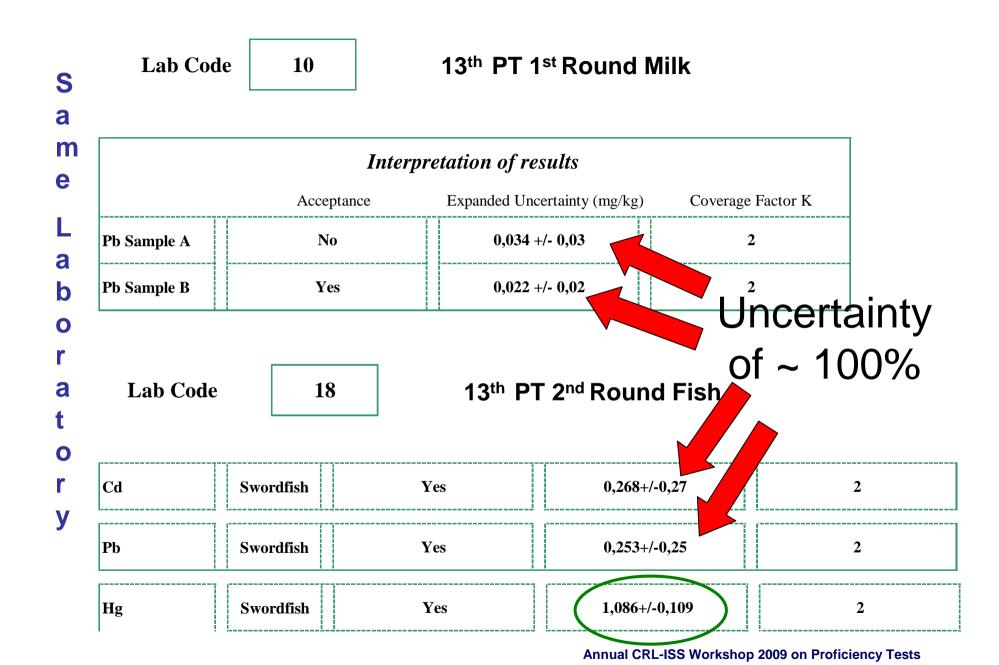


Outcome from your "Results Form"

Andrea Colabucci


Community Reference laboratory for Chemical Elements in Food of Animal Origin

Uncertainty and Interpretation of Results

LoD and LoQ

Use of CRM

Other considerations

LoD and LoQ

COMMISSION REGULATION (EC) No 333/2007 of 28 March 2007

'LOD' =	Limit of detection, smallest measured content, from which it is possible to deduce the presence of the analyte with reasonable statistical certainty. The limit of detection is numerically equal to three times the standard deviation of the mean of blank determinations (n > 20).				
'LOQ' =	Limit of quantification, lowest content of the analyte which can be measured with reasonable statistical certainty. If both accuracy and precision are constant over a concentration range around the limit of detection, then the limit of quantification is numerically equal to six or 10 times the standard deviation of the mean of blank determinations (n > 20).				
LOD	For maxi except 100	other elements less than 5 mg/kg. other elements less than one tenth of the mum level in Regulation (EC) No 1881/2006, ot if the maximum level for lead is less than µg/kg. For the latter, less than one fifth of the mum level			
LOQ	For of level maxi	norganic tin less than 10 mg/kg. other elements less than one fifth of the maximum in Regulation (EC) No 1881/2006, except if the mum level for lead is less than 100 µg/kg. For the r, less than two fifth of the maximum level			

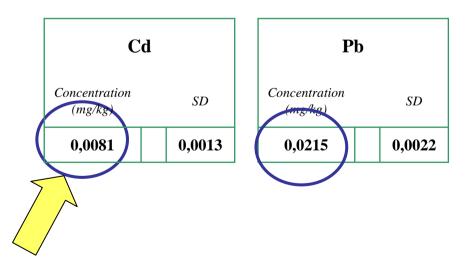
13th PT 1st Round Milk

Lab Code: 16	As	Cd	Pb
LoD of the Method	40 μg/kg	5 μg/kg	10 μg/kg
LoQ of the Method	50 μg/kg	5 μg/kg	12 μg/kg

13th PT 2nd Round: Fish


Same Laboratory

Lab Code 4	As	Cd	Hg	Pb
LoD of the Method	40 μg/kg	5 μg/kg	0.4 μg/kg	20 μg/kg
LoQ of the Method	50 μg/kg	5 μg/kg	0.7 μg/kg	40 μg/kg


13th PT 1st Round Milk

Lab Code 20	As	Cd	Pb
LoD of the Method		0.005 mg/kg	0.02 mg/kg
LoQ of the Method		0.02 mg/kg	0.06 mg/kg

20

13th PT 1st Round Milk: Results

Lab Code: 4	Cd	Pb
Sample A (mg/kg)	0.0049	0.013
Sample A (mg/kg)	0.0066	0.0088

2.1 ≤ z-scores ≥ 3.5 $(\sigma_p CRL)$

Comments

Results were low and outside our normal work range (.....)

Lab Code: 4	Cd	Pb
LoD of the method (mg/Kg)	0.002	0.001
LoQ ot the method (mg/Kg)	0.004	0.002

Method LoD and LoQ

Perform n determinations of a blank matrix and n determinations of a blank matrix (n>20) fortified with a small amount of the analyte of interest

LoD is numerically equal to 3 times the standard deviation of the mean of the determinations.

LoQ is numerically equal to 6 or 10 times the standard deviation of the mean of the determinations.

Example:

 $LoD = 3*Dil*(V/w)*\sigma B*Cspiked / (Ispiked - I Blk)$ $LoQ = (6or10) *Dil *(V/w)*\sigma B*Cmspiked / (I mspiked - I Blk)$

where:

Dil is the final dilution of the sample (after preparation, before introducing in the instrument)

V/w is the typical ratio (Final Volume/Sample Weight) σB is the standard deviation of the signal considering n determinations of a blank (n>20)

Cspiked is the conc, of the spike on the blank Ispiked is the mean of the intensity of the signal for the spiked blank IBlk is the intensity of the mean of the blank

Annual CRL-ISS Workshop 2009 on Proficiency Tests

LoD and LoQ

COMMISSION REGULATION (EC) No 333/2007

of 28 March 2007

'LOD' =	of the analyte with reasonable stat	tred content, from which it is possible to deduce the presence tistical certainty. The limit of detection is numerically equal to of the mean of blank determinations (n > 20).
'LOQ' =	statistical certainty. If both accur around the limit of detection, th	ntent of the analyte which can be measured with reasonable racy and precision are constant over a concentration range ten the limit of quantification is numerically equal to six or of the mean of blank determinations (n > 20).
LOD		For inorganic tin less than 5 mg/kg. For other elements less than one tenth of the maximum level in Regulation (EC) No 1881/2006, except if the maximum level for lead is less than 100 µg/kg. For the latter, less than one fifth of the maximum level
LOQ		For inorganic tin less than 10 mg/kg. For other elements less than one fifth of the maximum level in Regulation (EC) No 1881/2006, except if the maximum level for lead is less than 100 µg/kg. For the latter, less than two fifth of the maximum level

LoD and LoQ for Lead in Milk

Maximum level Regulation EC 0.020 mg/kg (fresh material)

• max LoD: $(1/5) \times 0.020 = 0.004 \text{ mg/kg}$

• max LoQ $(2/5) \times 0.020 = 0.008 \, mg/kg$

Lab Nr.	LoD (mg/kg)	LoQ (mg/kg)	Technique	Accreditation
2	0.005	0.01	AAS	Yes
9	0.006	0.012	FAAS	Yes
12	0.009	0.018	ICP-MS	Yes
16	0.010	0.012	AAS	Yes
21	0.007	0.015	FAAS	Yes
23	0.009	0.015	AAS	No

Lab Code 12 (13th PT Milk)

12th proficiency test on milk:

LoQ for Pb = 0.025 mg/kg

Control Chart for Pb in Milk

LoD and LoQ

COMMISSION REGULATION (EC) No 333/2007

of 28 March 2007

- 'LOD' = Limit of detection, smallest measured content, from which it is possible to deduce the presence of the analyte with reasonable statistical certainty. The limit of detection is numerically equal to three times the standard deviation of the mean of blank determinations (n > 20).
- 'LOQ' = Limit of quantification, lowest content of the analyte which can be measured with reasonable statistical certainty. If both accuracy and precision are constant over a concentration range around the limit of detection, then the limit of quantification is numerically equal to six or 10 times the standard deviation of the mean of blank determinations (n > 20).

LoD and LoQ for Lead in Milk

Lab Nr.	LoD (mg/kg)	LoQ (mg/kg)	Technique	Accreditation
6	0.0003	0.0008	AAS	Yes

Instrument: Perkin Elmer SIMAA 6000

weight 5g; final volume 20ml —— 0.2ppb* (instrumental output)

This means that, with a signal of about 0.4 mabs, the analyte can be measured with reasonable statistical certainty.

^{*} considering a single sample injection of 20µl

LoD and LoQ for Lead in Milk

Lab Nr.	LoD (mg/kg)	LoQ (mg/kg)	Technique	Accreditation
9	0.00022	0.00044	AAS	Yes

Instrument Perkin Elmer AAnalyst 600

weight 2g; final volume 25ml → 0.0352ppb

This means that, with a signal of about 0.1 mabs, the analyte can be measured with reasonable statistical certainty.

^{*} considering a single sample injection of 20µl

CRMs Milk

	BCR 150	BCR 151	NIST 1549	NIST 1568a	NIST 8414	IAEA 155 (RM)	BCR 185r
	Skim milk	Skim milk	Non-fat milk	Rice flour	Bovine muscle	Milk whey	Bovine liver
As*		0.101	0.0019	0.29	0.009	0.049	0.009
Cd*	0.0218		0.0005	0.022	0.013	0.016	0.013
Pb*	1.00	2.002	0.019	<0.010	0.38	0.104	0.38

^{*} values expressed as mg/kg

Milk: some considerations.....

the most widely used CRMs are BCR 150 and 151

BCR 150 is not certified for As; Cd 0.0218 mg/kg

BCR 151 is not certified for Cd; As 0.101 mg/kg

Values for Pb 1.00 mg/kg (BCR 150) and 2.002 mg/kg (BCR 151) are very far from the maximum levels stated in CR 1881/2006

13th PT 1st Round Milk

It's not easy to find a suitable reference material......

Lab Code: 30

Use of three different RMs

BCR 150, IAEA 155*, NIST 1549

BCR 150 Cd: 0.0218 mg/kg

IAEA 155 As: 0.049 mg/kg

NIST 1549 Pb: 0.019 mg/kg

*not certified

z-scores (σ _p CRL)							
	As Cd Pb						
A	-0.8	-0.5	0.5				
B -0.5 -0.6 0.0							

13th PT 1st Round Milk

It's not easy to find a suitable reference material......

Lab Code: 27 (same technique as lab 30)

Use of 12th PT Sample A and B

Consensus Values 12 th PT						
As Cd Pb						
Α	0.125	0.0058	0.0265			
В	0.0330					

z-scores (σ _p CRL)							
	As Cd Pb						
A	0.1	0.1	0.5				
B -0.2 0.1 0.5							

CRMs Fish

	Dorm-3	IAEA 407 (RM)	NIST 8414	BCR 185r	Dorm-2	BCR 278r	Tort-2	Dolt-2
	Fish protein	Fish muscle	Bovine muscle	Bovine liver	Fish muscle	Muscle tissue	Lobster epatop.	Fish liver
As*	6.88	12.6	0.009	0.033	18	6.07	21.6	16.6
Cd*	0.290	0.189	0.013	0.544	0.043	0.348	26.7	20.8
Pb*	0.395	0.12	0.38	0.172	0.065	2.00	0.35	0.22
Hg*	0.382	0.222			4.64	0.196	0.27	2.14

^{*} values expressed as mg/kg

13th PT 2nd Round Fish

It's not easy to find a suitable reference material......

Lab Code 1: BCR 185R - NIST 8414 - IAEA 407

Lab Code 22: DOLT 2 - Dorm 3 - TORT 2

Consensus Values 11 th PT Fish					
	As	Cd	Hg	Pb	
Α	9.11	0.0025	0.711	0.224	

Consensus Values 13 th PT Fish					
	Pb				
Α	0.281	1.252	0.276		

Calibration ranges

Lab Code

13

Technique AAS

Calibration: external linear

Calibration Range

0.01-0.05 mg/kg Lead

Sample Amount 4g

Final Volume 15ml

Ratio V/w = 3.75

Maximum level 0.020 mg/kg

µg/kg

Instrumental Output for Lead (ML) = 20 / 3.75 = 5.3

For PT Sample A (value from NRL 13) = 28/3.75 = 7.5

For PT Sample B (value from NRL 13) = 18/3.75 = 4.8

Calibration ranges

Lab Code

30

Technique ICP-MS

Calibration: external linear

Calibration Range

1-10 µg/kg for Cd and Pb

Final Dilution 1:100

Instrumental Output for Lead (ML) = 20 / 100 = 0.2

For PT Sample A (value from NRL 13) = 38 / 100 = 0.38

For PT Sample B (value from NRL 13) = 23 / 100 = 0.23

μg/kg

Results

Lab Code

7

13th PT 2nd Round Fish

on Proficiency Tests

Replicates					
As 1.083 1.039 1.012					
Hg	1.144	1.154	1.163		

	Mean Reported	Mean
As	1.074	1.045
Hg	1.186	1.154 Annual CRL-ISS Workshop 2009

Results

Lab Code

2

13th PT 2nd Round Fish

As	1.450	1.501	1.586	1.592	1.594	1.658	1.641
Cd	0.240	0.266	0.270	0.272	0.272	0.281	0.276
Pb	0.286	0.279	0.284	0.274	0.279	0.283	0.300

	Mean	Moon
	Reported	Mean
As	1.628	1.575
Cd	0.276	0.268
Pb	0.292	0.284

Use of PTs schemes results

Biases from interlaboratory comparisons (Nordtest Report TR 537)

 interlaboratory comparisons may be used in the same way as a reference material

a laboratory should participate at least 6 times

 the way forward is very similar to that for reference materials

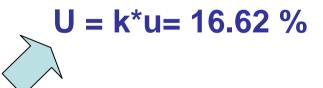
CRL-ISS PTs on Milk: Lead

• find the between laboratory standard deviations, s_R, for the exercises

Cons value SDrob s_R%

	Х РТ		X PT XI PT		XII	PT	XIII PT	
	1	2	1	2	Α	В	Α	В
Э	17.3 4.22			0.0247 0.0037				
	24.4%	11.4%	32.6%	15.0%	15.5%	18.2%	14.3%	13.0%

the s_R has been on average of 18.0% mean number of participants (n) = 23


$$u(Cref) = s_R / \sqrt{n} = 18 / \sqrt{23} = 3.8\%$$

Laboratory X

Found Cons Value s_R%

X PT		XI	PT	XII PT		XIII PT	
1	2	1	2	Α	В	Α	В
17.3 17.3	44 39.7	ì					
0.0%	10.8%	3.5%	8.1%	5.7%	6.1%	2.9%	13.0%

RMS
$$_{bias} = \sqrt{(\sum (bias_i)^2 / n)} = 7.4 \%$$

 $u = \sqrt{((RMS_{bias})^2 + u(Cref)^2)} = \sqrt{((7.4)^2 + (3.8)^2)} = 8.31\%$

Udich

Udich

no other contributions to uncertainty were considered

Found Uncertanty Ratio
0.036 0.005 14%
0.026 0.004 15%

Some advices:

- check your results before sending them
- check the consistency of your figures of merit
- for any question contact us at crl@iss.it

