15th Annual Workshop of the National Reference Laboratories for *E. coli* Rome 21-22 September 2020

PT26

Identification and typing of Shiga toxin-producing *E. coli* (STEC)

The objectives of the study were:

- The detection of the main STEC virulence genes (*eae* and *stx* genes)
- The identification of a range of relevant STEC serogroups
- The subtyping of Shiga Toxins (Stx)-coding genes
- The identification of clusters of isolates based on genomic analysis (PFGE or WGS)

PT26: Design of the study (I)

1. Identification of the shiga toxin-producing *E. coli* main virulence genes by PCR amplification:

stx1 type, stx2 type and the intimin-coding eae gene

2. Identification of **13 target O serogroups**:

O26, O103, O111, O145, O157 ("top 5") O45 and O121 (considered as adulterants in beef in the USA) O104 (relevant after the 2011 outbreak) O55, O91, O113, O128, O146 (prevalent in human infections in Europe according to the ECDC data)

3. Subtyping of *stx* genes:

stx1a, stx1c and stx1d
from stx2a to stx2g

PT26: Design of the study (II)

Seven E. coli strains to be typed

Strain	Serotype	ST	Target virulence genes (<i>stx</i> subtypes)								
	autor (with a		stx1	stx2	eae						
1	O121:H19	655	.=	stx2a	+						
2	O121:H19	655	-	stx2a	+						
3	O128ab:H2	25	stx1c	stx2b	=						
4	O91:H14	33	stx1a	stx2b	=						
5	O55:H7	335	-	stx2a	+						
6	O121:H19	655	-	stx2a	+						
7	O145:H28	137	stx1a	-	+						

Virulence genes detected by WGS-based virulotyping

Strain	Virulence genes
1	cba, cma, eae, efa1, ehxA, espA, espB, espF, espI, espJ, espP, lpfA, nleA, nleB, nleC, stx2a, tir, toxB
2	cba, cma, eae, efa1, ehxA, espA, espB, espF, espI, espJ, espP, lpfA, nleA, nleB, nleC, stx2a, tir, toxB
3	ehxA, espl, iha, ireA, lpfA, mchB, mchC, mchF, stx1c, stx2b, subA
4	ehxA, espl, iha, lpfA, mchB, mchC, mchF, mcmA, senB, stx1a, stx2b, subA, tia
5	astA, efa1, espA, espB, espJ, etpD, nleA, nleB, nleC, stx2a, tir
6	efa1, ehxA, espA, espB, espI, espJ, espP, lpfA, nleA, nleB, nleC, stx2a, tir, toxB
7	celB, cif, efa1, ehxA, espA, espB, espJ, iha, nleA, nleB, nleC, stx1a, tir

PT26: Participants

40 NRLs representing 27 EU MS

+ the NRLs of Argentina Chile Iceland Norway Russia Switzerland Uruguay

PT26: Samples

- ✓ 7 test strains as cultures in soft-agar
- ✓ Upon request, the needed control strains have been provided
- ✓ Test Samples were prepared on the 5th October 2019
- ✓ 8th October 2019, the homogeneity test was performed on a set of 5 randomly selected samples
- Samples labelled with randomly generated numerical codes shipped on the 14th October 2019
- ✓ Results submitted on-line via the web site from 39 NRLs

Number of laboratories reporting results/methods

Penalty Points for the identification of STEC virulence genes and serogroups

- **4 penalty points** to each incorrect or missing result concerning the identification of the *stx* genes
- **2 penalty points** to each incorrect or missing result concerning the identification of *eae* gene
- **2 penalty points** to each incorrect result concerning the identification of serogroups
- **1 penalty point** when the results of the serogroup identification were not uploaded ("null" field) or reported as "Not Done"
- **1 penalty point** to each incorrect result concerning the identification of the *stx* genes subtypes (not considered for the assessment of the laboratories' proficiency)

A threshold of 4 penalty points was set in order to identify the under-performant laboratories

- 7

- 6

- 5

- 4

- 3

- 2

PT26 – Results: Detection of virulence genes (I)

STANDARD TYPING METHOD

	1								Detec	tion of	f virule	nce ge	enes in	:							
NRL	5	Strain 1			Strain 2			Strain 3			Strain 4		Strain 5			Strain 6				Strain 7	
	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae
True value		+	+	-	+	+	+	+	2.53	+	+		878	+	+	658	+	+	+	858	+
L136																					
L187																					
L258																					
L295																					
L337		11															-				
L355																					
L375																					
L413																					
L417						i and															
L443																					
L543																					
L546																					
L556											75										
L676																					
L693																					
L775																					
L893																					
L925						Ì															
L986																					

PT26 – Results: Detection of virulence genes (II)

WGS

	Detection of virulence genes in:																				
NRL	5	Strain 1			Strain 2		-	Strain 3			Strain 4			Strain 5			Strain 6		8 	Strain 7	
	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae	stx1	stx2	eae
True	-	+	+		+	+	+	+		+	+		8.755	+	+		+	+	+	-	+
L175																					
L203																					
L229																					
L286																					
L376																					
L424																					
L513							-								8						
L519																					
L537																					
L543																					
L597																					
L734																					
L737																					
L791																					
L810																					
L825					- 3 R -													(B)			
L840																					
L843																					
L912																					
L967																					
L969								-								1					

PT26 – Results: Identification of the serogroups (I)

NDI	Serogroup identification in Strain:													
NKL	1	2	3	4	5	6	7							
True value	0121	0121	O128	O91	055	0121	0145							
L136														
L187			ONT											
L258							·							
L295														
L337				O146										
L355	ONT					ONT								
L375		0103			2 2									
L413			-											
L417			ONT	ONT										
L443														
L543														
L546														
L556			ONT	ONT										
L676														
L693														
L775				3										
L893				1	2		-							
L925					2									
L986				ONT										

STANDARD METHODS

PT26 – Results: Identification of the serogroups (I)

	Serogroup / Serotype identification in Strain:													
NKL	1	2	3	4	5	6	7							
True value	O121:H19	O121:H19	O128ab:H2	O91:H14	O55:H7	O121:H19	O145:H28							
L175														
L203			ii											
L229														
L286														
L376														
L424														
L513														
L519														
L537														
L543														
L597														
L734														
L737			ONT											
L791														
L810														
L825														
L840														
L843														
L912														
L967														
L969														

IDENTIFIED BY WGS

Evaluation of the laboratories' performance

Identification of stx, eae genes, top-13 serogroups

The red bars indicate the NRLs whose performance was considered as not satisfactory

Evaluation of results for detection of the *stx* genes subtypes by NRL

The orange bars indicate the laboratories accumulating a number of penalties over the threshold of four

PT26: Concluding Remarks

- ✓ 40 NRLs representing the 27 EU countries, as well as Argentina, Chile, Iceland, Norway, Russia, Switzerland and Uruguay taking part in the study
- Almost half of the laboratories performed WGS with excellent performance in both the characterization and subtyping of the STEC isolates
- Two laboratories underperformed in the characterization of STEC strains (detection of stx, eae and serogroups); some areas of improvement have been identified and will be managed
- Most of the laboratories submitted results for the *stx* subtyping, indicating that this assay is becoming widely adopted among the network of NRLs for *E. coli*, with a good performance on average. Apart from known criticalities of the typing method (e.g. discrimination between *stx2a* and *stx2c* genes in the PCR assay) the **network responded well to the stx subtyping exercise** (particularly through WGS)

Cluster Analysis

Voluntary exercise: performing cluster analysis on the 7 test strains

Methods:

• PFGE

Provide the number of **total bands observed** *per* strain and the **number bands shared between each test strain and one of the isolates of the panel chosen as reference** by the laboratory.

WGS-based: SNPs/wg/cgMLST

Submit the **number of SNPs or allelic differences** observed between each strain and one test strain selected as reference

No gel image, .xml, .fastq or .fasta files submitted Interpretation of the cluster performed by the NRLs

25 NRLs partecipated in this exercise

7/25 NRLs performed PFGE 21/25 NRLs performed WGS-based typing

PFGE-based typing results

			Sti	rain numl	ber			Different bands		
INKL	1	2	3	4	5	6	7	between strains 1 and 2		
N. of expected bands	18	19	15	18	14	19	16	≤2		
L175	19	19	20	21	16	19	17	0		
L295	18	18	15	17	13	19	14	0		
L519	18	19	15	18	14	19	16	2		
L546	18	19	16	18	16	18	15	2		
L556	19	19	15	16	15	18	15	0		
L843	17	17	16	19	15	18	17	0		
L893	18	18	19	20	16	19	18	0		

Distribution of bands assigned in PFGE

WGS-based typing results

		NDI		S						
		NKL	1	2	3	4	5	6	7	
Strategy	Tool details	Clustering strains	Yes	Yes	No	No	No	No	No	
	Enterobase 09-12-2019	L175								
	chewBBACA	L286								
	SeqSphere+, Enterobase 2513 loci	L424								
	SeqSphere+, Enterobase 2513 loci	L513								
	chewBBACA, INNUENDO 2360 loci	L519								Wrong
	SeqSphere+, Enterobase 2531 loci	L537								vvrong
	in house, SeqSphere, 1734 loci	L597								reporting,
Alleles-based, cgMLST	chewBBACA, INNUENDO 2360 loci	L676								correct
	SeqSphere+	L734								/ results
	chewBBACA	L737								results
	chewBBACA, INNUENDO 2360 loci	L791_1								
	SeqSphere+ v.1 scheme	L791_2								TINKL
	CGE cgMLST Finder v1.1, Enterobase scheme 2513 loci	L840_1								
	Enterobase	L912								
	CGE NDtree	L229								
	in house	L258								Strain 6:
	CGE CSI Phylogeny 1.4	L376								camo
	CGE CSI Phylogeny 1.4	L413								Same
SNPs	CGE CSI Phylogeny 1.4	L810								serogroup
	CGE CSI Phylogeny 1.4	L840_2								of
	FDA SNP Pipeline	L843								clustering
	Snippy 4.4.5	L967								
	in house	L969								strains

Cluster Analysis - WGS

Distribution of allelic differences from the

Strain 6: mean 86 AD from 1-2

Strain 6: mean 148 SNPs from 1-2

Distribution of SNPs distances from the strain

PT26 Cluster Analysis - Conclusions

- More than 60 % (25/40) of the laboratories participating in PT26 performed the voluntary cluster analysis exercise.
- The results showed that the participating laboratories that used PFGE were all able to identify the two related strains.
- Wide variability displayed by PFGE with respect to the number of bands detected in the different strains.
- The majority of laboratories that used WGS performed well regardless the method used (cgMLST or SNP analysis).
- Need to fine-tune some of the algorithms used to call the alleles or the SNPs, which did not work uniformly in all the laboratories.
- Need to define a threshold to call the clusters using the SNPs analysis.

Next PT rounds: PT27

27th inter-laboratory study on the detection of STEC in vegetables

3 artificially contaminated vegetable samples

25 g of basil will be tested for the presence of STEC according to the analytical method ISO TS 13136:2012

Shipment: 9 November 2020

Deadline: 25 November 2020

Novel reporting platform

Next PT rounds: PT28

28th inter-laboratory study on the detection and typing of pathogenic *E. coli*

The objectives of this study are:

- 1. The detection of the main STEC virulence genes (eae and stx genes).
- 2. The identification of a range of relevant STEC serogroups (at least the 13 serogroups indicated in the EURL-VTEC_Method_003).
- 3. The subtyping of Shiga Toxins (Stx)-coding genes.
- 4. Cluster analysis of the test strains **Only WGS-based** FACULTATIVE EXERCISE

8 STEC strains

Shipment: 9 November 2020

Deadline: 31 December 2020

Novel reporting platform

