

a(ccessory)g(enome) MLST

from loci to alleles

Before Starting

Why (ML) Sequence Typing? (instead of sequences)

data portability data sharing (string profiles) independent by platform simple comparison algorythms

Current Solutions

MLST (7 loci)

adv: large db, few data, universally fedcon: could not be enough discriminativedoes not provide particular functional information

cgMLST (core genome)

adv: discriminative, can give functional information
con: dependent by platform and assembly
static schema or dynamic?
not adequate for organisms with large or variable accessory
genome

Bharani	
*	
	Hamal
	Sheratan
Arie	!5

Our Approach, agMLST

Focusing on ACCESSORY genome

before in Hrevap it can give insights in close related strains (discriminative) it can provide functional information it could be more curated since it receives attention from scientific community

agMLST

a couple of tools to invesigate it and to convert it into alleles

The agMLST core: the database

MLST approaches work well only if they have a good DB behind... It represents the core of the method and its value

Our DB contains 79 loci over a total of 879 alleles

1-144 alleles per locus (Avg: 11) alleles len 117-9672 (Avg: 1716) Manually Curated!!!

;-) Thanks Valeria!!!

>astA:1:AF161000
ATGCCATCAACACAGTATATCCGGAGACCCACATCCAGTTATGCATCGTGCATATGGTGCGCAACAGTCTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA
>astA:2:AF161001
ATGCCATCAACACAGTATATCCGGAGACCCACATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCGTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA
>astA:3:AB042005
ATGCCATCAACACAGTATATCCGGAGGCCCGCATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCCTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA
>astA:4:AB042002
ATGCCATCAACACAGTATATCCGAAGGCCCGCATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCCTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA
>astA:5:AF160998
ATGCCATCAACACAGTATATCCGGAGGCCAGCATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCCTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA
>astA:6:AY545598
ATGCCATCAACACAGTATATCCGAAGGCCCGCATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCCTGC
GCTTCGTGTCATGGAAGGACTACAAGGCCGTCACTCGCGACCTGA
>astA:7:AF411067
ATGCCATCAACGCAGTATATCCGAAGGCCCGCATCCAGTTATGCATCGTGCATATGGTGCGCAACAGCCTGC
GCTTCGTGTCATGGAAGGACTACAAAGCCGTCACTCGCGACCTGA

Alleles Conversion Strategies

How to convert Sequences to strings...

Already Existing tools: on line tools (pubmlst) SRST2 Commercial solutions

Our solutions: agMLST by reads agMLST by assembly

E coli typing

----MLST----

agMLST by Assembly

agMLST by Mapping

Concatenate agMLST profiles

SRST2 Custom DB

SRST2 7 loci

It derives *traditional* MLST from reads

Inouye et al. Genome Medicine 2014, **6**:90 http://genomemedicine.com/content/6/11/90

SOFTWARE

Open Access

It also accepts custom DBs

Michael Inouye^{1,2}, Harriet Dashnow^{3,4}, Lesley-Ann Raven¹, Mark B Schultz³, Bernard J Pope^{4,5}, Takehiro Tomita^{2,6}, Justin Zobel⁵ and Kathryn E Holt^{3*}

SRST2: Rapid genomic surveillance for public

health and hospital microbiology labs

SRST2 (Galaxy Version 1.0.0)	✓ Options
Sample Reads	
□ ₽ 27: ED1014_ion.fastq	▼
Using Paired Reads	
No	SRST2 (Galaxy Version 1.0.0) Options
DB in your local History	Sample Reads
No	C1 C2 27: ED1014_ion.fastq
Species	Using Paired Reads
Campylobacter jejuni	DB in your local History
	Yes 🗸
Campylobacter jejuni	Alleles Database
Listeria monocytogenes	17: agMLSTDB
Escherichia coli#1	✓ Execute
Ci Escherichia coli#2	What it does This tool derives MLST from Reads. It is based on the srst2 (reference) tool.
Inouye, Michael and Dashnow, Harriet and Raven, Lesley-Ann and Schultz, Mark B and F	
(2014). SKS12: Kapid genomic surveillance for public health and hospital microbiology	

Inouye, Michael and Dashnow, Harriet and Raven, Lesley-Ann and Schultz, Mark B and Pope, Bernard J and Tomita, Takehiro and Zobel, Justin and Holt, Kathryn E (2014). SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. In *Genome Med*, 6 (11). (doi:10.1186/s13073-014-0090-6][Link]

It returns an array of allels (*the classical 7 loci schema*) It includes: snps, indels, coverage, alternative allele frequency

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Sample	DB	gene	allele	coverage	depth	diffs	uncertainty	divergence	length	maxMAF	clusterid	seqid	annotation
dataset_50782	dataset_50786	stx2A	70_683	100.0	66.923			0.0	960	0.136	67	683	AY143336 a
dataset_50782	dataset_50786	stx2B	27_754	100.0	48.402			0.0	270	0.038	68	754	AE005174 a
dataset_50782	dataset_50786	iha	4_334	90.326	4.381	137snp6indel199holes	edge0.0	7.253	2088	0.5	34	334	AF399919
dataset_50782	dataset_50786	espJ	1_210	100.0	52.527			0.0	654	0.196	21	210	AB303060
dataset_50782	dataset_50786	espP	3_214	100.0	122.951			0.0	3903	0.232	22	214	GQ259888
dataset_50782	dataset_50786	lpfA	3_413	100.0	49.876			0.0	573	0.39	43	413	AP010953
dataset_50782	dataset_50786	katP	1_408	100.0	124.519			0.0	2211	0.153	41	408	AB011549
dataset_50782	dataset_50786	cif	2_65	99.882	64.122	1snp1indel		0.118	849	0.143	8	65	AY128535
dataset_50782	dataset_50786	toxB	3_849	100.0	116.057			0.0	9501	0.429	73	849	AB456530
dataset_50782	dataset_50786	tir	34_844	99.876	52.459	1snp1indel1holes		0.062	1617	0.222	72	844	AB426060
dataset_50782	dataset_50786	iss	8_391	100.0	104.414			0.0	294	0.248	39	391	CP001665
dataset_50782	dataset_50786	eae	45_139	100.0	65.663	2snp		0.071	2820	0.148	12	139	ECU59503
dataset_50782	dataset_50786	efa1	11_153	99.979	61.531	2indel		0.0	9672	0.438	14	153	AJ277443
dataset_50782	dataset_50786	espB	13_190	100.0	69.044			0.0	945	0.195	17	190	AF054421
dataset_50782	dataset_50786	espA	22_176	100.0	66.603			0.0	579	0.233	16	176	FM201463
dataset_50782	dataset_50786	espF	2_196	100.0	42.051	4snp		0.641	624	0.5	19	196	AF116900
dataset_50782	dataset_50786	ehxA	7_324	100.0	119.967			0.0	2997	0.116	32	324	HM138194
dataset_50782	dataset_50786	gad	20_267	100.0	93.909	2snp		0.143	1401	0.494	31	267	AP010953
dataset_50782	dataset_50786	prfB	13_547	100.0	45.279			0.0	882	0.222	56	547	CP002970
dataset_50782	dataset_50786	nleB	11_499	100.0	69.592			0.0	990	0.219	51	499	AF453441
dataset_50782	dataset_50786	nleA	12_482	100.0	64.067			0.0	1323	0.3	50	482	AM422003
dataset_50782	dataset_50786	nleC	3_505	100.0	51.593	1snp		0.101	987	0.341	52	505	AP010953

Our agMLST implementation

Two different strategies: by mapping, by assembling

Both of them based on three steps: 1) format DB

aligning / assembly
 scoring

37: agMLST Log File	۲	ø	×	
36: agMLST Profiling	۲	ø	x	
35: agMLST New Alleles	۲	ø	x	

To guarantee compatibily with SRST2, headers of custom fasta files in the format Locus/allele are converted in:

Why Two agMLST tools?

By Contigs/Draft:

you can have draft but not reads...

assemblies are easy to share independent by platform

agMLST by Assembly (Galaxy Version 1.0.1)	▼ Options
Assembly Fasta File	
□ 4 □ 15: BCW_5364.scaffolds	•
virMLST Formatted template	
□ 4 □ 7: agMLST_DB	•
✓ Execute	
What it does This tool is in progress	

By Reads

if you have reads you can assembly them, but you wouldn't comparison of performances with exhisting tools partially assembled genes?

agMLST (Galaxy Version 1.0.1)	✓ Options
Sample Reads	
27: ED1014_ion.fastq	•
Using Paired Reads	
No	•
virMLST Formatted template	
ℓ₂ □ 17: agMLSTDB	•
✓ Execute	

agMLST, how does it work?

By Contigs/Draft: DB blasted against assembly hits are ranked best matches are compared to the DB for new alleles discovery By Reads

reads are aligned against all alleles consensus are generated and ranked best consensus is compared to the DB for new alleles discovery

By Contigs/Draft: raw blast results By Reads: raw align file (pileup/bam)

agMLST, what does it return?

Profiles, they can be easily concatenated and clustered

astA	mchB	mchC	fasA	ehxA	tccP	sfaS	tir	ipaH9.8	cofA	picU	iha	sat	sigA	espI	espJ
NM	3	NM	NM	3	NM	NM	NM	NM	NM	NM	NM	7	NM	NM	34*

agMLST Alleles Pipeline on /clusterfs/galaxy/galaxy-dist/database/files/050/dataset_50925.dat Contigs File

Running blast... Locus : nleC New Allele! closest: 3 Aligned: 987 Identity: 99.59 Mismatches: 4 Gaps: 0 Allele: 11 Locus : nleB New Allele! closest: 2 Aligned: 849 Identity: 99.88 Mismatches: 0 Locus : cif Gaps: 1 Allele: 13 Locus : prfB Allele: 1 Locus : espJ Allele: 8 Locus : iss Locus : stx2A Allele: 70 Allele: 27 Locus : stx2B Locus : lpfA Allele: 3 New Allele! closest: 45 Identity: 99.93 Mismatches: Locus : eae Alianed: 2820 Gaps: Allele: 7 Locus : ehxA Locus : tir New Allele! closest: 34 Aligned: 1617 Identity: 99.88 Mismatches: 2 Gaps: 0 Locus : katP Allele: 1 Allele: 2 Locus : espF Allele: 22 Locus : espA Allele: 1 espP Locus : Locus : efa1 Allele: 11 Allele: 13 espB Locus Allele: 3 Locus : toxB

Log File - Description

New Alleles

>tir NewAllele closeTo 34 ATGCCTATTGGTAATCTTGGCCACAATCCCAATGTGAGAGCTTTAATTCCACCGCCACTGCACCGCCATTACCTTCACAAACCGACGGTGCAGGAGGTGCCCGTA ATCAGCTCATTAACTCAAATGGCCCGATGGGGTCTCGTTTGCTATTTACGCCTATAAGGAATTCTGTTGCTGATGCTGATGCTGATTCTCGTGCCAGTGATAT TCCCGGACTTCCTACAAATCCACTGCGCTTTGCTGCGTCCGAGGTATCTTTGCATGGTGCGCCTTGAAGTTCTTCATGATAAAGGGGGGGCTTGATACTCTT AACTCTGCTATTGGATCTTCGTTATTCCGTGTTGAAACTCGGGATGATGGCAGCCATGTTGCTATCGGGCAAAAAAATGGCCTCGAGACCACTGTTGTTT TAAGTGAGCAAGAGTTTTCTAGCTTACAGTCCCTTGATCCTGAAGGTAAAAACAAATTTGTATTTACTGGAGGCCGCGGCGGCGGCATGCTATGGT GGGGAGGAAAAATCATTGAAATTCATACCTCAACCTCAACCTCCAGCCCCGTGCAGATCCTAAACTTTGGTGCATGGGGACTATTGCTGCAGGTC TGATAGGGATGGCTGCGACGGGGATTGCACAGGCTGTTGCGTTGACTCCAGAGCCGGATGACCCCAATCACTGCCGACCCTGATGCTGCAGCAAACACAGC GAACTAAAAGATGATGTTGCTGCGCAAATAGCAGAACAAGCTAAAGCGGCGGGTGAACAGGCCAGACAGGAAGCTATTGAAAGTAATTCTCAGGCGCAGC AAAAATATGATGAACAGCATGCTAAACGCGAACAGGAAATGTCTCTTTCATCGGGGGGTTGGCTACGGTATTAGTGGTGCGCTGATTCTTGGCGGGGGGAAT TCTGCGCAGGGCAATACTGACACAAGTGGGCCAGAAGAGTCCCCCGGCGAGCAGACGTAATTCGAATGCCAGCCTCGCATCGAACGGGTCTGACACCTCCA GCACGGGCACGGTAGAGAATCCGTATGCTGACGTTGGAATGCCCAGAAATGATTCACTGGCTCGCATTTCAGAGGAACCTATTTATGATGAGGTCGCTGC AGATCCTAATTATAGCGTCATTCAACATTTTTCAGGGAACAGCCCAGTTACCGGAAGGTTAGTGGGAACCCCAGGGCAAGGTATCCAAAGTACTTATGCG CCGCACGTTTCGTTTAA

>eae__NewAllele_closeTo_45

ACCAGAATTCATTTGCAAATGGTGAAAATTATTTTAAATTGAGTTCAGATTCAAAACTGTTAACTCAAAATGCCGCTCAGGATCGCCTTTTTTATACGTT AAAAACAGGTGAAACTGTTGCCAATATTTCTAAATCACAGGGTATCAGTTTATCGGTAATTTGGTCACTGAATAAACATTTATACAGTTCCGAAAGCGAA TCACAGGTTGCAGGCCTGGTTACAACATTATGGAACGGCAGAGGGTAATCTGCAGAGTGGTAATAACTTTGACGGTAGTTCACTGGACTTCTTATTACCGT TCTATGATTCCGAAAACATGCTGGCATTTGGTCAGGTCGGTGCGCGTGCACGTTACATTGACTCCCGCTTTACGGCAAATTTAGGTGCTGGCCAGCGTTTTTTCCT TCCTGAAAATATGTTGGGCTATAACGTCTTCATTGATCAGGATTTTTTCTGGTGATAATACCCGTTTAGGTATTGGTGGCGAATACTGGCGAGACTATTTC TTAATGGCTATTTACCATCATATCCGGCATTAGGCGCCAAACTGATGTACGAACAGTATTATGGTGATAATGTTGCTTTGTTTAATTCCGATAAGTTGCA GTCGAATCCTGGCGCGGCGACCGTTGGTGTAAACTACACTCCGATTCCTCTGGTGACGATGGGGATCGATTACCGTCATGGTACGGGTAATGAAAATGAT CTCCTTTACTCAATGCAGTTCCGTTATCAGTTTGATAAACCGTGGTCTCAGCAAATCGAGCCACAGTATGTTAACGAGTTAAGAACATTATCGGGCAGCC CAGTACGCAGAAGATTCAATTGATCGTTAAGAGCAAATACGGTCTGGATCGTATCGTCTGGGATGATAGCGCATTACGCAGTCAGGGCGGTCAGATTCAG GAAATGGTAATAGTTCTAATAATGTACAGCTCACTATTACCGTTTTACCGAATGGGCAGGTTGTGGACCAGGTTGGGGTAACGGACTTTACCGCTGATAA AACATCGGCTAAAGCGGATGGCATAGAAGCTATTACCTATACCGCGACGGTTAAAAAGAATGGTGTAGCTCAGGCTAATGTCCCTGTAACATTTAGTATT GTATCCGGGACTGCAACTCTTGGGGCAAATAGTGCCAGAACGGATGGTAACGGTAACGCGACCGTAACGCTGAAGTCGGCTACGCCAGGACAGGTCGTCG TGTCTGCTAAAACCGCGGAGATGACTTCGCCACTTAATGCCAGCGCGGTTATATTTGTTGATCAAACCAAGGCCAGTATTACTGAGATTAAGGCTGATAA GATTTTGGGACCCTGAATAAGACTGAAGCAACAACCGATCAGAATGGTTATGCTACTGTAAAAATTATCATCCAATACTCCTGGCAAGGCCATTGTTAGTG CAAAAGTGAGTGGGGTAGGAAGTACAGAAGTTAAGGCTACTACCGTTGAGTTTTTTGCCCCGTTGAGTATTGATGGTGATAAAGTGACCGTAATTGGTACTGG TATCACGGGGGGCTCTGCCAAAGAACTGGTTACAGTATGGTCAGGTTAAGCTACAGGCAACAGGGGGGCAATGGAAAATACACATGGAAATCCAGTAATACT AAAATTGCTTCTGTTGATAACTCGGGAGTGATAACCTTAAATGAAAAAGGGAGTGCCACAATTACTGTAGTATCTGGTGATAATCAGAGTGCGACATACA CAATTAATGCACCGGGTAGTATTGTAATTGCTGTGGGATAAAAATACTCGAGTTACGTATTTTGATGCCGAAAACAAATGTAAGACAAATAGCGCAAATTT AAACAATCCTCTTCTGAACAGTCATCAGGTGTATCAAGCACATATGATTTGGTTACGAAGAACCAGTTGATCAATGTTGGAGTAAACAATAAGAATGCTT TTTCTGTTTGTGTAAAATAA

Trimmed Reads Ion

- Galaxy	7						An	alyze Data	a Workflow	Shared Data	Visualization -	Help -
Sample	ST	adk	fumC	gyrB	icd	mdh	purA	recA	mismatches	uncertainty	depth	maxMAF
dataset_1340	21	16	4	12	16	9	7	7	0	-	13.5141428571	0.125

AGMLST

SRST2 7 loci

SRST2 Custom DB

agMLST DB reformat

agMLST by Mapping

agMLST by Assembly

Concatenate agMLST profiles

	- Galaxy	/				Ana	lyze Data	Wo	orkflow	Shared	l Data -	Visua	lization -	Help -	User v	
\rightarrow	Sample	cif	eae	efa1	ehxA	espA	espB	es	pF e	spJ	espP	gad	iha	is	s katl	Р
	dataset_1340	2_65*	45_139*	11_153	7_324	22_176	13_190	2_	196* 1	_210	1_864	20_26	7* 14_	344* 8_	391 1_4	08
			Galax	V					Analyze I	Data \	Workflow	Share	d Data -	Visualizat	ion - Help	p 🕶
			_													
			Sample	DB	gene	e allele	cover	age	depth	diffs	unce	rtainty	divergen	ce lengt	h maxMA	F (
			dataset_1340	dataset_13	32 stx2	A 70_6	83 10	0.0	17.424				0	.0 96	0 0.11	1
			dataset_1340	dataset_13	32 stx2	B 27_7	54 10	0.0	20.546				0	.0 27	0 0.03	7
		~	dataset_1340	dataset_13	32 iha	14_3	44 10	0.0	29.439	10sn	ip		0.47	78 209	1 0.	5
		7	dataset_1340	dataset_13	32 espJ	1_21	0 10	0.0	16.4				0	.0 65	4 0.08	3
			dataset_1340	dataset_13	32 espi	1_86	4 10	0.0	20.448				0	.0 77	4 0.09	1
			dataset_1340	dataset_13	32 IptA	3_41	3 10	0.0	14.908				0	.0 57	3 0.12	5
			dataset_1340	dataset_13	32 katP	1_40	8 10	0.00	20.82				0	.0 221	1 0.10	5
			dataset_1340	dataset_13	32 cif	2_65	99.	882	15.822	lind	el		0	.0 84	9 0.09	1
			dataset_1340	dataset_13	32 toxe	3_84	9 10	0.00	23.012	2			0	.0 950	1 0.	2
			dataset_1340	dataset_13	32 tir	34_8	44 10	0.0	15.558	2snp)		0.14	24 161	/ 0.08	3
			dataset_1340	dataset_13	32 ISS	8_39	1 10	0.0	31.831	2			0	.0 29	4 0.04	8
			dataset_1340	dataset_13	32 eae	45_1	39 10	0.0	16.454	2snp)		0.0	/1 282		1
			dataset_1340	dataset_13	32 efal	11_1	53 IU	0.0	18.118				0	.0 967	2 0.36	4
			dataset_1340	dataset_13	32 espi	13_1	90 IU 76 I0	0.0	10.308				0	.0 94	0.11	8 2
			dataset_1340	dataset_13	32 esp	22_1	76 IU	0.0	19.769	1.000			0	.0 57	9 0.05	5
			dataset_1340	dataset_13	32 espr	2_19		0.0	18.55	Isnp)		0	16 62	4 0.47	8 ว
			dataset_1340	dataset_13	32 enx/	× 7_32	4 10	0.0	21.649	1			0	.0 299	7 0.08 1 0.45	3
			dataset_1340	dataset_13	sz gad	20_2	47 10	0.0	20.141	Isub			0.0	140	1 0.45 D 0.72	/ 2
			dataset_1340	dataset_13	DDZ prrs	11 4	47 IU	0.0	10 507				0	.0 88	2 0.33	5
			dataset 1240	dataset_13	122 nies	11_4	99 IU 97 IU	0.0	10.307	1.000			0.07	.0 99 76 122	0 0.09	5 E
			dataset 1240	dataset_13	1002 IIIEA	15_4	0 10	0.0	20.320	1snp			0.07	10 132	J 0.00	J 1
			ualaset_1540	uataset_13	52 niec	0_50	0 10	0.0	14.332	4500			0.40	98	/ 0.09	T

AGMLST

SRST2 7 loci

SRST2 Custom DB

agMLST DB reformat

agMLST by Mapping

agMLST by Assembly

Concatenate agMLST profiles

AGMLST

SRST2 7 loci

SRST2 Custom DB

agMLST DB reformat

agMLST by Mapping

agMLST by Assembly

Concatenate agMLST profiles

•	
85: agMLST New Alleles File	• / %
4 sequences	
format: fasta, database: ?	
🔚 🕕 🖏	27 🖻
<pre>>tirNewAllele_closeTo_34</pre>	
ATGCCTATTGGTAATCTTGGCCACAATCCCAATGTGAGAGCTTTAATTCCACCTGCA	CCGCCATTACCTTC/
ATCAGCTCATTAACTCAAATGGCCCGATGGGGTCTCGTTTGCTATTTACGCCTATAA	GGAATTCTGTTGCT
TCCCGGACTTCCTACAAATCCACTGCGCTTTGCTGCGTCCGAGGTATCTTTGCATGG	TGCGCTTGAAGTTC
AACTCTGCTATTGGATCTTCGTTATTCCGTGTTGAAACTCGGGATGATGGCAGCCAT	GTTGCTATCGGGCA/

TAAGTGAGCAAGAGTTTTCTAGCTTACAGTCCCTTGATCCTGAAGGTAAAAACAAATTTGTATTTACTGGAC

L	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
sample	ID	ast	A	cnf1	CO	fA	eae	ea	atA	efa1	e	peA	esp/	4	espB
t	pic	prf	В	rpeA	sa	t	senB	ce	elb	sepA	S	faS	sigA	4	sta1
test9	NM	NM	NM	NM	NM	NM	NM	22	NM	NM	2	NM	NM	1	NM

	🗧 Galaxy					Analyze Da	ata W	orkflow !	Shared Data -	Visualiza	tion - Help -
	# agMLST Allele	es Pipeline on /Users/ma	ssimilia	noorsini	/Sftw/ga	laxy/data	base/f	iles/001	/dataset_1	403.dat 1	Reads File
	<pre># DB Statistics Error: Read 6/1 libc++abi.dylib (ERR): bowtie2- [samopen] SAM h [mpileup] 1 sam</pre>	. Loci : 78. Alleles: 8 4/2016 21:56:14 program b: terminating with unca- align died with signal ueader is present: 879 s pples in 1 input files	79 started ught exc 6 (ABRT) equences	has mor eption c	e read c of type i	haracters .nt	than	quality	values.		
	<mpileup> Set m</mpileup>	hax per-file depth to 80	00		- 1 - A	Tudala			N-	Tanakt	True and a d
	# summary.	10cus Horcov Vertu	ov	Assen	ывтеа	Inders	M1Sm	atches	NS 204	Lenght	Expected
	#passing	59_188_5_300 91.2	00.0	12	0.96	0	23	291	294	0.07	
	#passing	526508	98.9	13	986	0	2	10	986	987	
	#passing	34111a13343	100 0	10	2002	0	1	12	2082	2091	
	#passing	32elixA7324	100.0	10	2990	0	1	60	2990	2337	
7	#passing	32elixA5522	97.0	14	2995	0	0	09	2995	2997	
	#passing	31 gad 9 256 92 0	33.1	1200	577	0	110	1300	1401	575	
	#passing	17 ocpp 13 100	200	5	944	1	0	1399	944	045	
	# nocpassing	56 prfB 13 547	99.9	5	944	0	2	0	944	943	
	#passing #pagging	17 eepB 9 186	92 4	3	944	0	4	71	944	945	
	#passing	39 jes 13 396	95.0	13	341	ő	0	16	341	342	
	#pagging	34 iba 12 342	95.9	4	2089	ő	ň	83	2089	2091	
	# notnassing	14 efal 10 152	96.8	6	9670	4	5	310	9670	9672	
	# notpassing	17_espB_10_187	91.9	5	943	1	0	75	943	945	
	#passing	16 espA 23 177	92.1	10	577	0	õ	44	577	579	
	# notpassing	12 eae 45 139	99.9	17	2819	1	2	1	2819	2820	
	#passing	72 tir 32 842	94.6	8	1616	0	0	87	1616	1617	
	#passing	14 efal 11 153	97.6	7	9669	0	6	231	9669	9672	
	# notpassing	22 espP 3 214	100.0	13	3902	5	1	0	3902	3903	
	#passing	72 tir 34 844	98.2	8	1615	0	0	27	1615	1617	
	#passing	39 iss 6 389 92.2	2	292	0	0	21	292	294		
	#passing	39 iss 8 391 98.3	11	293	0	0	4	293	294		
	#passing	52 nleC 3 505	98.0	13	986	0	3	19	986	987	
	<pre># notpassing</pre>	73_toxB_4_850	100.0	15	9500	8	0	2	9500	9501	

2 lines																								
format	tabula	r, dat	abase	e: <u>?</u>																				
[H[2J# ;	agMLST	Allel	es Pip	oeline	on /U	sers/	/massi	milia	noors	ini/Sft	w/g	alaxy/	datab	ase,	files/0	01/d	atase	t_1403	.dat	Read	s File #	ŧ		
										# DB S	tati	stics. L	oci : 7	78. /	Alleles:	879 #	# sun	nmary.	locu	s Hor	Cov Ve	ertCo)	
•	0 🖄																						0	4
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	ļ
sample	ID	ast	A	cnf1	co	fA	eae	е	atA	efa1		epeA	esp/	A	espB	esp	oC	espF	b1	fpA	espI	e	spJ	
t	pic	prf	в	rpeA	sa	t	senB	C	elb	sepA		sfaS	sig/	A	sta1	st)	stx1A	st	tx1B	stx2A	s	tx2B	

76: agMLST Profiling

AGMLST

SRST2 7 loci

SRST2 Custom DB

agMLST DB reformat

agMLST by Mapping

agMLST by Assembly

Concatenate agMLST profiles

🚽 Galaxy

Analyze Data	Workflow	Shared Data 🕶	Visualization -	Help
--------------	----------	---------------	----------------------------	------

• / %

0

#	agMLSI	' A	lleles	Pipeline	on /Users/	mass:	imilianoors	ini/Sf	tw/galaxy/da	atabase/files/001/	datas	set_1375.	dat	Contigs	File
#	Runnin	g	blast.	••											
#	Locus	:	nleC	New Alle	le! closes	t: 3	Aligned:	987	Identity:	99.59 Mismatches	: 4	Gaps:	0		
#	Locus	:	nleB	Allele:	11										
#	Locus	:	cif	New Allel	e! closest	: 2	Aligned:	849	Identity:	99.88 Mismatches:	0	Gaps:	1		
#	Locus	:	prfB	Allele:	13										
#	Locus	:	espJ	Allele:	1										
#	Locus	:	iss	Allele:	8										
#	Locus	:	stx2A	Allele:	70										
#	Locus	:	stx2B	Allele:	27										
#	Locus	:	lpfA	Allele:	3								-		
#	Locus	:	eae	New Allel	e! closest	: 45	Aligned:	2820	Identity	: 99.93 Mismatche	s: 2	2 Gaps:	• 0		
#	Locus	:	ehxA	Allele:	7										
#	Locus	:	tir	New Allel	e! closest	: 34	Aligned:	1617	Identity	99.88 Mismatche	s: 2	2 Gaps:	0		
#	Locus	:	katP	Allele:	1										
#	Locus	:	espF	Allele:	2										
#	Locus	:	espA	Allele:	22										
#	Locus	:	espP	Allele:	1										
#	Locus	:	efal	Allele:	11										
#	Locus	:	espB	Allele:	13										
#	Locus	•	TOXB	ATTELE:	3										
#															

AGMLST

SRST2 7 loci

SRST2 Custom DB

agMLST DB reformat

agMLST by Mapping

agMLST by Assembly

Concatenate agMLST profiles

	Concatenate agMLST profiles (version 1.0.0)	
	Input Files	
	Input Files 1	
	Dataset: 63: agMLST Profiling	
7	Remove Input Files 1	
	Input Files 2	
	Dataset: 76: agMLST Profiling \$	
	Remove Input Files 2	
	Add new Input Files	
	Execute	/

	89: SRST2 All 4 lines format: tabula	<mark>leles M</mark> ar, data	<u>Iulti San</u> abase: <u>?</u>	<u>ipleTab</u>	<u>ole</u>				• (7 🗙
	1	2	3	4	5	6	7	8	9	10
	Sample	cif	eae	efa1	ehxA	espA	espB	espF	espJ	espP
,	dataset_1340	2_65*	45_139*	11_153	7_324	22_176	13_190	2_196*	1_210	1_86
	dataset_1340	2_65*	45_139*	11_153	7_324	22_176	13_190	2_196*	1_210	1_86
	dataset_1339	2_65*	45_139*	11_153	7_324	22_176	13_190	2_196	1_210	3_21

/

Why, do not concatenate all?

📲 Galaxy / ARIES - ISS

To improve Scoring Algorhitms

To improve new alleles discovery (working on protein sequence?) To set parameters for different platforms

agMLST it's just a starting point, help us to help you...

Let's try it...

