

The Use of Genomics in One Health Resistance Surveillance: The Experience of the U.S. National Antimicrobial Resistance Monitoring System

Patrick McDermott, MS, PhD Director, The U.S. National Antimicrobial Resistance Monitoring System (NARMS) U.S. Food and Drug Administration

GOAL 2: EMPLOY ADVANCED TECHNOLOGIES TO BETTER UNDERSTAND THE EVOLUTION AND SPREAD OF RESISTANCE AMONG FOODBORNE PATHOGENS

Objective 2.1: Apply predictive resistance analytics, machine learning, and other bioinformatics tools to NARMS-related data to better understand the mechanisms, sources, and spread of resistance.

Objective 2.2: Optimize *in vitro* antimicrobial susceptibility testing to identify new resistance mechanisms.

Objective 2.3: Develop metagenomic approaches to characterize the resistome of animals, humans and environmental samples and to link resistance genes to their microbial source.

Objective 2.4: Employ long-read DNA sequencing methods to establish a reference database of fully characterized strains and their plasmids.

Objective 2.5: Conduct research to understand concomitant adaptive microbial features that might contribute to the persistence and spread of resistance (*e.g.*, colonization, stress tolerance) under different selection pressures (*e.g.*, heavy metals, antiseptics, *etc.*).

Structure of NARMS, 2020

	Z	oonotic Foodborne Patho	gens	Animal Pathogens	WGS Data Repository
	Humans	Retail Meats	Food-Producing Animals	Food-Producing and Companion Animals	All WGS Data
	Centers for Disease Control & Prevention (CDC)	Food and Drug Administration (FDA)	United States Department of Agriculture (USDA)	FDA and USDA	National Institues of Health (NIH)
Who is involved in NARMS?	Health departments in 50 states	Health departments in 15 states	Food Safety and Inspection Service (FSIS)	Veterinary Laboaratory Investigation and Response Network (Vet-LIRN)	National Center for Biotechnology Information (NCBI)
		Institutions of higher education in 7 states	Agricultural Research Service (ARS)	USDA National Animal Health Laboratory Network (NAHLN)	
			Animal Plant Health Inspection Service (APHIS)	Veterinary Diagnostic Labs in 36 States	
		Retail meats from grocery stores	Ceca and regulatory samples:	Clinical diagnostic samples	Submitted genomic sequences
		Chicken	Chickens	All animal species	
		Ground Turkey	Turkeys		
Where do the samples that	III persons	Ground Beef	Cattle		
are tested come from?		Pork	Swine		
		Shrimp	Veal		
		Tilapia	Lamb		
		Salmon	Goat		
	Salmonella	Salmonella	Catfish Salmonella	Salmonella	
	Campylobacter	Campylobacter	Campylobacter	Staph pseudintermedius	
What bacteria does NARMS	Escherichia coli 0157	Escherichia coli	Escherichia coli	Escherichia coli	
test for resistance?	Vibrio	Enterococcus	Enterococcus	Other	
	Shigella	Vibrio			1
		Aeromonas			

Genomes with Phenotype Data in NARMS

Bacterium	Human	FP Animals	Retail Meats	DV Labs	Total
Salmonella	8,629	7,206	9,041	827	25,703
Сатру	1,041	9,571	4,770		15,382
E. coli	617 (STEC)	3,079	3,160	842	7,698
Enterococcus		1,772	325		2,097
S. pseudintermedius				855	855
TOTAL	. 10,287	21,628	17,296	2,524	51,735

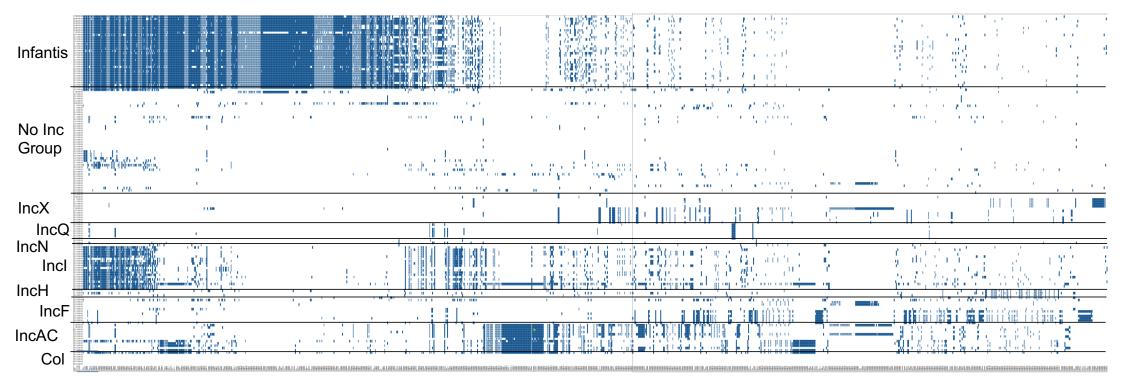
NARMS Genotype-Phenotype Correlations

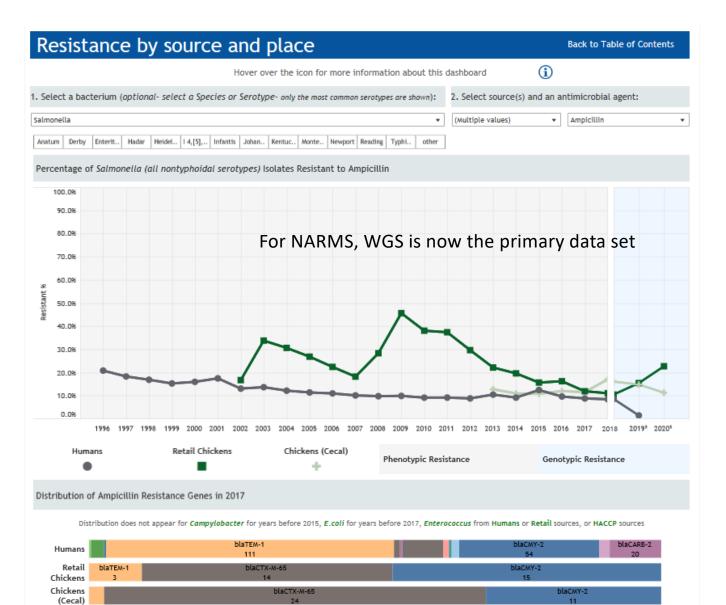
Bacterium	Reference	Correlation
E. coli	Tyson et al, JAC, 2015	98.5%
Campylobacter	Zhao et al, AEM, 2016	99.2%
Salmonella	McDermott et al, AAC, 2016	99.0%
Enterococcus	Tyson et al, FEMS-PD, 2018	96.5%

Interpretive Criteria for *in vitro* Antimicrobial Susceptibility Testing

- <u>CLSI</u>: Clinical breakpoints are based on the likelihood of treatment success, with S, I, R categories.
- <u>EUCAST</u>: Epidemiological cutoff MICs used to differentiate wild-type from non-wild-type isolates based on MIC distributions (I+R)
- <u>GCV</u>: Genotypic cutoff value is defined as the highest MIC of the population of bacteria lacking resistance determinants to a given drug. A majority of isolates above this MIC should possess resistance mechanisms. The gene as the hazard.

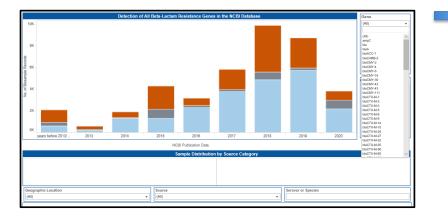
The "resistant" category implies that isolates are not inhibited by the usually achievable concentrations of the agent with normal dosage schedules, and/or that demonstrate zone diameters that fall in the range where specific microbial resistance mechanisms are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies (CLSI).

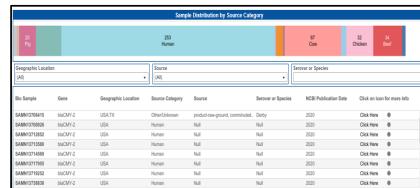

Reporting Genomic Resistance: Genotypic Cutoff Values


Antimicrobials	CLSI susceptible (S): treatment success likely	EUCAST ECV: wild-type (WT)	GCV: no resistance mechanism (NRM)
Ampicillin	≤ 8	≤ 4	≤ 8
Amoxicillin-clavulanate	≤ 8	None	≤ 2
Cefoxitin	≤ 8	≤ 8	≤ 8
Ceftriaxone	≤ 1	None	≤ 1
Ceftiofur	≤ 2	≤ 2	≤ 2
Gentamicin	≤ 4	≤ 1	≤ 2
Tetracycline	≤ 4	≤ 4	≤ 4
Chloramphenicol	≤ 8	≤ 16	≤ 16
Ciprofloxacin	≤ 0.06	≤ 0.06	≤ 0.06
Nalidixic acid	≤ 16	≤ 16	≤ 8
Azithromycin	None	None	≤ 16
Sulfisoxazole	≤ 256	None	≤ 256
Trimethoprim-sulfamethoxazole	≤ 2	≤ 1	≤ 0.05

Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF. Establishing genotypic cutoff values to measure antimicrobial resistance in *Salmonella*. Antimicrob Agents Chemother. 2017 Feb 23;61(3).

Plasmid Pan-genome


Pan-genomic analysis of 151 closed plasmids from *Salmonella* NARMS ID subsets of plasmid loci clusters within plasmid groups



N							Medici Informat				
(4 P	hage 1 of 5 🕨 🔰	🥐 Records per Pa	ge 5 👻	Choose columns	🛓 Download 🖌	* Expand all					
	Organism Group	Strain	Serovar	Isolate	Create date	Location	Isolation Source	Isolation type	Host	Min-same	Min
1	Salmonella enterica	FSIS22029	Salmonella	PDT000840557.1	2020-09-20	USA:NC	raw intact chick	environmental/other		23	29
] 2	Salmonella enterica	PNUSAS152		PDT000785738.1	2020-07-10	USA		clinical			12
3	Salmonella enterica	FSIS12031	Kentucky	PDT000781252.1	2020-07-03	USA:MO	raw intact chick	environmental/other		13	32
4	Salmonella enterica Salmonella enterica	FSIS12030	Kentucky Kentucky	PDT000744521.1 PDT000724155.1	2020-05-22	USA:IL USA:WA	raw intact chick comminuted chi	environmental/other		10	33 33
	10 15 nvironn		× ×	🛛 Spacing 🔹 🗻		earch & Highlig		Inselected Tree tooltij	05		
	environmental/de environmental/de environmental/ en	Intal/other, 2019-01 Intal/other, 2019-12 er, 2019-10-00, US other, 2019-07-27, fother, 2020-07-03 allother, 2020-01-14, other, 2020-01-14, other, 2019-08-08, 8-10-23, USA-WI, 2018-08-14, USA-	J-28, USA:KS, 2-14, USA:TX, 4:State, chick USA:MN, comm , USA:MA, comm 0, USA:WA, co 2, USA:IL, raw USA:State, chi USA:GA, comminute WI, comminute	d chicken, FSIS2182 chicken, FSIS318007	I N19S0588, PD' I N19S0589, PD' PDT000803783, S31902369, PD1 12031644, PDT0 SIS22027765, F 12030764, PDT0 S, PDT00086192 921440, PDT000 3, PDT00039557 1916, PDT00039	F000593949.1 F000844817.1 1 000550154.1 000781252.1 DT000724155 00744521.1 8.1 0518218.1 8.1 12873.1 1287.1 123.1					

Genomics in Food Safety GEN-FS (2015)

- (1) Thermal tolerance
- (2) Desiccation resistance
- (3) Osmotic/Ionic tolerance
- (4) QAC resistance
- (5) Chlorine resistance
- (6) Biofilm persistence
- (7) Surface adherence
- (8) Antibiotic resistance
- (9) Biocide resistance
- (10) Ecological fitness
- (11) Heavy metal resistance
- (12) Metabolic persistence
- (13) Enhanced hydrophobic fitness
- (14) Produce invasiveness
- (15) Flower invasiveness
- (16) Root system invasiveness
- (17) Acid resistance

- (18) Surface water fitness
- (19) In vivo plant migratory fitness
- (20) Soil fitness
- (21) Capsaicin resistance
- (22) Swarming
- (23) Trans-ovarian poultry colonization
- (24) Fecal persistence (poultry)
- (25) Yolk content invasion
- (26) Multidrug resistance
- (27) External amoeba harborage
- (28) Internal amoeba harborage
- (29) Acyl-homoserine lactone (AHL)
- (30) KatE stationary-phase catalase
- (31) In vivo migratory fitness
- (32) RDAR phenotype
- (33) Persistence within the tomato
- (34) Virulence

Multiple US Federal Agencies

- Food and Drug Administration (FDA) Centers for Disease Control and Prevention (CDC)
- National Institutes of Health (NIH)
- Food Safety and Inspection Service (FSIS)
- Agricultural Research Service (ARS)
- Animal and Plant Health Inspection Service (APHIS)

Gen-FS: Targets for development coordination and harmonization

System tools, data pipelines, and methods

Harmonized proficiency testing and training Analytic procedures, protocols, and standards

Use is surveillance, investigation and research Data sharing and availability

External communication and partnerships

Pathogen Detection **BETA**

To assist the National Database of Antibiotic Resistant Organisms (NDARO), NCBI Pathogen Detection identifies the antimicrobial resistance, stress response, and virulence genes found in bacterial genomic sequences. This enables scientists to track the spread of resistance genes and to understand the relationships between antimicrobial resistance and virulence.

NCBI Pathogen Detection integrates bacterial pathogen genomic sequences originating in food, environmental sources, and patients. It quickly clusters and identifies related sequences to uncover potential food contamination sources, helping public health scientists investigate foodborne disease outbreaks.

Find isolates now!

Examples: 1. Search for isolates encoding a mobile colistin resistance gene and a KPC beta-lactamase search: <u>AMR_genotypes:mcr* AND AMR_genotypes:blaKPC*</u> 2. Search for Salmonella isolates from the USA search: geo_loc_name: USA AND taxgroup_name: "Salmonella enterica"

Explore the Data

Species	New Isolates	Total Isolates
Salmonella enterica	<u>72</u>	<u>301,814</u>
E.coli and Shigella	<u>28</u>	<u>127,740</u>
<u>Campylobacter jejuni</u>	<u>29</u>	<u>55,931</u>
Listeria monocytogenes	2	<u>38,255</u>
See more organisms		

Learn More

<u>About</u>

FAQ

Browser Factsheet

Antimicrobial Resistance Factsheet

Antimicrobial Resistance

Contributors

<u>Help</u>

Data Resources

Isolates Browser

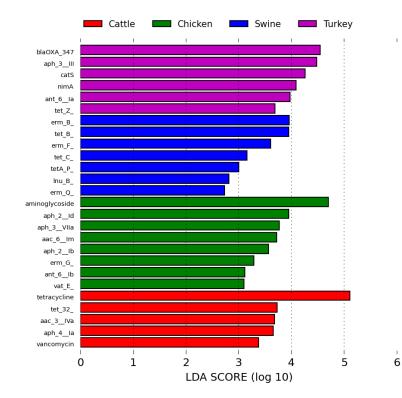
Microbial Browser for Identification of Genetic and Genomic Elements (MicroBIGG-E)

Reference Gene Catalog

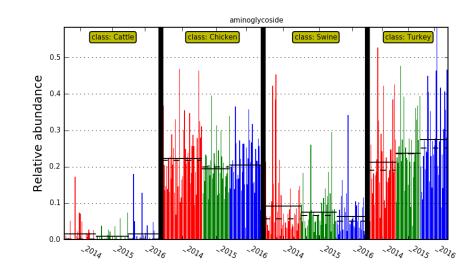
Isolates with antibiotic resistant phenotypes

Download analysis results (FTP)

Submit

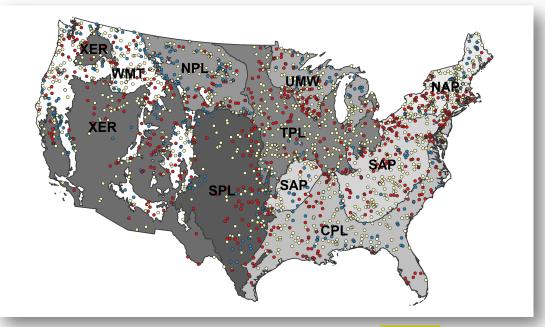

How to submit data

How to submit antibiotic resistance phenotypes


How to submit beta-lactamases

NCBI Submission Portal

Metagenomic Surveillance: Resistance Genes by Animal Origin



- Total cecal samples received = 25,000
- Total cecal samples DNA extracted = 23,800
- Total with completed analysis = 1,600

The Environment and 1H AMR Monitoring

- The National Aquatic Resource Surveys (NARS) are collaborative programs between the EPA, states, and tribes to assess the quality of the nation's waters using a statistical survey design
 - National Rivers and Streams Assessment (NRSA)
 - National Coastal Condition Assessment (NCCA)
 - National Lakes Assessment (NLA)
 - National Wetland Condition Assessment (NWCA)
- Surveys are staggered annually
- Impact is assessed using
 - Biological indicators (benthic macroinvertebrates, algae, fish)
 - Chemical indicators (phosphorus, nitrogen, salinity, acidity)
 - Physical indicators (sediments, fish, vegetation, riparian disturbance)
 - Human health indicators (Enterococci (fecal indicator), mercury in fish tissue)

(ECO9 Regions Shown; blue is reference; yellow is intermediate; red is Agri impacted)

Metagenomics Water Study

Goal

- Characterize the microbiome and resistome of water
- Compare less disturbed and more disturbed systems
- Documents shared and unique features with food animals

Testing Design

- Targeted the North Appalachian Ecoregion
- 91 samples (65 impacted, 26 reference; also 4 mock assays) from 2013-2014.
- Compared 219 cecal samples from cattle (73), chicken (23), turkey (58) and swine (65) between 2014 and 2016.

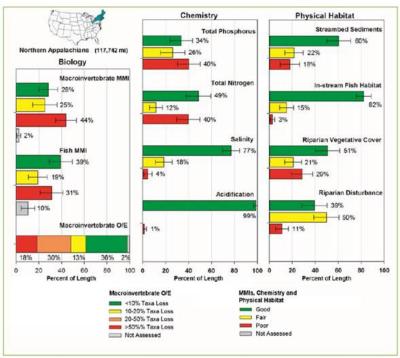
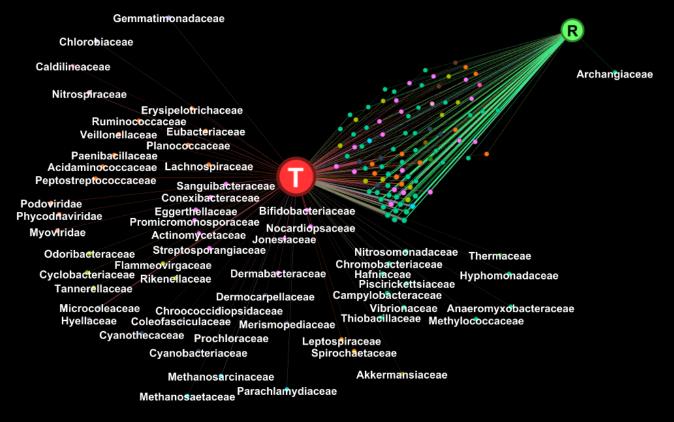
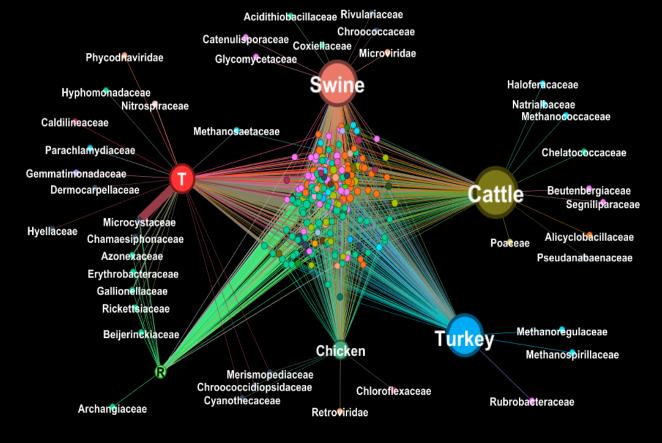
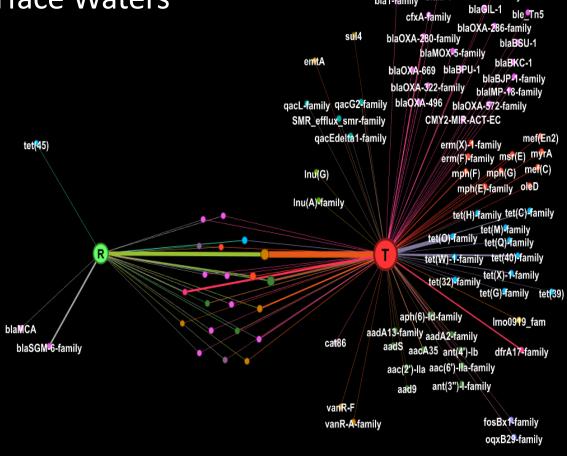



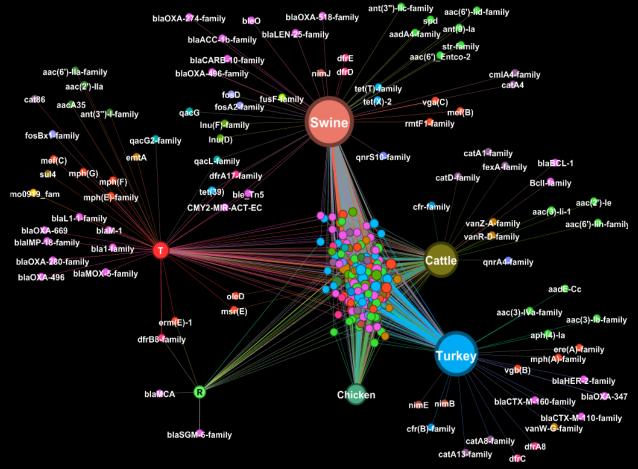
Figure 38. NRSA survey results for the Northern Appalachians ecoregion (EPA/NRSA). Bars show the percentage of river and stream length within a condition class for a given indicator. Percentages may not add up to 100% due to rounding.



Taxonomic Differences between Less (R) and More (T) Impacted Surface Water


17

Taxonomic Features of the Water and Food Animal Microbiomes


The Water Resistome: Comparison of Less (R) and More Impacted (T) Surface Waters

blaL1-1-family

A One Health Map of the Animal and Water Resistomes

FDA

Antimicrobial Resistance Surveillance One Health - One Method

- Highest practical resolution of structural traits in microbial members of an ecosystem
- Accurate prediction of clinical resistance, and perhaps MIC, in NARMS bacteria
- Resistance to compounds not tested such as disinfectants and heavy metals, and other potential drivers of resistance
- Deep surveillance into previously hidden associations (*e.g.*, co-resistance with plasmid type, virulence)
- Source attribution for more precise (AMR) intervention
- Retrospective resistance surveillance
- Metagenomics to escape limitations of classical microbiology
- Look farther with few resources: domestic and wild animal populations, animal feed, environmental transmission, exposure pathways ...
- Global resistance emergence and spread
- Greater confidence in (global) public health decision making

Acknowledgements

USDA-FSIS

Uday Dessai **Emilio Esteban** FSIS Field Lab Staff Labs and HQ Teams

USDA-ARS Kimberly Cook Jonathan Frve Rick Meinersman Jodie Plumblee

USDA-APHIS Kathe Bjork Beth Harris

NIH-NCBI

Bill Klimke **Mike Feldgarden**

FDA-CVM-DAFM

Jason Abbott Sherry Ayers Sonya Bodeis Beilei Ge Lucas Harrison Chih-Hao Hsu Claudine Kabera Cong Li **Gordon Martin** Shawn McDermott Sampa Mukherjee Epiphanie Nyirabahizi Shaohua Zhao

FDA-CVM

Bill Flynn Heather Harbottle Jeff Gilbert **Ron Miller** Meg Oehler

Andrea Ottesen **Crystal Rice-Trujillo** Sanchez Saint-Fleurant **Errol Strain** Saul Sarria Daniel Tadesse Heather Tate **Thu-Thuy Tran Gregory Tyson** Caitlin Welsh Shenia Young

Susan Bright **Ruby Singh Cindy Burnsteel**

CDC-DFWED

Gayle Langley Jean Whichard **Beth Karp** Jason Folster Jared Reynolds Ian Plumb

FDA-CVM Vet-LIRN

Renate Reimschuessel **Olgica Ceric**

EPA

Jay Garland (ORD) Sharon Nappier (OW)

Non-federal partners

- Public health laboratories ٠ in all 50 states
- Universities •
- **Research collaborators** ٠