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Management of rhabdomyosarcoma (RMS), the most common soft tissue

sarcoma in children, frequently accounting the genitourinary tract is complex

and requires a multimodal therapy. In particular, as a consequence of the

advancement in dose conformity technology, radiation therapy (RT) has now

become the standard therapeutic option for patients with RMS. In the clinical

practice, dose and timing of RT are adjusted on the basis of patients’ risk

stratification to reduce late toxicity and side effects on normal tissues.

However, despite the substantial improvement in cure rates, local failure and

recurrence frequently occur. In this review, we summarize the general

principles of the treatment of RMS, focusing on RT, and the main molecular

pathways and specific proteins involved into radioresistance in RMS tumors.

Specifically, we focused on DNA damage/repair, reactive oxygen species,

cancer stem cells, and epigenetic modifications that have been reported in

the context of RMS neoplasia in both in vitro and in vivo studies. The precise

elucidation of the radioresistance-related molecular mechanisms is of pivotal

importance to set up new more effective and tolerable combined therapeutic

approaches that can radiosensitize cancer cells to finally ameliorate the overall

survival of patients with RMS, especially for the most aggressive subtypes.
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Introduction

Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is a highly aggressive soft tissue

sarcoma (STS) that primarily affects pediatric patients, accounting

for 5% of all childhood cancers and representing 3% of STS in

adult, for whom it has a worse prognosis. As shown in Figure 1, the

most common RMS location is in the head and neck region (35%–

40%), genitourinary tract (bladder/prostate, 11%), genitourinary

tract non-bladder/prostate (male, 12%; female, 5%), and limbs

(16%). Signs and symptoms at presentation will depend on the site

of the primary tumor, whether there is extension into contiguous

organs, and, in some cases, the presence of metastatic disease (1).

Originally, two major subtypes of RMS were recognized:

embryonal RMS (ERMS), preferring male children, and alveolar

RMS (ARMS), which remains constant throughout childhood and

adolescence, showing the worse prognosis. Others two rarer RMS

subtypes are the pleomorphic RMS and the spindle cell/sclerosing

RMS, which typically occur in adults and children, respectively (2,

3). ARMSs more frequently carry t (2;13)(q35;q14) or t(1;13)(p36;

q14) chromosomal translocations that, juxtaposing Paired box

gene 3 (PAX3) on chromosome 2 or PAX7 on chromosome 1

with Forkhead box protein O1 (FOXO1) on chromosome 13,

generate PAX3–FOXO1 and PAX7–FOXO1 fusion genes,

respectively, and finally transcribe/translate into pro-oncogenic
Frontiers in Oncology 02
fusion proteins with an aberrantly enhanced transcriptional

activity (4, 5). Because fusion protein presence correlates with a

poorer prognosis, nowadays, the preferred RMS classification is

expressing, i.e., “fusion positive” (FP-RMS), or not expressing

fusion protein, i.e., “fusion negative” (FN-RMS) (6). ERMSs (FN-

RMS tumors), more frequently present various mutations largely

converging on a limited number of pathways, also perturbed in FP-

RMSs, indicating some commonality in the molecular driving

forces in RMS (2). FN-RMSs often harbor a mutation affecting

mitogen-activated protein kinases and/or PI3K–AKT–mTOR

pathways (7, 8), aberrantly activated also in FP-RMS, to the

ability of fusion proteins to activate several cell surface receptor

tyrosine kinases upstream of these pathways (5). Notably, patients

with FN-ARMS are clinically and molecularly indistinguishable

from ERMS (9).

This review presents a brief overview of the guidelines for the

diagnosis and treatment of RMS, with particular emphasis on

the role of radiotherapy (RT) and on the molecular mechanisms

mainly responsible for radioresistance, focusing on possible

candidate radiosensitizing strategies in RMS. In particular,

after summarizing the key principles of the management of

the patient with RMS, from diagnosis to treatment, focusing on

the role of RT and on the novelties in terms of indications,

therapy schemes, and treatment techniques, we will analyze the

principles of radiobiology and of the RMS and, therefore, the

molecular mechanisms of radioresistance.
FIGURE 1

Distribution of primary sites for rhabdomyosarcoma. The head and neck site may be subdivided as 7% orbit, 8% other head, 23% parameningeal, and
9% non-parameningeal. The pelvic sites may be subdivided as 11% bladder and prostate, and 5% female genital or 12% male non-bladder/prostate.
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RMS diagnosis and staging

After the head and neck site (35%–50%), the genitourinary

tract represents the primary site for around 20%–25% of RMS

pediatric patients, resulting as exceedingly rare in adults (10, 11).

Vagina or uterus, favorable sites, are more frequently involved,

followed by the kidney, bladder, or prostate, considered as

unfavorable sites (12, 13). At the onset, hematuria and urinary

obstruction represent the signs and symptoms more frequent,

whereas 10%–20% of pediatric and 40% of adult patients present

distant metastases. RMS diagnosis requires, in addition to

standard laboratory (complete blood counts, electrolytes, renal

function tests, liver function tests, and urinalysis), the direct

evaluation of tumor tissue derived from either an incisional/

excisional biopsy or a core needle biopsy (1) magnetic resonance

imaging, for local staging, and computed tomography (CT) and

[F-18]2-fluoro-2-deoxyglucose positron emission tomography

(18F-FDG PET)/CT), for systemic staging and the risk

stratification (14, 15). TNM staging is based on the anatomic

location and invasiveness of the primary tumor, tumor size,

nodal status, and extent of metastasis (Tables 1, 2). Intergroup

Rhabdomyosarcoma Study Group (IRSG) establishes risk group

stratification, identifying low-, standard-, high, or very high–risk

patients. The clinical subgroup is primarily determined by IRSG

group, lymph node involvement, fusion protein expression, site,

and age (16, 17). Risk stratification is summarized in Table 3.

The bioptic samples must be subjected to a series of histology

and molecular pathology studies aimed at measuring myogenic

markers like desmin, skeletal alpha-actin, myosin, and

myoglobin and early myogenesis transcription factors like
Frontiers in Oncology 03
MyoD and myogenin (18). The analysis of these markers is

achieved with immunohistochemical assays, and it is combined

with cell morphological assessment in light microscopy, used to

distinguish RMS from other childhood neoplasms also

expressing myogenic proteins (18). More recently, molecular

analysis has become an essential tool for differential diagnosis

and classification of RMS (Figure 2). Specifically, Real-Time

PCR (RT-PCR) and Fluorescence in situ hybridization (FISH)

assays designed to measure the expression of fusion gene PAX3–

FOXO1 or PAX7–FOXO1 are very useful to identify subsets of

ARMS, and microarray genome-wide RNA expression

techniques have been shown to generate, through various

statistical algorithms, “diagnostic signatures” of the FP-RMS

and FN-RMS categories (2).
RMS treatments

Treatment of locally and locally advanced RMS is mainly

based on surgery (14, 15), although, aggressive surgery, often

necessary to achieve tumor debulking and negative microscopic

margins, is no longer recommended (19). This is particularly true

for genitourinary RMS, to avoid significant long-term morbidities

such as urinary diversion, infertility, and sexual dysfunction

particularly. Therefore, except for paratesticular tumors (20), the

standard care of RMS, genitourinary and non-genitourinary,

usually provides neoadjuvant chemotherapy (CHT) followed by

RT or concomitant CHT/RT followed or not by excision (14, 15).

In 20% of patients with genitourinary RMS, a close follow-up with

imaging is a reasonable alternative to aggressive surgery (14, 15).
TABLE 2 TNM stage for rhabdomyosarcoma.

stage Primary site TNM stage Tumor size Regional nodes Distant metastasis

1 Favorable* T1 or T2 Any size N0 - N1 - Nx M0

2 Unfavorable T1 or T2 ≤5 cm N0 - Nx M0

3 Unfavorable T1 or T2 ≤5 cm N1 M0

>5 cm N0 - N1 - Nx

4 Any T1 or T2 Any size N0 - N1 - Nx M1
*Favorable sites: orbit; non-parameningeal head and neck; genitourinary tract other than kidney, bladder, and prostate; and biliary tract.
TABLE 1 TNM classification for rhabdomyosarcoma.

T: Tumor Stage

T1: Confined to anatomic site of origin T1a: ≤5 cm T1b: >5 cm

T2: Extension and/fixative to surrounding tissue T1a: ≤5 cm T1b: >5 cm

N: Regional Nodes

N0: Not clinically involved N1: Clinically involved NX: Clinical status unknown

M: Metastases

M0: No distant metastases M1: Distant metastases present
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In support of a delayed surgery, it has been shown that, despite

RMS can persist after a neoadjuvant approach (21, 22), the

rhabdomyoblasts found in subsequent biopsies progressively

decrease and their presence do not necessarily predict local

recurrence (23, 24). Thus, aggressive surgical resection, followed

or not by RT, is usually performed for recurrent and metastatic

RMS (25, 26). CHT is based on IVA (ifosfamide, vincristine, and

actinomycin D) or VAC (vincristine, actinomycin D, and

cyclophosphamide), respectively used, with no difference, in
Frontiers in Oncology 04
Europe or in North America (27, 28). Combining doxorubicin

improves IVA, inducing several treatment-related adverse events

(29). Low-dose maintenance CHT has been shown to improve

outcome (30). Trabectedin is commonly used as a second line

(31), whereas several clinical trials conducted to test the effects of

several molecular targeted drugs combined or not with other

targeted therapies or CHT had not shown significant clinical

improvement (32–40). However, because of CHT-induced

toxicities, pharmacological treatments are often interrupted (41).
FIGURE 2

The role of molecular analysis for differential diagnosis and classification of RMS. Molecular analysis helps to identify the subtypes and classify RMS.
TABLE 3 European Paediatric Soft Tissue Sarcoma Study Group staging of rhabdomyosarcoma.

Risk Group Subgroups FP (+)
FN (-)

IRS Group Site Node Stage Age / Size

I = R0 or Complete Favorable N0 Favorable
<10y / <5cm

II = R1 or Microscopic disease or
primary complete resection but N1

III = R2 or Macroscopic Disease Unfavorable N1 Unfavorable
>10y / >5cm

IV = Distant Metastases

Low A – I R0 Any N0 A(F)+S(F)

Standard B – I R0 Any N0 A(F) or S(F)

Standard C – II R1 Favorable N0 Any

III R2

High D – II R1 Unfavorable N0 Any

III R2

High E – II R1 Any N1 Any

III R2

High F + I R0 Any N0 Any

II R1

III R2

Very High G + II R1 Any N1 Any

III R2

Very High H Any IV Metastases Any Any Any
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Current status of radiation treatment in
RMS

Achieving local tumor control with the first-line treatment is

crucial for patients with RMS (42). RT plays an increasingly

critical role in the management of RMS for local control both at

primary and metastatic sites and continues to be a major

treatment modality for genitourinary RMS (43–49). Because

routine use has been encouraged by the EpSSG RMS 2005

study (44), RT has been shown to improve the event-free

survival rate of patients, whereas local failures have been

shown to be more frequent when the irradiation is omitted

(50). The dose, duration, and timing of external beam radiation

therapy, in which x-rays can penetrate deeper in the tissues while

minimizing skin irradiation and side effects (51), depend on the

patient’s age, RMS type and histology, the site of origin of the

tumor, how much tumor remained after surgery, and the local

lymph nodes involvement. Table 4 resumes treatment schedules

(15, 52, 53). In case of adult patients with RMS, RT can provide a

total dose from 50 up to 70 Gy, conventionally delivered (54–

56). The use of hyperfractionated (hFRT) regimen, smaller doses

per single fraction, performed by the large, randomized IRS-IV

study, failed (57). This failure, however, has permitted to revise

the radiobiology of RMS, as later discussed. On the other hand,

the use of hyperfractionated (HFRT) regimen, larger doses per

single fraction, delivered in combination or not with CHT, did

not give significant advantages (58–70). Thus, the RMS response

to RT appears to go far beyond the simple dose problem because,

as for other highly radioresistant tumor types, RMS appears

capable of activating a complex biological response

supporting radioresistance.
Frontiers in Oncology 05
The radiobiology of RMS: The linear
quadratic model and the question of
dose

Radiobiology has been classically focused on achieving the

greatest possible difference between a high probability of local

tumor control [tumor control probability (TCP)] and a low risk

of normal tissue complications [normal tissue complication

probability (NTCP)], namely, therapeutic window. In fact,

whether increasing the dose improves TCP, because of the lack

of technology able to spare normal tissues, it also increases

NTCP. Thus, RT has been long delivered by using daily fractions

of 1.8–2.2 Gy, the conventional fractionation, which is still

largely used today. The reason why conventional fractionation

guarantees the best therapeutic window depends on the concept

that normal cells repair sublethal damages more efficiently than

cancerous cells, as shown from the linear quadratic model (LQ)

(71) and from of “4Rs” of radiobiology (72). Briefly, LQ is a

mathematical model describing the relationship between cell

survival and delivered dose, and it is represented by the equation

S = e− (71). The probability to survive (S) of a cell/tissue type to a

single dose of radiation depends on the ratio between two

factors: i) the number of cells directly killed by double-strand

breaks (DSBs), namely, a; and ii) the number of cells that, having

saturated the repair mechanisms, die for the accumulation of

sublethal unrepaired single-strand breaks (SSBs), namely, b. The

a/b ratio indicates the fraction size sensitivity of a tissue, with b

indicating the ability of cell to repair SSBs. Hence, cells with a

low a/b ratio efficiently repair SSBs, contrary to cells with a high

a/b ratio (71). Notably, doses of RT close to 1.8–2.2 Gy induce

thousands of repairable SSBs and few DSBs (73–75), thus
TABLE 4 Doses and fractions of radiotherapy for patients over 3 years of age.

Conventional Radiotherapy (Age > 3 years)

IRS Group ERMS ARMS

I = R0 or Complete

II = R1 or Microscopic Disease

III = R2 or Macroscopic Disease

I No radiotherapy 41.4 Gy in 23 fractions

II 41.4 Gy in 23 fractions 41.4 Gy in 23 fractions

III 50.4 Gy in 28 fractions 50.4 Gy in 28 fractions

III ! R0 after reoperation 36 Gy in 20 fractions 41.4 Gy in 23 fractions

41.4 Gy in 23 fractions

Complete clinical response to Chemotherapy and no surgery 41.4 Gy in 23 fractions 50.4 Gy in 28 fractions

Partial clinical response to Chemotherapy and no surgery 45 Gy in 25 fractions 50.4 Gy in 28 fractions + boost 5.4 Gy in 3 fractions

Stable clinical response to Chemotherapy and no surgery 50.4 Gy in 28 fractions + boost
5.4 Gy in 3 fractions

50.4 Gy in 28 fractions + boost 5.4 Gy in 3 fractions

Orbital 45 Gy in 25 fractions
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indicating that the proportion of cells surviving to conventional

fractionation strictly depends on the ability to repair SSBs. Thus,

because cancer cells less efficiently “R”epair SSBs than normal

cells, cancer cells slower “R”edistribute cell cycle from RT-

induced G2/M arrest, less efficiently “R”epopulate killed cancer

cells, and result more affected by the “R”eoxygenation of the

central portions of the tumor induced by the progressive

reduction of the peripheral regions. Those are the “4Rs” of

radiobiology, historically supporting the efficiency of the

conventional fractionation (72). However, after a long time, it

was shown that not all cells within cancer population and not all

patients with the same tumor have the same sensitivity to RT,

introducing the fifth “R”, the “R”adiosensitivity (76). Thus,

considering the technological evolution of RT that nowadays

permits the safety delivery of larger fractions (77), the use of

HFRT or Stereotactic Body Radiation Therapy (SBRT), ablative

dose of radiation, has been proposed as strategy to overcome the

intrinsic radioresistance of cancer. Furthermore, this choice is

also supported by the fact that increasing evidence shows the

ability of HFRT and SBRT to “R”eactivate the anti-tumor

immune response, the sixth “R” of radiobiology (78). As

previously discussed, the use of higher dose per fraction has

been also proposed for RMS as a consequence of the low a/b

ratio (2.8 Gy) shown for this cancer type (79). However, the use

of HFRT for the treatment of RMS did not lead to any

improvement in efficacy (58–70), as already described for

other cancer types (80–84). Despite being a milestone in the

multimodal treatment of pediatric RMS, RT is still significantly

associated with local failure in most cases of tumor relapse, and

the RMS response to radiation appears to go far beyond the

simple dose problem. Indeed, together with the development of

more sophisticated and effective technologies, overcoming
Frontiers in Oncology 06
radioresistance seems to be not just a question of dose but

rather of understanding the cellular mechanisms that support

radioresistance to identify future radiosensitizing strategies.
Mechanisms of radioresistance in
RMS

As other highly radioresistant tumor types, RMS appears

capable of activating a complex biological response that makes

them capable of resisting even high radiation doses. Therefore, it

is necessary to deeply elucidate the precise mechanisms that are

responsible for the radioresistance in RMS to identify new

radiosensitizing therapeutic strategies. Over the last years,

different studies have identified several key cellular and

molecular factors, including DNA damage and repair,

oxidative stress, tumor microenvironment, cancer stem cells

(CSCs), and tumor heterogeneity (Figure 3), which are implied

in RMS radioresistance and are discussed in detail in the

following subsections.
RT and DNA breaks/damage response-
related pathways

Ionizing radiations used in RT are electrically charged

particles, which deposit energy in the tissues that they pass

through, killing cancer cells or causing genetic changes that lead

to cancer cell death (85). On a cellular level, the biological target

of radiation is DNA, by inducing several types of DNA damages

involving one strand (SSBs) or both strands of DNA (DSBs) (86,

87). Although radiations damage both cancer and normal cells,
FIGURE 3

Molecular mechanisms responsible of radioresistance. Several key cellular and molecular factors, including DNA damage and repair, oxidative
stress, tumor microenvironment, cancer stem cells (CSCs), and tumor heterogeneity, are implied in RMS radioresistance.
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cancer cells are generally less efficient in repairing damages

caused by RT, resulting in differential killing outcomes (88).

DSBs, the most lethal form of DNA damage and a primary cause

of cell death induced by RT, can be divided in simple and

complex types. Simple DSBs are two-ended breaks of DNA,

usually directly consequent to the action of radiation, whereas

complex DSBs are clusters of different DNA damages including

single-base mutations, insertions, and deletions and/or SSBs

around DSBs, generally indirectly induced by radiation

through the production of reactive oxygen species (ROS) (89–

93). Thus, contrary to SSBs and simplex DSBs, complex DSBs

are usually inefficiently repaired, determining genomic

instability and cell death (94–96) although cancer cells can

activate specific DNA damage repair mechanisms, thus

surviving the following irradiation (92). The homologous

recombination (HR) and the non-homologous end joining

(NHEJ) mechanisms represent the most prominent pathways,

orchestrating the DNA damage response (DDR) in eukaryotic

cells. HR uses homologous sequences of undamaged sister

chromatid as a template to repair DSBs, thus resulting in an

error-free DDR mechanism (97). HR is mainly regulated by the

MRN complex (Mre11–Rad50–Nbs1), which recognizes DSBs

recruiting activated ataxia-telangiectasia mutated (ATM) that, in

turn, orchestrates the activity of Breast Cancer gene 1 (BRCA1),

Breast Cancer gene 2 (BRCA2), Checkpoint kinase 2 (CHK2),

RAD51, and tumor protein 53 (p53)—key factors involved in

HR. Parallelly, ATR (ataxia-telangiectasia mutated and Rad3-

related) kinase attenuates DSB-induced ATM activation by

switching DSB ends from an ATM-activating mode to an

ATR-activating model (98) and activates CHK1 that slows or

arrests cell cycle progression, thus allowing more time for DNA

repair (99). Mutation inactivating BRCA1 and/or BRCA2 and/or

other(s) gene(s) of the HR pathway, namely, the “BRCAness”

status, permits to stratify HR-deficient (HRD) from HR-

proficient (HRP) cancers (100) and to identify HRD as more

sensitive to “synthetic lethality” mediated by PARP inhibitor

(PARPi) (101, 102). The “BRCAness” phenotype has been

shown in several types of sarcomas (103–105), including RMS

(106, 107), although the ability of RMS to activate HR-mediated

DDR is not excluded (108, 109). On the benchside, RMS biopsies

overexpressing PARP1, PARP2, and PARP3 mRNAs compared

with normal skeletal muscle and PARPi have been demonstrated

to affect growth, survival, and radiation susceptibility of human

ARMS and ERMS cell lines (110, 111). However, on the bedside,

clinical trials testing PARPi on sarcomas, not including RMS,

failed (112, 113), whereas a recent phase I trial (NCT02787642)

combining the PARPi with RT in locally advanced/unresectable

STS, including RMS, is going to give encouraging downstaging

and survival rates (114). Therefore, using PARPi could

radiosensitize RMS independently of HRD or HRP phenotype

because conventional RT, causing thousands of SSBs, would

saturate the HRmechanisms inducing, in the presence of PARPi,

RMS death, as already shown for other cancer types (115).
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Another potential target to affect ERMS radiosensitivity is c-

Myc, whose downregulation through the inhibition of the MEK/

ERK pathway has been demonstrated to in vitro and in vivo

cause cell death by promoting the radiation-induced DNA DSB

damage and impairing the DNA DSB repair machinery (116).

NHEJ is the major DDR pathway activated by RT (117). Unlike

HR, NHEJ re-ligates two broken DNA strands mainly through

DNA-dependent Protein Kinase catalitic subunit (DNA-PKcs)

that, complexing with Ku70/Ku80 heterodimer and DNA

polymerase m (Pol m) and Pol l, and in collaboration with

XRCC4, XLF, LIG4, and PAXX, orchestrates this prone-error

repair process. Moreover, DNA-PKcs has been shown to

interplay with HR pathway, suggesting its pleiotropic role in

regulating DDR (118). Targeting DNA-PKcs has been supposed

to be a critical radiosensitizing strategy (89, 119), and, nowadays,

several inhibitors, with a high selectivity and a valid

pharmacokinetics, are available (118), including peposertib

that is investigated by several clinical trials, in combination

with RT or CHT plus RT, across a variety of cancer types

(NCT02516813, NCT02316197, NCT03770689, NCT04555577,

NCT04533750, and NCT03907969). Preclinical evidence shows

that inhibiting DNA-PKcs sensitizes sarcoma to RT (120, 121),

although no RMS cells have been investigated. However, several

studies suggest a role for DNA-PKcs in RMS radioresistance.

Specifically, DNA-PKcs has been shown to promote

sarcomagenesis (122) and to sustain the activity of c-Myc

(123) and AKTs (124), which are known to foster

radioresistance in ERMS (116, 125–127) and ARMS tumors

(128). Thus, it seems unlikely that DNA-PKcs targeting will not

lead to an RMS radiosensitization. Notably, several molecules

have been identified as upstream regulators of DDR in RMS

including ERKs (126, 129), DNA methyltransferases 3A

(DNMT3A) and DNMT3B (130), BET proteins (131), ephrin-

A2 (132), caveolin-1 (CAV-1) (128), nuclear factor erythroid 2–

related factor 2 (NRF-2) (133), c-Myc (116), SNAI2 (134), FAK

(135), androgen receptor (136), and HDAC (137–139). Thus,

another strategy to target DDR could be inhibiting these

upstream molecules.
RT and antioxidant response

RT mainly kills cancer cells by inducing the generation of

ROS, which, in turn, represents the main induction mechanism

of DSBs (140). Furthermore, the production of ROS can persist

for several months after RT, thus enhancing the curative effects

of treatment (141). However, cancer cells can activate an

antioxidant stress response able to protect cells against ROS

injury during RT exposure (142, 143). Kelch-like ECH-

associated protein 1 and NRF2, respectively, inhibits and

promotes the antioxidant response by upregulating the

expression of downstream genes, such as peroxiredoxins

(PRDXs), superoxide dismutases (SODs), catalase (CAT), and
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glutathione peroxidases 4 (GPx4) (144). The radiosensitizing

effects of targeting antioxidant response in cancer cells shown on

the benchside (145) have been recently confirmed on the bedside

(146–148). ROS levels are critical for RMS homeostasis (149),

and their modulation results are critical for the response to

therapies (150). Irradiated RMS upregulates NRF2, SODs, CAT,

and GPx4 expression, whereas NRF2 silencing counteracts RMS

radioresistance by increasing DSBs and impairing DDR (133).

Furthermore, we have recently shown that CAV-1, a tumor

promoter sustaining rhabdomyosarcomagenesis (151–153),

promotes radioresistance in RMS through increased oxidative

stress protection (128) and that RMS surviving to RT more

efficiently detoxifies from ROS (109). Increasing oxidative stress

has been shown to efficiently kill RMS (154). RMS antioxidant

response is finely regulated by molecular epigenetic mechanisms

(137–139), known to be critical regulator of adaptive responses

to stress (155, 156), including RT (157). Interestingly, the ability

of RMS to detoxify from ROS increases in parallel with the

acquisition of a more radioresistant phenotype (109), suggesting

that, for these cells, ROS detoxification is critical to survive to

radiation. However, clinical trials working by inducing ROS

levels (158–160) have not included RMS. No preclinical and/or

clinical data related to the use of directly targeting redox proteins

drugs have been collected on RMS. However, several pieces of

evidence suggest the use of drugs able to increase ROS beyond

targeting redox proteins (137–139). On this regard, ROS

generation has been identified as a mediator of histone

deacetylase (HDAC) inhibitor (HDACi)–induced cell death

(161), and the combination of HDACi with RT brings to RMS

radiosensitization through increased ROS accumulation

(137–139).
RT and cell death, autophagy, and
senescence

Radiobiology defines cell death as the loss of replicative

capacity determined by clonogenic assays, thus including

apoptosis, necrosis, mitotic catastrophe, and mitotic death,

autophagy, and tumor dormancy (162, 163), although

increasing evidence indicates that RT-induced tumor

dormancy may not be reversible (164, 165). Apoptosis caused

by RT can be mediated by the following: i) intrinsic apoptotic

pathway, through the activation of the cytochrome c-caspase 9/

8/3 cascade (166); ii) extrinsic apoptotic pathway, through TNF-

a/TNF-R1– (167) or TRAIL/Apo2L/TRAIL–receptor–caspase

8/3 cascade (168); and iii) ceramide accumulation that, acting

as second messenger, initiates a complex apoptotic program

(169). Mitotic catastrophe and mitotic death, defined as the

failure to undergo complete mitosis after DNA damage, coupled

to defective checkpoints, are usually mediated by intrinsic

apoptosis (170). In addition, cell death can be induced by

inducing necroptosis, pyroptosis, and ferroptosis (162, 163).
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Necroptosis, mediated by TNF-a/TNF-R1/RIP1/RIP3/MLKL

cascade, in the absence of caspase 8 activation (171) and

pyroptosis, triggered by cytoplasmic damaged-associated

molecular patterns (DAMPs) and mediated by NLRP1/

NLRP3/NLRC4/caspase 1/gasdermin cascade, leads to pore

formation at the cytoplasmatic membrane. Ferroptosis,

induced by excessive lipid peroxidation that leads to Fe3+

accumulation-induced oxidative stress, is mediated by

SLC11A2 and negatively regulated by GSH/GPx4 cascade

(172). RMS is resistant to apoptosis (173) and necrosis (174),

including from RT, as we have shown in preclinical in vitro and

in vivomodels (130, 137–139, 175). The tumor suppressor p53, a

master promoter of apoptosis (176) and programmed necrosis

(177), is frequently mutated in ERMS (178) and downregulated

in ARMS (179). Recently, p53 mutations and/or pathway

alterations have been associated with the increase of RMS

radioresistance (180). Furthermore, RMS expresses high levels

of anti-apoptotic Bcl-2 family members (181) and inactivation of

caspase 8 expression by hypermethylation (182–184). On the

other hand, RMS has been shown to differently modulate the

expression of several factors, restraining the activation of

programmed necrosis (185–188), whereas a programmed

necrosis–related gene signature has been recently identified as

novel prognostic biomarker for sarcoma (189). Thus, altogether,

these alterations could explain the RMS resistance to RT-

induced apoptosis and necrosis. Targeting cell death pathways

regulating molecules has been supposed to be an opportunity for

the development of innovative treatment strategies also in RMS

(190). Targeting TRAIL (184, 191) and Bcl-2 (192) and

reactivating caspase 8 expression (183) have been shown to

promote apoptosis in RMS, alone or in combination with

cytotoxic agents. The depletion of endogenous GSH by

sorafenib has shown encouraging result in vitro and in vivo

(193) but failed on the bedside (37), whereas others GSH

inhibitors have shown anti-RMS therapeutic potential (194,

195). No data have been collected on combining pro-apoptotic

or pro-necrotic agents with RT in treating RMS; however, our

group has recently showed that pre-treatment with the BET

inhibitor (BETi) OTX015 radiosensitizes RMS cells by inhibiting

DDR and concomitantly inducing cell death as demonstrated by

the strong activation of the apoptotic marker cleaved PARP

(131). Death is not the only response from irradiated cells.

Autophagy is a catabolic pathway for lysosomal-mediated

cellular components degradation, basally inhibited by the

mammalian target of rapamycin (TOR) complex 1 (mTORC1)

pathway and tightly regulated by autophagy-related proteins

(196). Physiologically considered as a cell survival mechanism

that can also promote cell death (197), autophagy plays dual

roles in cancer (198), including in RMS (199–204). Similarly,

RT-induced autophagy has been shown to be cytoprotective or

not (205, 206). However, increasing evidence suggests that

autophagy cannot be restricted to a single cytoprotective or

cytotoxic function, although it is more correct to speak about
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“autophagic switch”. Thus, autophagy can switch its function

even within the context of a specific cancer type and/or with the

respect to external stress type (207). Notably, RMS aberrantly

expresses guanine nucleotide exchange factor T (208) recently

shown to protects cells by inhibiting autophagy and apoptosis

(204). Thus, the reduction in autophagy, which we recently

shown on irradiated RMS (175), could be a mechanism of

radioresistance. There is a lack of evidence on the effects of

combining autophagy and RT promoters or inhibitors in the

treatment of RMS. Senescence is classically defined as an

irreversible form of growth arrest, mainly induced by p53,

p21WAF1, p27KIP1, and p16INK4A and the inhibition of cyclin-

dependent kinases and RB (209). The induction of senescence

represents a therapeutic advantage, thus preventing further

proliferation. However, senescent cells can escape from the

irreversible growth arrest status and re-enter the cell cycle,

boosting tumor growth (210). In particular, these “post-

senescent” cells retain stem cell–related features, also known as

senescence-associated stemness, suggesting a more aggressive

behavior and favoring tumor relapse (210). Senescence

represents the most common cellular response after RT (211–

213). However, it has been recently shown that RT-induced

accumulation of senescent cells can interfere with the therapy

and encourage tumor regrowth (211). Thus, the use of senolytics,

small molecules that can selectively induce apoptosis of

senescent cells, has been supposed to be a valid radiosensitizing

strategy (214). The role of RT-induced senescence in RMS is

under investigation. Our group has recently shown that

DNMT3A promotes radioresistance of RMS by restraining RT-

induced senescence (130), probably for the ability of DNMTs to

promote DNA repair activity (215), as summarized in Figure 4.

Furthermore, we have also found that the expression of CAV-1

protects against RT-induced cell senescence (128), thus indicating

the modulation of specific regulators of cellular senescence as a

promising tool to set up new and effective therapeutic intervention

against RMS, mainly for overcoming tumor radioresistance-

related mechanisms.
RT and immune response

Immunotherapies, largely used in several cancer types,

resulting effective in a significant fraction of standard therapy

refractory patients (216), have not shown objective response in

patients with RMS (217, 218). Sarcoma and particularly RMS are

considered “cold” to underline the immunologically inert nature

of these tumors. Thus, identifying new strategies to turn “cold” in

“hot” tumors could be the way to induce immunogenic cell death

(ICD) and promote the use of immunotherapies for treating

sarcoma (219). RT has been shown to convert malignant cells

into endogenous anticancer vaccines, thus resulting in the main

strategy able to trigger ICD and boost immunotherapies. RT

promotes the release of DAMPs, triggering the chemotaxis of
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antigen-presenting cells (APCs), dendritic cells, macrophages, and

B cells, finally determining cross priming of CD8+ effector T cells.

Parallelly, RT-induced cell death modifies the tumor

microenvironment through the cytokine release and the

expression on endothelium of cell adhesion molecules. In

response, cancer cells can rapidly trigger anti-immune response

by different signals including PD1/PD-L1 and CTLA4/B7-1 or B7-

2 (220, 221), resulting in an opportunity for combining

immunotherapies (222). However, cancer cells surviving to RT

express mutated genes, increasing the presentation to APCs of

neoantigens potentially able to refresh the immune response

(223). This process could lead to an “antigen recycling”

potentially able to re-boost the ICD-induced anticancer immune

response. In this context, repeated exposure to tumor antigens

released by “pulsed-RT” has been recently shown to amplify the

adaptive immune response by expanding the tumor-specific T-cell

receptor repertoire, the production of high-affinity tumor

antibodies, and the generation of memory lymphocytes and

thereby improve immune control of systemic disease (224).

Therefore, the dose and fractionation seem to be the variables

mainly affecting pro-immunogenic effects of RT (225, 226).

Actually, HFRT and SBRT seem to improve the ability of RT to

promote immune responses to tumors (225, 226). A very small

percentage of RMS or RMS-infiltrating immune cells express PD-

L1, more frequently in low-stage RMS and related to an increased

5-year overall survival rate (227–229). The use of

immunotherapies for the treatment of pediatric advanced solid

tumors has been limited (227–229), and no patients with RMS

have been included. We have recently shown that Transforming

growth factor beta (TGF-b), Macrophage migration inhibitory

factor (MIF), C-C Motif Chemokine Ligand 2 (CCL2), C-X-C

motif chemokine 5 (CXCL5), CXCL8, and CXCL12, are key

players of both intrinsic and acquired radioresistance in RMS

(109). Thus, targeting these cytokines, known to be mediators of

radioresistance (230), could be another strategy to radiosensitize

RMS tumors.
RT and cancer stem cells

An important evidence of cancer management is the impact

of RT-mediated strategies on CSCs, which are characterized by a

slowly dividing subpopulation of tumoral cells capable of self-

renewal features that have a critical role in tumor maintenance

and metastasis as well as in resistance phenomena to

conventional treatments in many cancer types (231). Recent

evidence suggests that CSCs of several malignancies, also

comprehending RMS, can resist ionizing radiation because of

their peculiar metabolic status, associated with high expression

of genes and pathways related to stem-like features, activated

DNA repair mechanisms (232), and altered levels of free radical

scavenger levels (233). Specifically, several studies have

demonstrated the specific molecular pathways contributing to
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the CSC intrinsic radioresistance, such as PI3K/Akt/mTOR and

NOTCH ones (234–237), which upregulates ROS scavenging

enzymes (238). Thus, inhibiting NOTCH could be the efficient

strategy to radiosensitize CSCs, bypassing their ability to

detoxify from ROS. To date, clinical trials testing NOTCH

inhibitors have not included RMS tumors as well as the

combination with RT, but their use as radiosensitizers has

been recently encouraged (239). More recently, boron neutron

capture therapy and carbon-ion particle therapy have been

proposed in combination with PARPi as effective strategies for

the treatment of radioresistant clear cell sarcoma and

osteosarcoma, opening up the possibility of successfully

treating patients with RMS by combined treatment with RT

and PARPi.
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RT and epigenetic remodeling.

Epigenetic alterations, mainly DNA methylation and histone

modifications, characterize various cancers (240), including RMS (8,

241, 242). This evidence raises the question about whether the

regulation of DNA methylation activity might represent a useful

target for radiation sensitization. Targeting epigenetic molecules may

therefore be significant in development of novel therapies, including

the development of radiosensitizers (243, 244). Notably, deregulated

epigenetic mechanisms have been shown to sustain different

mechanisms of radioresistance including DNA repair (245, 246),

antioxidant response (247, 248), cancer cell life and death decisions

(249), as well as anti-cancer immune response (250). Therefore,

identifying the molecules and epigenetic reprogramming pathways
A

B

FIGURE 4

Effects of the combined treatment with DNMT3A/3B silencing and radiotherapy. Visual representation of the different radiosensitizing
mechanisms observed upon (A) DNMT3A and (B) DNMT3B knocking down and RT co-treatment.
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used by cancer cells could lead to the development of promising

targeted therapies able of weakening the different mechanisms of

radioresistance, also in the context of RMS. Indeed, targeting specific

DNMTs or HDACs has been demonstrated to reverse RMS

phenotype, counteracting stemness and inducing radiosensitization

(137–139). Specifically, our group has recently demonstrated the

overexpression of DNMT3A and DNMT3B in ERMS primary

tumor biopsies (251) and highlighted the synergic impact of

DNMT3A or DNMT3B silencing and irradiation on viability and

aggressiveness of RMS cells, suggesting that DNMT inhibitors could

have a clinical application in combination with standard RT in the

clinical management of patients with RMS. Other strategies to

reduce radioresistance-mediated mechanisms have been recently

shown in ARMS tumor, the most aggressive type of RMS (137,

252). The BETi OTX015, an orally drug able to bind and block

histones’ acetylated lysines, can downregulate GNL3 gene, encoding

for the G nucleolar 3 protein, which is overexpressed in different

malignancies, and it has been associated with uncontrolled

proliferation, inhibition of programmed cell death, and resistance

to therapies. Interestingly, our preclinical data also indicate that

OTX015 exposure can enhance the radiosensitivity of ARMS cells by

inducing a drastic G2 cell cycle arrest, which was correlated to a

permanent DNA damage (upregulation of g-H2AX) and to the

inability of tumoral cells to repair it (alteration of RAD51, ATM, and

DNA-PK protein expression). Moreover, OTX015 and irradiation

(IR) synergistically downregulated the expression of GNL3 gene,

thus suggesting a potential role of BETi in reducing cell cycle

progression and maintenance of cell stemness with the potential to

counteract the radioresistance phenomena. Similar remarkable

radiosensitizing effects were exerted on FP-RMS cells by targeting

class I and IV HDACs through MS-275 in vitro and in vivo

treatment (137), confirming the crucial role of epigenetic

deregulation in RMS onset and progression. Interestingly, the

immunological effects of epigenetic modifiers could be used for

stimulating therapeutically relevant anticancer immunity when used

as stand-alone treatments or in combination with established

immunotherapies, favoring the RT-induced presentation of new

antigens. Thus, it is possible to assume that the antigenic recycling

induced by pulsed radiotherapy, for example, could be further

enhanced in presence of an epigenetic remodulation and that,

therefore, the tumor can be, in this way, more easily “heated”. To

this date, growing evidence suggests that radiation exposure is also

related to substantial epigenetics changes of cancer cells (253).

Different studies demonstrated that RT could affect DNA

methylation patterns and promote a decrease in the expression

level of DNMTs (254), with that genomic hypomethylation resulting

in enhanced radiation sensitivity in colon carcinoma (255).
Discussion

Years of oncology research have demonstrated the great ability

of cancer cells to adapt to various therapies, including RT.
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Technological advances in delivering radiation have improved

tumor targeting, limiting radiation exposure of healthy tissues.

Thus, nowadays, the largest part of cancer patients receives RT,

which results to be curative in the most cases. RT is integrated into

the primary treatment of most patients with RMS. However, despite

more than 90% of children with non-metastatic RMS achieves

complete remission, up to one-third of them experiences a

recurrence, whereas the outcome of adult patients treated with

RT has not been improved. Thus, RMS remains a very deadly

cancer. The use of HFRT, based on single larger dose fractions, has

not led to the desired results, suggesting that the improvement of

the therapeutic potential of RT goes far beyond the question of the

dose, requiring knowledge and counteracting of the molecular

mechanisms responsible for radioresistance. Thus, radiosensitizers

remain a viable option for improving the outcome of therapy in

RMS. More research is necessary to fully understand the

mechanisms of RMS radioresistance and improve the outcomes

of patients with this deadly disease.
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