
Progetto "PREVIENI"

La speciazione dell'arsenico in matrici biologiche

Aula Bouvet ISS Roma Roma, 27 ottobre 2009

Claudio Minoia, Anna Ronchi, Emanuela Leoni

ARSENICO

http://gimle.fsm.it/ VOLUME XXXI - N. 1 Gennaio/Marzo 2009

G Ital Med Lav Erg 2009; 31:1, 5-32 http://gimle.fsm.it © PI-ME, Pavia 2009

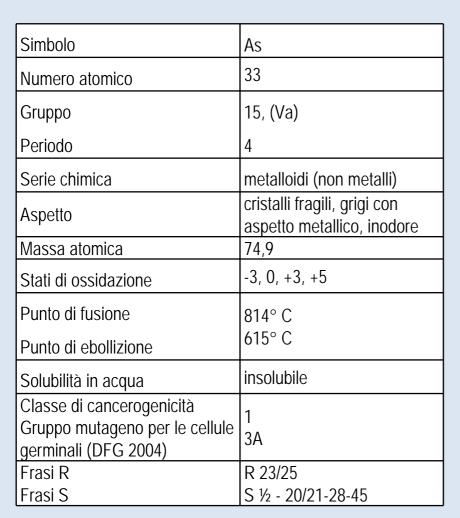
INTERFERENTIENDOCRINI SCHEDE MONOGRAFICHE

3 ARSENICO

E. Sturchio¹, C. Minoia², M. Zanellato¹, A. Masotti³, E. Leoni², C. Sottani², G. Biamonti⁴, A. Ronchi², L. Casorri¹, S. Signorini⁵, M. Imbriani⁶

- ¹ Istituto Superiore per la Prevenzione e la Sicurezza sul Lavoro
- Dipartimento Installazioni di Produzione e Insediamenti Antropici, Roma
- ² Laboratorio di Misure Ambientali e Tossicologiche "Fondazione Salvatore Maugeri", Pavia
- ³ Laboratorio di Espressione Genica-Microarrays Ospedale Pediatrico Bambino Gesù, Roma
- 4 Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia
- ⁵ Direttore Scientifico Centro di Ricerca ISPESL "Fondazione Salvatore Maugeri", Pavia
- ⁶ Direttore Scientifico Centrale "Fondazione Salvatore Maugeri", Cattedra di Medicina del Lavoro, Università degli Studi di Pavia

DIFFUSIONE UBIQUITARIA


(principalmente in forma inorganica)

- proviene da sorgenti geochimiche
- presente in composti derivanti dall'ossidazione di solfuri metallici (pirite, calcopirite, arsenopirite)
- rilasciato in atmosfera dall'attività vulcanica e dai microrganismi del suolo

Forme organiche

OH

Acido monometilarsonico (MMA) Acido dimetilarsinico (DMA)

 CH_3 | CH_3 -- As= CH_2COOH CH_3 | Arsenobetaina (AsB)

Sorgenti espositive

dieta (consumo di prodotti ittici:crostacei e molluschi)

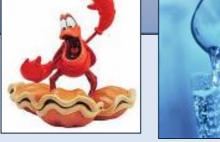
Intake Giornaliero Tollerabile Provvisorio (PTDI) per As inorganico:

2,1 μg/Kg/ *die* (Joint Fao/WHO, 1989)

consumo di acqua potabile

(In India e Bangladesh rappresenta la più importante via di esposizione)

- insediamenti antropici nei pressi di fonderie
- contatto con suolo contaminato
- contatto con antiparassitari contenenti As



Intake Giornaliero Tollerabile Provvisorio (PTDI) per As inorganico: 2,1 µg/Kg/die (Joint Fao/WHO, 1989)

Necessario distinguere forme organiche di As presenti nei prodotti ittici

dalle forme inorganiche di As rilevabili nell'acqua.

Il consumo di quantità rilevanti di pesce in specifici gruppi etnici o in popolazioni residenti in aree a maggior rischio espositivo ad As può determinare un *intake* di forme organiche di circa 50 μ g/Kg/die.

Agency for Toxic Substances and Disease Registry-ATSDR

- ❖ In seguito a esposizione orale acuta:
 - Minimal Risk Level (MRL) per As inorganico = 0,005 mg/Kg/giorno
- ❖ In seguito a esposizione orale cronica:

Minimal Risk Level (MRL) per As inorganico= 0,0003 mg/Kg/giorno (sulla base di un NOAEL=0,0008 mg/Kg peso corporeo/giorno)

United States Environmental Protection Agency-US EPA

- In seguito a esposizione orale cronica:
 - Reference Dose (RfD) per As inorganico= 0,0003 mg/Kg/giorno (sulla base di un NOAEL=0,0008 mg/Kg peso corporeo/giorno)
- Non ancora stabiliti RfD per i composti organici contenenti As (IRIS 2007)

EFSA Journal (2005) 236, 1-118

Livelli di As in genere sono più elevati nell'ambiente acquatico rispetto a quello terrestre

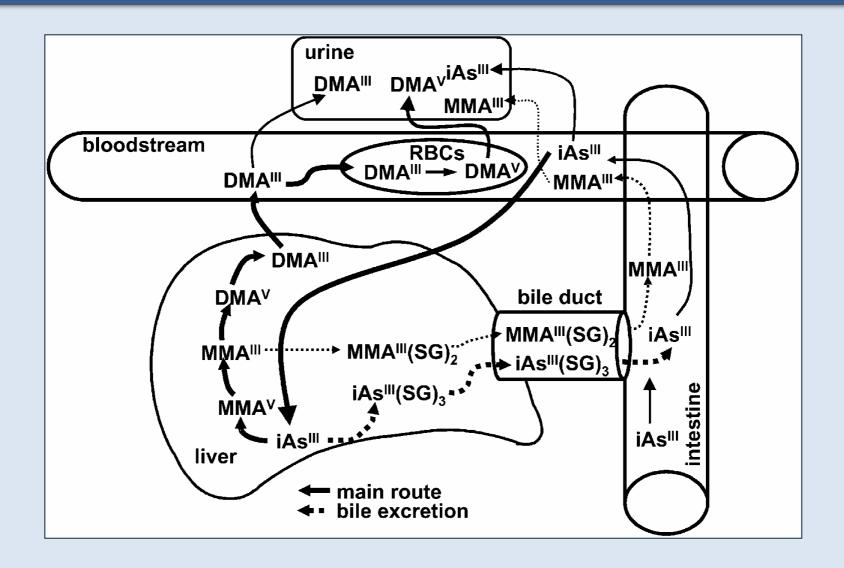
Accumulo di composti dell'As

(arsenobetaina > arsenocolina > forme inorganiche)

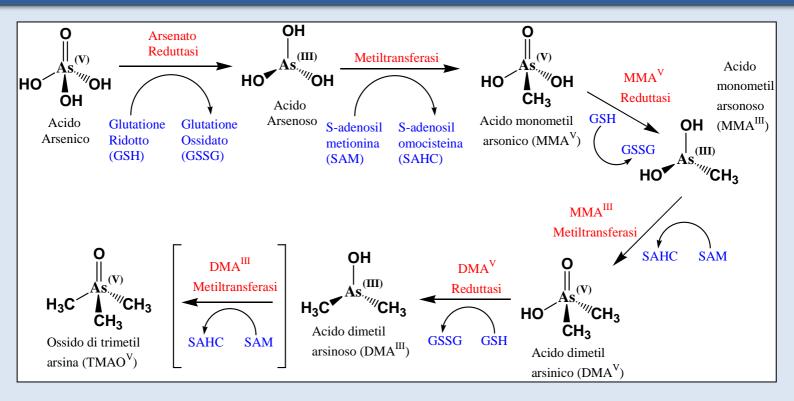
in pesci, crostacei e molluschi

In letteratura non sono disponibili studi relativi agli effetti tossici delle forme organiche di As riconducibili a consumo in prodotti di origine marina

EFSA Journal (2005) 236, 1-118

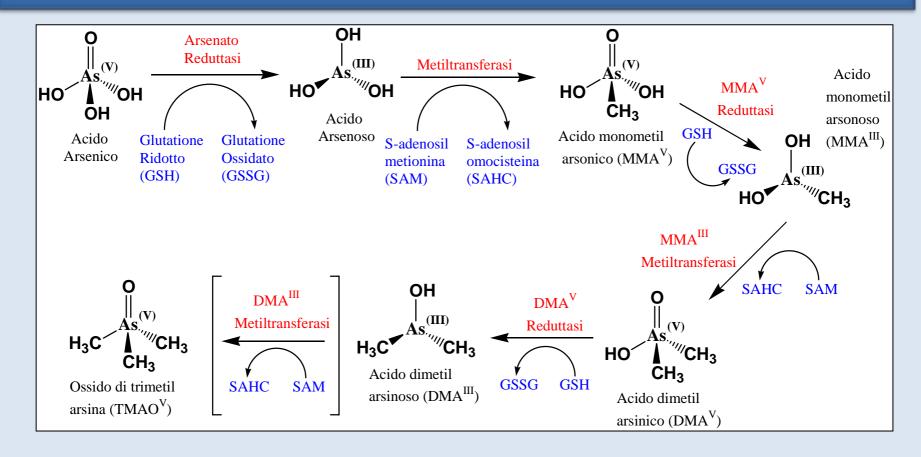

Esperimenti *in vitro* non hanno confermato un potenziale genotossico in cellule di mammifero riferibile ad arsenobetaina e arsenocolina.

Studi condotti *in vivo* non hanno dimostrato la presenza di reazioni in grado di convertire le forme organiche in composti inorganici. Tali osservazioni supportano l'evidenza che arsenobetaina e arsenocolina vengano eliminate in forma immodificata.



Allo stato attuale delle conoscenze le forme organiche di As (arsenocolina e arsenobetaina) assunte attraverso il consumo di prodotti di origine marina non rappresentano un rischio per la salute umana (EFSA Journal 2005)

Metabolismo I



Metabolismo II

- Riduzione della forma inorganica pentavalente (AsV) in forma trivalente (AsIII)
 (maggiore affinità di substrato per le metiltransferasi)
- 2) Presenza di un meccanismo in grado di convertire le forme pentavalenti (intermedi del processo metabolico) in forme trivalenti: la metilazione dell'As è un processo ossidativo
- 3) Disponibilità di gruppi metilici (CH3+)

Metabolismo III

Nelle cellule di mammifero le **reduttasi** catalizzano le reazioni di riduzione che convertono arsenato (As^{V}) in arsenito (As^{III}) e MMA^{V} in MMA^{III}

La riduzione di MMA^V in MMA^{III} è stata identificata come **reazione limitante** nel *pathway*di metilazione dell'As

Thomas DJ et al., 2001

Metilazione: processo di detossificazione?

La metilazione dell'As inorganico a DMA V facilita l'escrezione urinaria di arsenico. La DMA V è risultata essere 20 volte meno tossica rispetto ad As inorganico e ciò suggerisce che la metilazione possa rappresentare una reazione di detossificazione.

Tuttavia l'evoluzione delle tecniche analitiche ha portato all'identificazione di MMA^{III} e DMA^{III} nelle urine di individui esposti ad As inorganico (Aposhian, 2000; Del Razo, 2001b; Mandal, 2001). Le specie organiche trivalenti non sono quindi, come ritenuto da diversi autori, dei prodotti intermedi transitori. MMA^{III} e DMA^{III} sono potenti tossici *in vivo* e *in vitro* (Petrick, 2000 e 2001; Styblo, 2000).

Inoltre, il DMA^V, a dosi relativamente elevate, è un promotore di tumore multi organo nei roditori e un agente cancerogeno del tumore della vescica nei ratti (Wanibuchi, 2004). Per cui si è verosimile supporre che la metilazione di As inorganico possa non costituire un meccanismo di detossificazione ma di bioattivazione.

Metilazione dell'As e variazioni inter-individuali

I fattori responsabili delle variazioni del profilo urinario dei metaboliti dell'As tra diversi soggetti sono rappresentati da:

- * età
- * sesso
- etnia
- ❖gravidanza
- * stato nutrizionale
- patologie in corso
- * attività voluttuarie (fumo, alcool)

Metilazione dell'As e variazioni inter-individuali

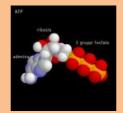
Le concentrazioni di acido mono metilarsonico (MMA^V) variano in alcuni gruppi etnici suggerendo l'esistenza di polimorfismi genetici nella regolazione degli enzimi che metabolizzano l'As, dai quali dipendono le differenze di tossicità correlate alla sua esposizione.

L'uomo elimina relativamente più MMA^V rispetto ad altre specie, suggerendo che è in grado di metilare più lentamente l'As. Ciò potrebbe spiegare in parte la maggiore sensibilità dell'uomo rispetto ad altre specie.

Tossicità I

Specie di As	LD50 (topo) (mg/kg)
Acido arsenioso (As III)	4,5
Acido arsenico (As V)	14-18
Acido monometilarsonico (MMA)	1800
Acido dimetilarsinico (DMA)	2600
Arsenobetaina (AsB)	10000

- Forme inorganiche sono 100 volte più tossiche rispetto ai composti organici
- As^{III} più tossico dell'As^V
 (National Academy of Science, 1977)
- Per quanto riguarda l'uomo i dati relativi alla tossicità delle specie inorganiche sono limitati


As trivalente:

>lega le proteine alterandone la struttura (inattivazione di enzimi)

As pentavalente:

> si sostituisce ai gruppi fosfati

Tossicità II

- DL50 di As inorganico= 10-90 mg/Kg (WHO 2001).
- Nei roditori MMAV e DMAV sono meno tossici rispetto alla forma inorganica
- Nel criceto la somministrazione i.p. di MMA^{III} risulta più tossica rispetto al As^{III}
- Effetti avversi: tossicità embrionale e fetale, teratogenicità, genotossicità, tossicità cardiovascolare

Uomo

DL50 orale As inorganico= 1-2 mg/Kg (Ellenhorn 1997)

• L'esposizione cronica ad As inorganico può portare a effetti cutanei, dello sviluppo, ematologici, riproduttivi e vascolari e causare difetti del tubo neurale (ATSDR 2000, NRC 1999, WHO 2001)

Tossicità acuta

L'intossicazione acuta ad As raramente si verifica sui luoghi di lavoro. Generalmente avviene sia attraverso ingestione accidentale di acqua o alimenti contaminati da As, sia in seguito ad assunzione volontaria della sostanza. La dose di As letale per l'uomo dopo ingestione di alimenti contaminati dipende da diversi fattori (solubilità, stato di valenza).

I <u>segni e i sintomi</u> riferibili a un'intossicazione <u>acuta</u> possono essere:

- Gastrointestinali
- · Cardiovascolari e respiratori
- Neurologici
- · Epatici e renali
- Ematologici
- vari

Tossicità acuta: segni e sintomi gastrointestinali

La tossicità delle forme inorganiche a livello delle cellule epiteliali del tratto gastro-intestinale può determinate gastroenteriti, con possibile emorragia. Ciò può manifestarsi da qualche minuto a qualche ora dopo l'ingestione. Tale sintomatologia può protrarsi per diversi giorni.

Possono altresì verificarsi: nausea, difficoltà della deglutizione, dolore addominale, vomito, diarrea profusa, disidratazione.

Nelle intossicazioni sub-acute la presenza di una sintomatologia più attenuata potrebbe rendere difficoltosa la diagnosi.

Tossicità acuta: segni e sintomi cardiovascolari

L'arsenico ha effetti deleteri sul cuore e sul sistema vascolare periferico. La dilatazione capillare con perdita di liquidi può causare ipovolemia e ipotensione gravi.

La sintomatologia comprende: ipotensione, shock, aritmia atrioventricolare, edema polmonare, cardiomiopatia, aritmie ventricolari (tachicardia ventricolare atipica e fibrillazione ventricolare), insufficienza cardiaca congestizia.

Tossicità acuta: segni e sintomi neurologici

La sintomatologia può comprendere: mal di testa, debolezza, letargia, delirio.

Dopo un avvelenamento acuto si può verificare una neuropatia periferica sensomotoria ritardata (anche a distanza di parecchie settimane dopo l'insulto tossico iniziale). I possibili sintomi includono addormentamento, formicolio a mani e piedi, debolezza muscolare, parestesia debole con deambulazione conservata fino a debolezza distale e quadriplegia.

Tossicità acuta: segni e sintomi respiratori

In seguito a esposizione a polvere di arsenico si possono verificare: irritazione del tratto respiratorio (tosse, laringite, leggera bronchite e dispnea).

Sono state altresì riscontrate: perforazione del setto nasale, congiuntiviti e dermatiti.

Tossicità acuta: segni e sintomi epatici, renali, ematologici

- Epatici: enzimi epatici elevati
- · Renale: ematuria, proteinuria, necrosi tubulare acuta, necrosi corticale renale
- Ematologici: anemia, trobocitopenia, leucopenia, CID

Tossicità acuta: segni e sintomi vari

Sono inoltre riportati altri sintomi quali: rabdomiolisi, respiro dal caratteristico odore di aglio, comparsa delle linee di Mees

Tossicità cronica

Le manifestazioni cliniche riferibili a un'intossicazione cronica da arsenico dipendono sia dalla dose assunta, sia dalla durata dell'esposizione.

I segni e i sintomi riferibili a un'intossicazione cronica possono essere:

- Neurologici
- Respiratori
- Dermatologici
- Ematologici

Tossicità cronica: segni e sintomi neurologici

La neuropatia periferica rappresenta il primo segno di tossicità cronica da arsenico. Può manifestarsi in modo insidioso, senza apparenti sintomi. Tuttavia una valutazione accurata può rilevare il coinvolgimento di più organi e sistemi. I segni neurologici possono manifestarsi in un periodo che varia da poche settimane a qualche mese dall'esposizione.

Tossicità cronica: segni e sintomi respiratori

L'inalazione cronica di polvere contenente arsenico può essere accompagnata da sintomi alle alte vie respiratorie (tosse, laringite, bronchite, dispnea) e perforazione delle narici.

L'esposizione a lungo termine può aumentare anche il rischio di insorgenza di tumore ai polmoni.

Tossicità cronica: segni e sintomi dermatologici

Iperpigmentazione e cheratosi sono segni ritardati dell'esposizione cronica ad arsenico. Tali lesioni della pelle sono spesso accompagnate da anemia e possono manifestarsi con un ritardo che può variare da 3 a 7 anni dall'esposizione. L'esposizione a lungo termine può aumentare il rischio di insorgenza di tumore della pelle.

Cancerogenicità I

>As inorganico:

- IARC: Gruppo I (IARC 2004) sufficienti evidenze riportano un rischio aumentato di insorgenza di tumore al polmone, alla vescica e alla pelle (IARC 2002)
- ACGIH: Gruppo A1 (ACGIH 2004)

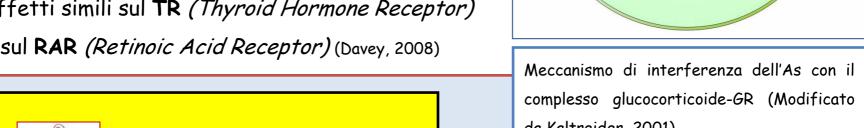
I possibili meccanismi comprendono: genotossicità, stress ossidativo, inibizione della riparazione del DNA, induzione della proliferazione cellulare, alterazione della trasduzione del segnale, metilazione del DNA.

- > E'stato dimostrato che ratti esposti a elevati livelli di DMAV con la dieta e attraverso il consumo di acqua sviluppavano tumori a carico della vescica (Arnold 1999)
- >La stessa somministrazione impiegando MMA non ha dimostrato effetti cancerogeni (Schen 2003, Arnold 2003)

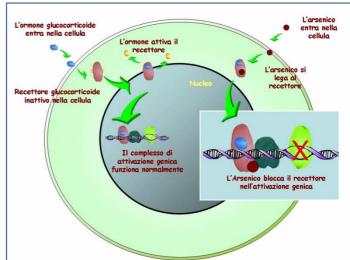
Uomo

- > È stata osservata l'insorgenza di cancro al polmone dopo esposizione occupazionale in lavoratori di fonderie, nei minatori e negli operai di industrie di antiparassitari (NRC, 1999; WHO, 2001).
- > L'esposizione dovuta all'ingestione di acqua contaminata con As inorganico può determinare l'insorgenza di cancro della pelle, della vescica, del polmone, del rene e di altri organi (NRC, 1999 e 2001; WHO, 2001).
- La stima quantitativa del rischio di sviluppare il cancro cutaneo corrisponde a un *Oral Slope Factor* di 1,5 mg/Kg/*die* mentre l'unità di rischio per l'acqua ingerita è stato stimato in 5x10⁻⁵ µg/l (U.S. EPA 1993). L'unità di rischio per lo sviluppo di cancro dopo inalazione di As (studi in soggetti professionalmente esposti) è risultata di $4.3 \times 10^{-3} \, \mu g/m^3$ (U.S. EPA 1993).
- > Una commissione della National Academy of Science ha valutato gli effetti dell'As inorganico presente nell'acqua destinata al consumo umano riportando una stima della probabilità teorica massima di rischio per tumore alla vescica e al polmone (NRC, 2001). Alla concentrazione di 10 μg/l di As nell'acqua, l'incidenza di cancro alla vescica in 10⁵ individui è pari a 12 nelle donne e a 23 negli uomini. Per il cancro del polmone il tasso di incidenza (10⁵ individui) è 18 nelle femmine e 14 nei maschi. Queste stime di rischio sono più elevate rispetto a quelle utilizzate da EPA, in base alle quali è stato ridotto il livello massimo di As nelle acque potabili (MCL-Maximum Contaminant Level) da 50 a 10 µg/l di As.

Meccanismo d'azione

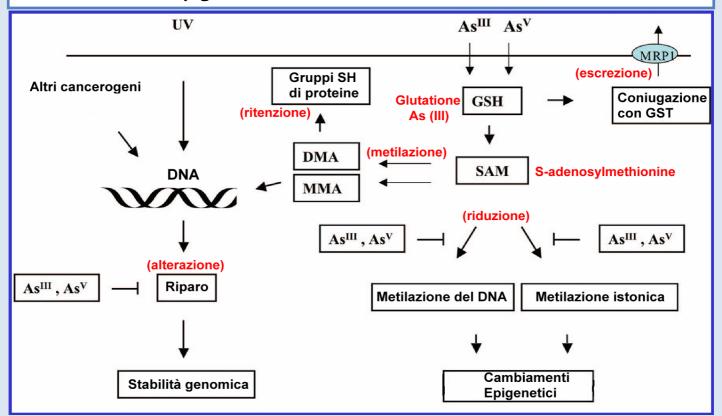

Altera la regolazione genica tramite interazione con i recettori degli ormoni steroidei (glucocorticoidi (GR), mineralcorticoidi (MR), progesterone (PR) e androgeni (AR))

(Bodwell, 2006; Bodwell, 2004; Kaltreider, 2001)


Inibizione selettiva della trascrizione del DNA che in condizioni normali dovrebbe essere stimolata dal complesso glucocorticoide-GR

Effetti simili sul TR (Thyroid Hormone Receptor) e sul RAR (Retinoic Acid Receptor) (Davey, 2008)

NUOVI TARGET: proteine? pathway?



da Kaltreider, 2001).

Effetti a livello molecolare

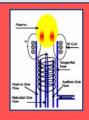
Da un punto di vista molecolare l'esposizione ad As può provocare:

- · alterazioni nella riparazione del DNA
- cambiamenti epigenetici

Tecniche analitiche

Monoelementari

spettrofotometria di assorbimento atomico con sistema di iniezione di flusso accoppiato a tecnica degli idruri (FI-HG-AAS)

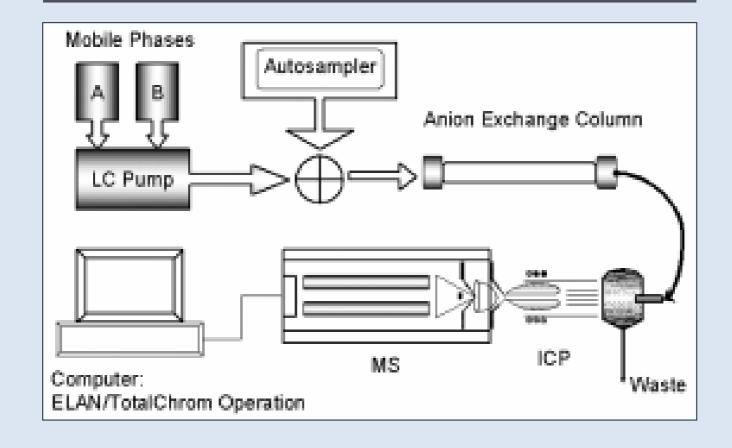

LOD FI-HG-AAS: µg/L

Multielementari

spettrometria di massa con sorgente a plasma induttivo (ICP-MS)

LOD ICP-MS: ng/L

DRC-ICP-MS


Modello ELAN DRC II (Perkin Elmer Sciex Instrument)

VANTAGGI

- · elevata sensibilità
- determinazione degli isotopi dei singoli elementi
 in base al rapporto m/z
- linearità in ampio range dinamico
- preparativa del campione meno laboriosa vs altre metodiche
- adatta a studi di biomonitoraggio

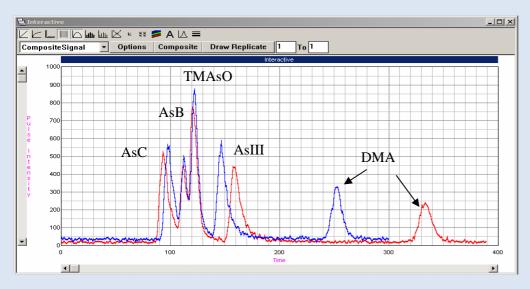
HPLC/DRC-ICP-MS

HPLC metodo in gradiente e parametri strumentali

Parameter	Setting
Solvent A	20 mM Ammonium Bicarbonate @ pH 8.5
Solvent B	20 mM Ammonium Sulfate @ pH 7.0
Gradient Profile	6 min at 100% A; Step to 100% B for 12 min
Flow Rate	1.5 mL/min
Column	Anion Exchange, Hamilton PRP-X100, 4.1 mm i.d. x 250 mm, 10 µm
Column Temperature	Ambient
Autosampler Flush Solvent	5% Methanol / 95% DI Type I Water
Sample Injection Volume	100 μL
Re-equilbration Time	15 min
Urine Sample Prep	1:10 with DI Water
Solid Phase Extraction (SPE) Cartridge	3mL Supelclean LC-SAX SPE cartridge (Supelco [™]) in weak solvent reservoir
Detection	PerkinElmer/SCIEX ELAN 6100
Total Analysis Time	33 min

HPLC metodo isocratico e parametri strumentali

Parameter	Setting
Mobile Phase	10 mM Ammonium Nitrate and 10 mM Ammonium Phosphate (dibasic); pH 9.4
Flow Rate	1.5 mL/min
Run Time	10 min
Column	Anion Exchange, Hamilton PRP-X100, 4.1 mm i.d. x 250 mm, 10 µm
Column Temperature	Ambient
Autosampler Flush Solvent	5% Methanol / 95% DI Type I Water
Sample Injection Volume	100 μL
Urine Sample Prep	1:5 with Mobile Phase
Detection	PerkinElmer/SCIEX ELAN DRC II
Total Analysis Time	10 min

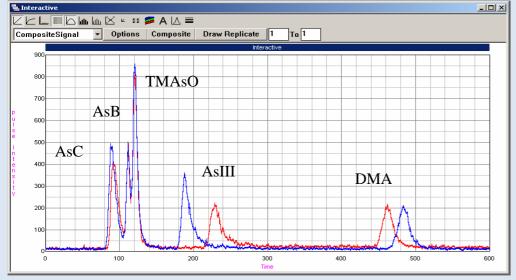


DRC-ICP-MS parametri strumentali

Parameter	Setting/Type
Nebulizer	Meinhard Type A quartz Part No.: WE02-4371
Spray Chamber	ELAN 6100: Glass Cyclonic Part No.: N812-2188
	ELAN DRC II: Quartz Cyclonic Part No.: WE02-5221
RF Power	1500 w
Plasma Ar Flow	15 L/min
Nebulizer Ar Flow	0.95 L/min
Aux. Ar Flow	1.2 L/min
Injector	ELAN 6100: 2.0 mm i.d. Alumina Part No.: N812-6041
	ELAN DRC II: 2.0 mm i.d. Quartz Part No.: WE02-3915
Monitored Ion m/z	75 ("5As) and 91 ("5As16O) for DRC
Dwell Time	500 ms
Total Acquisition Time	600 sec
CeO+/Ce+	<2%
Oxygen Flow for DRC	0.25 mL/min

Ottimizzazione delle condizioni cromatografiche

Rosso: 1.25 mM


Sample: 1 ppb Mix

Column: 10 um packing, 25 cm long, 4.1 mm id

Mobile Phase: 1.25 mM

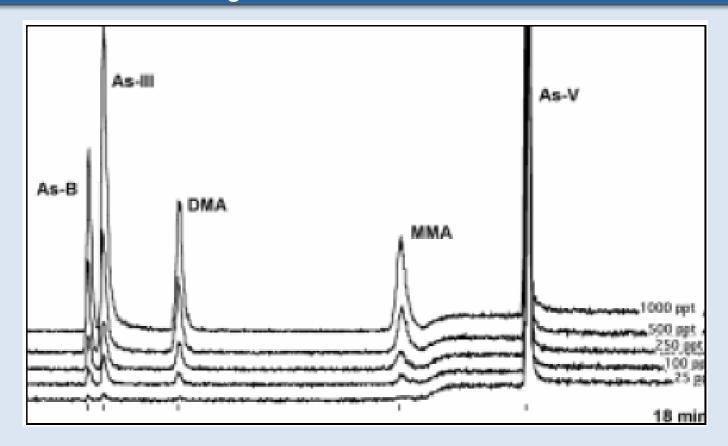
pH = 9.2 Temp: 45 C

Flow: 1.5 mL/min

Blu: pH=9.2

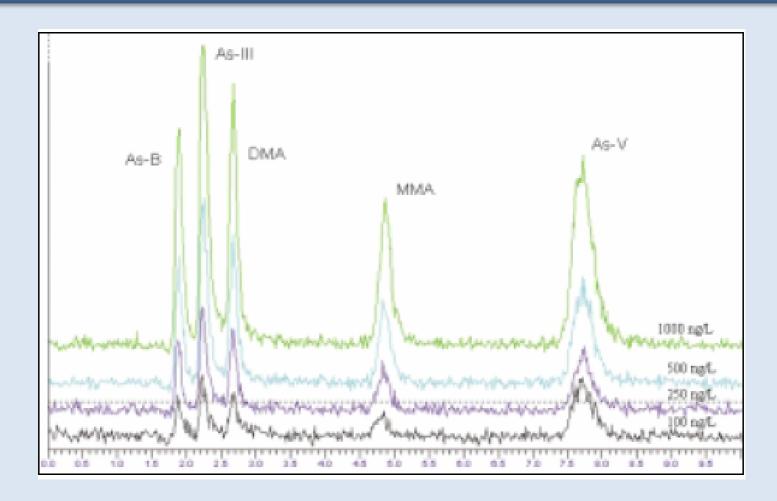
Rosso: pH=9.4

Sample: 1 ppb Mix


Column: 10 um packing, 25 cm long, 4.1 mm id

Mobile Phase: 0.5 mM

Temp: 45 C


Flow: 1.5 mL/min

Cromatogrammi di *standard* di *As* (100, 250, 500, 1000 ng/L) ottenuti utilizzando il **metodo in gradiente** e monitorando ⁷⁵As

Cromatogrammi di *standard* di As (100, 250, 500, 1000 ng/L) ottenuti utilizzando il **metodo isocratico** e monitorando AsO+ (m/z 91)

Sorgenti espositive

dieta (consumo di prodotti ittici:crostacei e molluschi)

· consumo di acqua potabile

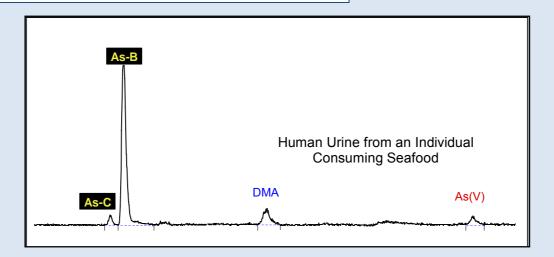
insediamenti antropici nei pressi di fonderie

contatto con suolo contaminato

• contatto con antiparassitari contenenti As

contatto con legno trattato con arsenocromato di rame

Arsenico urinario


L'analisi di campioni urinari rappresenta un buon indicatore di esposizione ad As

Peak	Component Name	Urine A	Urine B
1.	<u>Arsenobetaine</u>	123.5	1.0
2.	Arsenic III	< 0.25	8.0
3.	Dimethyl As	17.0	8.0
4.	Monomethyl As	28.5	1.8
5.	Arsenic V	N.D.	N.D.

N.D. = Not Detected (due to contamination in the mobile phase)

#A: soggetto che aveva consumato prodotti ittici di recente

#B: soggetto che **non aveva consumato** prodotti ittici

Levels of Urinary Total in the US Population: National Health and Nutrition Examination Survey 2003-2004

Table 1. Urinary total arsenic Geometric mean and selected percentiles of urine concentrations (in µg/L) for the US population, NHANES 2003-2004								
ocomedio incaria	Geometric	Selected percentile						
	mean	•				Sample		
	(95% confidence limit)	10th	25th	50th	75th	90th	95th	size
Total	8.30 (7.19-9.57)	2.10 (1.60-2.60)	4.10 (3.30-4.80)	7.70 (6.70-8.70)	16.0 (13.9-18.4)	37.4 (31.6-43.5)	65,4 (48.7-83.3)	2557
Age group								
6-11 years	7.08 (5.56-8.84)	2,40 (1.50-2.80)	4,40 (3.20-4.90)	6.70 (5.90-7.50)	10.7 (8.70-13.9)	23.3 (13.8-61.8)	46.9 (17.5-178)	290
12-19 years	8.55 (7.34-9.97)	2.70 (2.20-3.00)	4.60 (3.80-5.40)	8.10 (6.60-9.30)	15.1 (12.2-17.3)	30.5 (23.1-40.4)	46.1 (32.5-56.5)	725
≥20 years	8.41 (7.25-9.77)	1.90 (1.40-2.50)	3.90 (3.20-4.80)	7.90 (7.00-9.10)	17.0 (14.9-19.6)	40.5 (34.9-46.2)	66.1 (51.2-93.1)	1542
Gender								
Female	7.30 (6.02-8.84)	1.70 (1.30-2.40)	3.20 (2.60-4.20)	6,80 (5.80-8.30)	15.0 (11.3-19.5)	32.9 (26.5-41.7)	60.5 (40.8-77.1)	1276
Male	9,50 (8.34-10.8)	2.70 (2.20-3.20)	4.80 (4.30-5.50)	8.90 (7.70-9.70)	17.5 (15.0-20.1)	41.6 (32.5-52.8)	64.6 (48.7-95.4)	1281
Race/ethnicity								
Non-Hispanic white	7.12 (6.13-8.27)	1.70 (1.50-2.30)	3.50 (3.00-4.20)	7.00 (6.10-7.90)	13.7 (11.3-15.8)	28.7 (22.6-35.9)	53.1 (38.4-65.6)	1074
Mexican American	9.29 (8.12-10.6)	2,60 (1.70-3.90)	5.00 (4.50-5.70)	9.20 (7.90-10.1)	16.1 (13.5-19.9)	34.4 (24.0-60.5)	67.1 (41.3-111)	618
Non-Hispanic black	11.6 (9.50-14.1)	3.70 (2.50-4.50)	5.70 (5.00-6.30)	10.3 (7.90-11.8)	21.5 (14.9-34.4)	43.5 (36.2-61.8)	76.0 (43.5-141)	722

Caldwell KL et al., 2009

Contribution of arsenobetaine and dimethylarsinic acid to total urinary arsenic

Median % contribution to total urinary arsenic* (25th, 75th percentiles)

Total urinary arsenic (µg/L) <20	n 2038	Arsenobetaine 16.2	Dimethylarsinic acid 53.8
		(7.9, 34.2)	(41.4, 66.7)
20-49	360	43.4	29.8
		(24.8, 59.8)	(19.2, 44.8)
50+	156	62.7	13.6
		(45.7, 72.7)	(6.8, 24.8)
* Median % in each ca	tegory for all partici	pants aged ≥6 years	

Caldwell KL et al., 2009

Grazie per l'attenzione