly from the secure page of the EU-RL web site.

4.4. Analysis of the NRL results

4.4.1. Evaluation of the NRL performance in the identification of the virulence genes of pathogenic E. coli

The performance of each NRL in identifying the virulence genes of pathogenic *E. coli* was evaluated by assigning penalty points for the virulence genes that were identified incorrectly. The penalty points were assigned as follows, according to the public health relevance of the different genes:

- 4 penalty points were assigned to each incorrect result concerning the identification of the vtx genes, that represent the main virulence determinants of VTEC and the main target of the ISO/TS 13136:2012, the international standard aiming at the detection of these pathogenic E. coli in food. The detection of these genes was the object of several previous PTs. Moreover, an EU regulation (Reg. EU 209/2013) define a microbiological criterion for the presence of VTEC in a food commodity, namely sprouts.
- 2 penalty points were assigned to each incorrect result concerning the identification of the other virulence genes considered in the PT: eae, AggR, aaiC.
- 1 penalty point was assigned to each result reported as "Not Done".

The sum of the penalty points obtained originated a total score used to evaluate the performance of the NRLs. In particular, a threshold of 4 penalty points was set in order to identify the laboratories not performing adequately for this part of the PT. The NRLs that summed up a score of 4 without making errors in the identification of *vtx* genes represented an exception and their performance was still considered as satisfactory.

4.4.2. Evaluation of the NRL performance in the identification of the O serogroups

The performance of each NRL in identifying the serogroup of the test strains was evaluated by assigning penalty points for strains that were typed incorrectly. The following distinction was made, according to the public health importance of the serogroups, based on the data on human STEC infections published yearly by the ECD-FWD surveillance program in the EU Summary Report on Trends and Sources of Zoonoses.

- 4 penalty points: assigned to each incorrect result concerning the typing of the strains belonging to the 5 serogroups most frequently isolated from cases of hemolytic uremic syndrome in Europe: O26, O103, O111, O145, O157 (the so called "top 5").
- 2 penalty points: assigned to each incorrect result concerning the typing of the strains belonging to the other 8 serogroups that were in the scope of this study.

The sum of the penalty points originated a score used to evaluate the performance of the NRLs. In particular, a threshold of 4 penalty points was set in order to identify the laboratories not performing adequately. The NRLs that summed up a score of 4 without making errors in the typing of the strains belonging to the "top 5" serogroups represented an exception and their performance was still considered as satisfactory.

4.4.3. Evaluation of the NRL performance in the identification of the vtx gene subtypes

The performance of each NRL in identifying the subtypes of the *vtx* genes in the five VTEC strains included in the test materials was evaluated by assigning one penalty point for *vtx* genes that were typed incorrectly or for results reported as "Not Done". Results that were not uploaded ("null" field) were also considered as "Not Done". A threshold of 4 penalty points was set in order to identify the laboratories not performing adequately.

5. RESULTS

Results were submitted by 40 of the 41 NRLs that received the samples.

5.1. Identification of the *E. coli* virulence genes and evaluation of the NRL performance for these tests

The results of the PCR tests performed for the detection of virulence genes in each *E. coli* strain are reported in Table 2 (1-3), while Table 3 summarizes the results of the tests performed for all the 7 test strains, by virulence gene.

All the NRLs carried out the tests for the detection of *vtx* and *eae* genes, while the detection of the EAggEC target virulence genes was not performed by 5 NRLs for all of part of the test strains.

Twenty-seven NRLs (67 %) identified correctly the presence/absence of all the target genes in all the test strains, while 9 NRLs provided a total of 20 incorrect results.

As for the detection of *vtx* genes, 35 NRLs (87 %) identified correctly their presence/absence in all the test strains, while the other five NRLs provided a total of 12 incorrect results: 8 for *vtx1* (6 false positive and 2 false negative) and 5 for *vtx2* (4 false positive and 1 false negative).

As for the other virulence genes, 35 NRLs (87 %) identified correctly the presence/absence of the *eae* gene. The other 5 NRLs provided a total of 7 incorrect results: (5 false positive and 2 false negative).

The EAggEC target genes were identified correctly by 34 (97 %) of the 35 NRLs that carried out all the tests. The remaining NRL provided a false positive result for the *aggR* gene.

As a whole, 16 (80 %) of the 20 incorrect results on virulence gens were false positive results.

Table 2 (1). Identification of the *E. coli* virulence genes (strains 1, 2 and 3). The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. ND indicates that the test was not done (ND).

	Detection of virulence genes in:														
NRL		S	ample	e 1				ample				S	ample	e 3	
	vtx1	vtx2	eae	aggR	aaiC	vtx1	vtx2	eae	aggR	aaiC	vtx1	vtx2	eae	aggR	aaiC
True value	+	-	+	-	-	-	+	-	-	-	-	-	-	+	+
L106				ND	ND				ND	ND				ND	ND
L118															
L157															
L206															
L240															
L258			•												
L273															
L285		+		ND	ND	+		+	ND	ND	+	+	+	ND	ND
L313				ND	ND				ND	ND				ND	ND
L354															
L367															
L402															
L433															
L463															
L519															
L534								+							
L544															
L551															
L553															
L566															
L605															
L608															
L633															
L674															
L679															
L687															
L691															
L692															
L699															
L712															
L715															
L737															
L768															
L775															
L776				ND	ND				ND	ND					
L905															
L947					ND					ND					ND
L949															
L986															
L987															

Table 2 (2). Identification of the *E. coli* **virulence genes (strains 4 and 5).** The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. ND indicates that the test was not done (ND).

		Detection of virulence genes in:											
NRL			Sample			<u> </u>		Sample	5				
	vtx1	vtx2	eae	aggR	aaiC	vtx1	vtx2	eae	aggR	aaiC			
True value	+	+	-	-	-	-	+	-	-	-			
L106				ND	ND				ND	ND			
L118													
L157													
L206													
L240													
L258													
L273	-												
L285			+	ND	ND	+		+	ND	ND			
L313				ND	ND				ND	ND			
L354													
L367													
L402													
L433													
L463									+				
L519													
L534													
L544													
L551													
L553													
L566	-												
L605													
L608													
L633													
L674													
L679													
L687													
L691													
L692													
L699													
L712													
L715													
L737													
L768													
L775													
L776				ND	ND				ND	ND			
L905													
L947					ND					ND			
L949													
L986													
L987													

Table 2 (3). Identification of the *E. coli* **virulence genes (strains 6 and 7).** The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. ND indicates that the test was not done (ND).

		Detection of virulence genes in:											
NRL			Sample					Sample	7				
	vtx1	vtx2	eae	aggR	aaiC	vtx1	vtx2	eae	aggR	aaiC			
True													
value	-	+	+	-	-	-	-	+	-	-			
L106				ND	ND				ND	ND			
L118													
L157		-					+						
L206													
L240													
L258													
L273													
L285	+			ND	ND	+			ND	ND			
L313				ND	ND				ND	ND			
L354													
L367													
L402													
L433													
L463													
L519													
L534				ND	ND								
L544													
L551													
L553													
L566													
L605						+	+						
L608													
L633								ND					
L674													
L679													
L687													
L691													
L692													
L699								-					
L712													
L715													
L737													
L768													
L775													
L776				ND	ND				ND	ND			
L905													
L947					ND					ND			
L949													
L986													
L987													

Table 3. Summary of the results on the identification of *E. coli* **virulence genes.** The green boxes indicate that the genes were identified correctly in all the 7 test strains. The red and white boxes indicate that incorrect results and tests not done were reported for the given gene, respectively. The numbers in the boxes indicate the number of incorrect or "not done" results.

NRL	Detection of virulence genes in the 7 test strains: vtx1 vtx2 eae aggR aaiC											
	vtx1	vtx2	eae	aggR	aaiC							
L106				7	7							
L118												
L157		2										
L206												
L240												
L258			1									
L273	1											
L285	5	2	4	7	7							
L313				7	7							
L354												
L367												
L402												
L433												
L463				1								
L519												
L534			1	1	1							
L544												
L551												
L553												
L566	1											
L605	1	1										
L608												
L633			1									
L674			-									
L679												
L687												
L691												
L692												
L699			1									
L712			,									
L715												
L737												
L768												
L775												
L776				6	6							
L905				U	· ·							
L905					7							
L947 L949					<u>'</u>							
L986 L987												

For each NRL, the number of penalty points was determined using the criteria described in section 4.4.1. Figure 1 shows the score obtained by each NRL, and Figure 2 the number of NRLs grouped according to their score. Five NRLs obtained a score higher than 4 due to incorrect results, and other 4 NRLs because they did not perform the detection of all or part of the EAggEC virulence genes. The performance of these 9 NRLs was not considered as satisfactory.

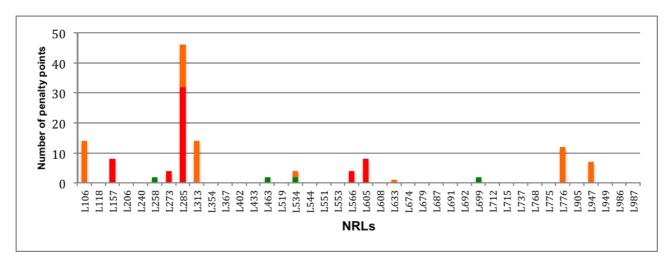


Figure 1. Evaluation of the PCR results for the detection of virulence genes, by NRL.

The score was calculated according to the criteria described in section 4.4.1. The red bars indicate the penalty points assigned for incorrect results in the 5 NRLs whose performance was not considered as satisfactory. The yellow bars indicate the penalty points assigned for tests not done.

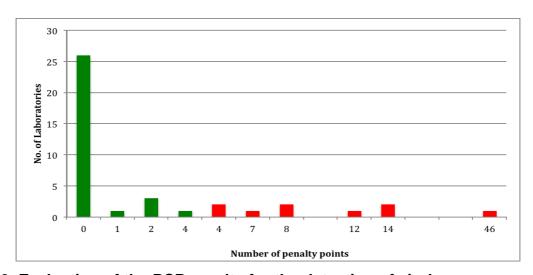


Figure 2. Evaluation of the PCR results for the detection of virulence genes: number of NRLs within each penalty score. The red bars indicate the NRLs whose performance was not considered as satisfactory.

5.2. Identification of the serogroups and evaluation of the NRL performance for this test

The identification of the O serogroups of the strains included in the PT was carried out by all the 40 NRLs, 36 of which used the PCR procedure for detecting serogroup-associated genes made available by the EU-RL.

The serotyping results are shown in Table 4.

Twenty-eight NRLs (70 %) identified correctly the serogroup of all the 7 test strains. The other 12 NRLs provided a total of 25 incorrect results. In particular, 9 NRLs (22 %) did not identify the O45 strain, which was included for the first time in the panel of O antigen to be detected, and 5 NRLs (12 %) the O146 strain. Two NRLs, L157 and L285, failed to identify the O157 and O145 strains.

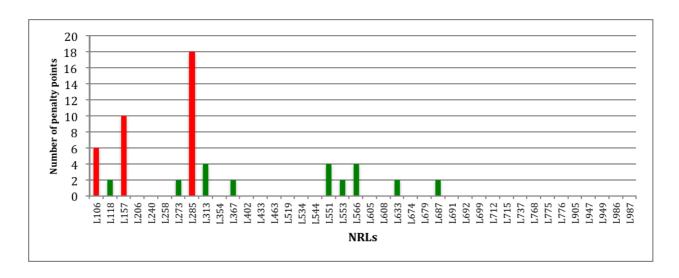

The number of penalty points assigned to each NRL according to the criteria described in section 4.4.2, is shown in Figure 3.

Figure 4 shows the number of NRLs grouped according to their score.

Three NRLs obtained a score higher than 4 and their performance was not considered as satisfactory.

Table 4. Identification of the serogroups of the test strains. The green boxes indicate the correct results. The red boxes indicate the incorrect results, and display the results provided by the NRL.

NDI		Serogroup identification in sample:											
NRL	1	2	3	4	5	6	7						
True value	O145	O91	O104	O146	O128	O157	O45						
L106		NT		NT			NT						
L118				NT									
L157	0111					NT	O157						
L206													
L240													
L258													
L273							NT						
L285	O157	O104	O26	O157	O104	NT	NT						
L313			O125				O86						
L354													
L367							NT						
L402													
L433													
L463													
L519													
L534													
L544													
L551				NT	NT								
L553							NT						
L566		O146		O91									
L605													
L608													
L633							O103						
L674													
L679													
L687							NT						
L691													
L692													
L699													
L712													
L715													
L737													
L768													
L775													
L776													
L905													
L947													
L949													
L986													
L987													

Figure 3. Evaluation of the results on serogroup identification, by NRL. The score was calculated according to the criteria described in section 4.4.2. The red bars indicate the NRLs whose performance was not considered as satisfactory.

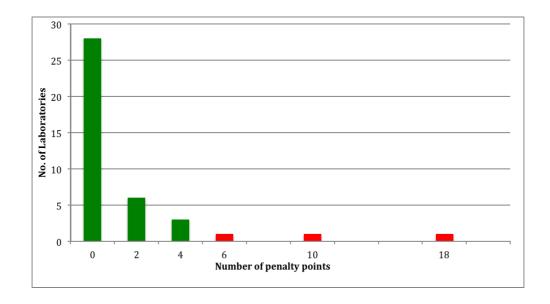


Figure 4. Evaluation of the results on serogroup identification: number of NRLs within each penalty score. The red bars indicate the NRLs whose performance was not considered as satisfactory.

5.3. Identification of the vtx gene subtypes by PCR

The identification of the *vtx* gene subtypes harbored by the 5 VTEC test strains was performed by 38 of the 40 NRLs that participated in the study (95 %). One NRL (L947) carried out only the subtyping of *vtx2* genes.

The results of *vtx1* subtyping are reported in Table 5.

The presence/absence of the *vtx1* gene subtypes in the two *vtx1*-positive strains was identified correctly by 24 (83 %) of the 29 NRLs that carried out the subtyping for all the gene variants. Five NRLs reported a total of 9 incorrect results: 5 false positive results (3 for *vtx1c*, 1 for *vtx1a* and 1 for *vtx1d*) and 4 false negative results (2 for *vtx1a* and 2 for *vtx1c*). Nine NRLs did not perform all the tests required.

The results of vtx2 subtyping in each E. coli strain are reported in Table 6 (1-2).

Twenty-four NRLs carried out the subtyping for all the gene variants in all the strains, while the other 14 NRLs did not perform all the tests required. Eight NRLs (21 %) identified correctly the presence/absence of all the gene subtypes. The other 30 NRLs reported a total of 70 incorrect results: 59 false positive results, most of which concerning the *vtx2c* variant (41 for *vtx2c*, 9 for *vtx2d*, 7 for *vtx2a*, 1 for *vtx2b*, and 1 for *vtx2e*), and 11 false negative results (5 for *vtx2d*, 3 for *vtx2a* an, 3 for *vtx2b*). For 13 NRLs, the incorrect results were limited to the *vtx2c* variant only: 9 of them reported the false positive result for the *vtx2d*-positive strain 2 only, 2 NRLs for strains 2 and 4, and 2 NRLs for strains 2, 4 and 6.

Table 7 summarizes the results of all the *vtx* subtyping tests. Only 8 NRLs (21 %) identified correctly all the *vtx* gene subtypes in the 5 VTEC strains. Another NRL (L519) did not report incorrect results but did not perform all the tests required.

For each NRL, the number of penalty points was determined using the criteria described in section 4.4.3. Figure 5 shows the score achieved by each NRL, and Figure 6 the number of NRLs grouped according to their score.

Twelve NRLs obtained a score higher than 4 due to both incorrect results and test not done, and their performance was not considered as satisfactory.

Table 5. Subtyping of the *vtx1* **genes by PCR in samples 1 and 4**. The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. The white boxes indicate that the test was not done (ND).

	Detection of vtx1 gene subtypes in:										
NRL		Strain 1			Strain 4						
	vtx1a	vtx1c	vtx1d	vtx1a	vtx1c	vtx1d					
True value	+	-	-	-	+	-					
L106											
L118											
L157		+									
L206					-	+					
L240											
L258				ND		ND					
L273				ND	ND	ND					
L313		ND	ND	ND		ND					
L354											
L367	-										
L402											
L433											
L463											
L519											
L534											
L544		ND	ND	ND		ND					
L553			ND	ND	ND	ND					
L566				ND	ND	ND					
L605											
L608											
L633	-	+		+	-						
L674											
L679											
L687			ND			ND					
L691											
L692											
L699											
L712											
L715											
L737		+									
L768											
L775											
L776		ND	ND								
L905											
L947	ND	ND	ND	ND	ND	ND					
L949											
L986											
L987											

Table 6 (1). Subtyping of the *vtx2* genes by PCR in samples 2 and 4. The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. The white boxes indicate that the test was not done (ND).

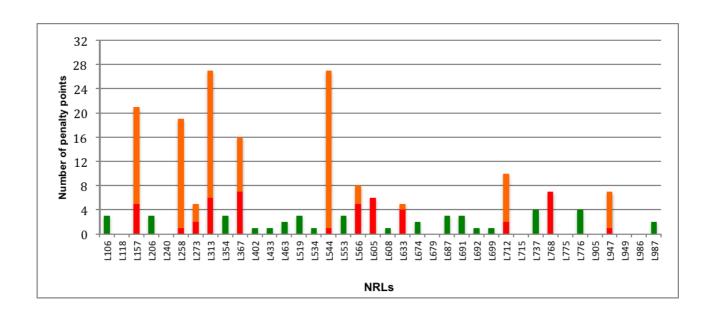

NRI	Detection of vtx2 gene subtypes in:													
NRL			9	Strain 2	2					S	Strain 4	1		
	vtx2a	vtx2b	vtx2c	vtx2d	vtx2e	vtx2f	vtx2g	vtx2a	vtx2b	vtx2c	vtx2d	vtx2e	vtx2f	vtx2g
True value	-	•	-	+	ı	ı	•	+	+	ı	•	•	ı	-
L106			+							+				
L118														
L157		ND	+		ND	ND	ND		ND		+	ND	ND	ND
L206			+											
L240														
L258	ND	ND	+		ND	ND	ND			ND	ND	ND	ND	ND
L273			+						-					
L313	+	ND	+		ND	ND	ND			+	+	ND	ND	ND
L354			+											
L367		ND	+						ND	+	+			
L402			+											
L433			+											
L463			+							+				
L519					ND	ND	ND							
L534			+											
L544	+	ND	ND		ND	ND	ND			ND	ND	ND	ND	ND
L553				-										
L566	+		+	-						+				
L605	+		+	-						+				
L608			+											
L633														ND
L674			+											
L679														
L687				_										
L691			+	-						+				
L692			+											
L699			+											
L712	+		+		ND		ND					ND		ND
L715														
L737			+							+				
L768	+		+							+	+			
L775														
L776														
L905														
L947			+											
L949														
L986														
L987			+							+				

Table 6 (2). Subtyping of the *vtx2* genes by PCR in samples 5 and 6. The green boxes indicate the correct results, in agreement with the true value reported on the top of each column. The red boxes indicate the incorrect results. The white boxes indicate that the test was not done (ND).

	Detection of vtx2 gene subtypes in:													
			5	Strain 5				Ĭ	71		Strain 6	3		
NRL	vtx2a	vtx2b		vtx2d		vtx2f	vtx2g	vtx2a	vtx2b		vtx2d		vtx2f	vtx2g
True value	-	+	-	-	-	-	-	+	-	-	-	-	-	-
L106										+				
L118														
L157		-		ND	ND	ND	ND	-	ND			ND	ND	ND
L206														
L240														
L258									ND	ND	ND	ND	ND	ND
L273														
L313	ND		ND	ND	ND	ND	ND		ND	+	+	ND	ND	ND
L354								-		+				
L367		-			ND	ND	ND		ND	+	+	ND	ND	ND
L402														
L433														
L463														
L519														
L534														
L544	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
L553														
L566												+		
L605			+						+					
L608														
L633														
L674	+													
L679														
L687														
L691														
L692														
L699														
L712					ND		ND					ND		ND
L715														
L737										+				
L768				+						+	+			
L775														
L776								-			+			
L905														
L947														
L949														
L986														
L987														

Table 7. Summary of the *vtx* **gene subtyping results.** The green boxes indicate that the genes were identified correctly in all the 5 VTEC test strains. The red and white boxes indicate that incorrect results and tests not done were reported for the given gene, respectively. The numbers in the boxes indicate the number of incorrect or "not done" results.

NDI		Detection of <i>vtx</i> gene subtypes in the 5 VTEC strains:													
NRL	vtx1a	vtx1c	vtx1d	vtx2a	vtx2b	vtx2c	vtx2d	vtx2e	vtx2f	vtx2g					
L106						3									
L118															
L157		1		1	1 3	1	1 1	4	4	4					
L206		1	1			1									
L240															
L258	1		1	1	2	1 2	2	3	3	3					
L273	1	1	1		1	1									
L313	1	1	2	1 1	2	3 1	2 1	4	4	4					
L354				1		2									
L367	1				1 3	3	2	2	2	2					
L402						1									
L433						1									
L463						2									
L519								1	1	1					
L534						1									
L544	1	1	2	1 1	2	4	3	4	4	4					
L553			2				1								
L566	1	1	1	1		2	1	1							
L605				1	1	3	1								
L608						1									
L633	2	2								1					
L674				1		1									
L679															
L687			2				1								
L691						2	1								
L692						1									
L699						1									
L712				1		1		4		4					
L715															
L737		1				3									
L768				1		3	3								
L775															
L776		1	1	1			1								
L905															
L947	2	2	2			1									
L949															
L986															
L987						2									

Figure 5. Evaluation of *vtx* **gene subtyping results, by NRL.** The score was calculated according to the criteria described in section 4.4.3. The red bars indicate the penalty points assigned for incorrect results in the 12 NRLs whose performance was not considered as satisfactory. The yellow bars indicate the penalty points assigned for tests not done.

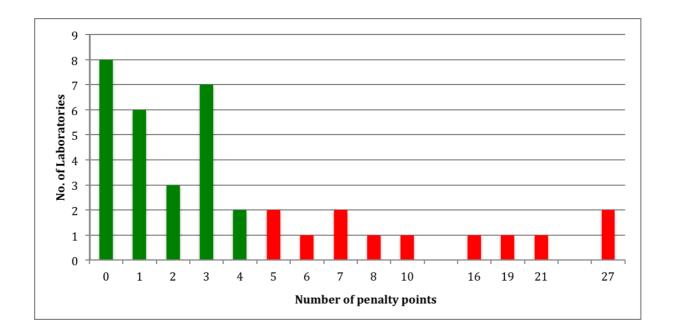


Figure 5. Evaluation of *vtx* gene subtyping results: number of NRLs within each penalty score. The red bars indicate the NRLs whose performance was not considered as satisfactory.

7. CONCLUDING REMARKS

- Forty-one NRLs, representing all the 28 EU Member States, as well as Argentina, Egypt, Russia, Norway, Switzerland and Turkey participated in the study. Forty NRLs submitted results.
- 2. Thirty-five NRLs (87 %) identified correctly the presence/absence of *vtx* and *eae* target genes in all the test strains.
- 3. Testing of EAggEC target genes was carried out correctly by 35 (97 %) of the 36 NRLs that carried out the tests.
- 4. The performance in the detection of virulence genes was considered as "not satisfactory" for the 5 NRLs that provided incorrect results for *vtx* genes and for other 4 NRLs that did not perform the detection of all or part of the EAggEC genes.
- As a whole, 16 (80 %) of the 20 incorrect results on virulence gens were false positive results, suggesting the occurrence of cross contamination between samples during the PCR procedures.
- 6. Twenty-eight NRLs (70 %) identified correctly the serogroup of the 7 test strains, including the O104 strain, which was misidentified by only 2 NRLs. For three NRLs, the performance was considered as "not satisfactory".
- 7. The identification of the *vtx* gene subtypes was carried out by 38 NRLs, but only 8 of them (21 %) identified correctly all the *vtx* gene subtypes in the 5 VTEC strains. This negative result was mainly due to *vtx2* typing: while *vtx1* subtyping was carried out correctly by 30 (79 %) NRLs, only 9 laboratories (24 %) typed correctly all the *vtx2* variants in all the strains. This was mainly due to false positive results for *vtx2c*, which were reported as the only incorrect results by 13 NRLs. Many (as many as 21) of those false positive results referred to sample 2, which was positive for the *vtx2d* gene. This indicates that the specificity of the *vtx2c* PCR reaction strongly depends on the reaction conditions and the robustness of the method still needs further adjustment.
- 8. In conclusion, most NRLs performed satisfactorily in the PCR identification of the main virulence genes of VTEC, confirming that a very good preparedness has been established in the EU towards these foodborne pathogens, now included as a food safety microbiological criterion for sprouts in Reg. (EC) 209/2013. Moreover, most NRLs are able to identify the virulence and serogroup-associated genes of the VTEC/EAggEC O104, as prescribed by the same Reg. (EC) 209/2013.