

Non-O157 STEC in Scotland

Lesley Allison

on behalf of

the Scottish *E. coli* O157/STEC Reference Laboratory (SERL)

Presentation Summary

- STEC in Scotland
- Faecal screening
- Non-O157 WGS Project – FSS/2017/027

https://www.foodstandards.gov.scot/publications-and-research/publications/whole-genome-sequence-typing-and-analysis-of-non-o157-stec

Prevalence of STEC in Scotland

Lothian

Scottish Cases of Infection April 2000 to March 2020

Screening Faeces at SERL

Detection

Faeces (BD/HUS)

Overnight enrichment (TSB)

Instagene extraction

In-house PCR

 stx_1 , stx_2 , stx_{2f} , rfb_{O157} , IAC

Isolation

Spread plate 10⁻³ to 10⁻⁵

Individual & pooled colony picks & sweep of growth for PCR

Background to project

- Outbreak associated with raw cheese
- Non-O157 STEC isolated but NOT O157 outbreak strain
- Unable to provide context

Study Details

Aims

- Provide a highly detailed description of the non-O157 STEC causing clinical infection in Scotland over a 16 year period.
- Provide a phylogenomic analysis of the strains
- Assess the potential of each strain to cause clinical disease
- Provide a unique and comprehensive genomic database of Scottish non-O157 STEC for future interrogation.

Methods

The Study Group

525 strains from clinical cases of infection, collected over a 16y period 26/02/02 to 05/02/18

DNA Extraction, Library Preparation and Sequencing

- Qiagen extraction
- Nextera XT library prep
- Miseq v2 500bp kits

Data Analysis

- PHE Bioinformatics protocol
- BioNumerics v7.6 (Applied Maths)

Non-O157 Serotypes

- A total of 522 (99.4%) clinical isolates were identified as *E. coli*, while three (0.6%) were *Escherichia albertii.*
- In silico serotyping detected 89 different serotypes; 47 were observed on one occasion only.

Serotype & stx subtype

Top Serotypes

Top stx subtype

Serotype	No. Isolates
<i>E. coli</i> O26:H11	141
<i>E. coli</i> O103:H2	49
<i>E. coli</i> O145:H28	45
<i>E. coli</i> O128:H2	21
<i>E. coli</i> O146:H21	16

•	53%	of	all	non-	0157	7 S1	TEC
---	-----	----	-----	------	------	------	------------

• O26:H11 = 27%

<i>stx</i> subtype	No.	
profile	isolates	
<i>stx</i> 1a	176	
stx2a	78	
stx2a stx1a	60	
stx2b stx1c	46	
stx2f	40 (8%)	
stx2b	36	
stx1c	30	
stx2b stx1a	14	
stx2d	13	
<i>stx</i> 1d	3	

Virulence Genes

- eae was carried by 64.5% of strains.
- 85 other virulence genes were identified

Comparison of virulence genes in eae-positive and eae-negative STEC

- Top 3 *eae* –ve serotypes: O128:H2, O146:H21, O91:H14
- Predominant genes in eae -ve strains: subA, ireA, mchF, B, C

Potential to cause disease

Expert Meetings on Microbiological Risk Assessment (JEMRA) report, 2018.

¹JEMRA level assignment of non-O157 STEC compared with *E. coli* O157:H7, based on virulence gene combination and potential to cause diarrhoea (D), bloody diarrhoea (BD) and haemolytic uraemic syndrome (HUS).

- **A highly diverse group** of non-O157 STEC are associated with human infections in Scotland, although a small number of serotypes accounted for the majority of cases of infection.
- We did not identify some of the pathogenic strains (such as O55:H7 and certain pathogenic O26:H11 clones) currently emerging in certain countries, although we have identified some strains that we will continue to closely monitor, including *E. coli* O145:H28.
- This comprehensive collection of non-O157 STEC sequences from a single country is **a valuable and unique resource**, and will be further enhanced by linking the data to the clinical and epidemiological information for each patient.

- The second phase of this project will compare the predicted disease potential (the JEMRA Level assigned, based on virulence gene combination) with the actual symptoms experienced by each patient, to determine whether this molecular risk assessment approach might support decisions on public health interventions for STEC infection in the future.
- Sequence data from this project is held in the SERL BioNumerics database and routinely compared with all new strains.
- Ongoing projects/collaborations:
 - Prevalence and diversity of non-O157 STEC carriage in Scottish Cattle
 - The Risk of STEC (Shiga Toxin-Producing *E. coli*) contamination in **Wild Venison**
 - Microbiological Survey of Minced Beef on Retail Sale in Scotland

Acknowledgments

- All SERL Staff
- NHS Diagnostic Laboratories
- Health Protection Scotland
- Food Standards Scotland (Marianne James)

WHOLE GENOME SEQUENCE TYPING AND ANALYSIS OF NON-0157 STEC

May 2019

www.foodstandards.gov.scot/publications-and-research/publications/