

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

G. Ciccaglioni	B. Auricchio	5 A 11 H (A 51	
14.01.2015	B. Adricello	F. Anniballi / A. Fiore	L. Cozzi
Boucer 1.08.16	derille	3 Det Afine	Do Olllea
	Bouce.	Bouser forche	Bouser dorable 2 Mb. Afirl

Descr	izione	delle
me	odifich	ie:

Correzione dei refusi in tutto il documento; §2: inserimento riferimenti bibliografici; §3: inserimento dettagli tossine botuliniche; §4: inserimento abbreviazione relativa a PM; §5: riformulazione responsabilità; §7: inserimento dettagli apparecchiature; §§8-9: inserimento dettagli rispettivamente di materiali e materiali di riferimento; §10: inserimento dettagli preparazione soluzione tween 80; §12: inserimento nota 1; §13: inserimento procedure di dettaglio per la preparazione di alcune tipologie di campioni; §13.2.2: inserimento nota 2; §13.2.3: inserimento nota 3 e nota 4; inserimento paragrafo 13.5; §14: inserimento dettagli relativi alla convalida dei risultati; §17: inserimento dettagli relativi al riesame.

Copia controllata n°	☐ Copia non controllata
----------------------	-------------------------

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

1. SCOPO E CAMPO DI APPLICAZIONE	4
2. RIFERIMENTI	4
3. TERMINI E DEFINIZIONI	5
 3.1 Clostridi produttori di tossine botuliniche 3.2 Clostridium botulinum 3.3 Tossine botuliniche 3.4 Antitossine botuliniche 3.5 Botulismo 3.6 Campioni biologici 	5 6 6 6 7 7
3.7 Alimenti acidi o acidificati	7
3.8 Mouse test	8
4. ABBREVIAZIONI	8
5. RESPONSABILITÀ	8
6. NORME DI IGIENE E SICUREZZA	8
7. APPARECCHIATURE	9
8. MATERIALI	10
9. MATERIALI DI RIFERIMENTO	10
10.PREPARAZIONE TERRENI E REAGENTI	11
10.1 Triptone Peptone Glucose Yeast extract broth (TPGY)10.1.1 Composizione del terreno10.1.2 Preparazione	11 11 11
10.2 Triptone Peptone Glucose Yeast extract broth tamponato (TPGY tamponato) 10.2.1 Composizione della base	11 11
10.2.2 Composizione del tampone 10.2.3 Preparazione del TPGY tamponato	11 11
10.3 Egg Yolk Agar (EYA)	12
10.3.1 Composizione del terreno	12
10.3.2 Preparazione	12
10.4 Tampone Fosfato Gelatina	12
10.4.1 Composizione del Tampone Fosfato Gelatina 10.4.2 Preparazione	12
10.5 Cooked Meat Fortificato (CMF)	12 12
10.5.1 Composizione del terreno	12
10.5.2 Preparazione	13

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

	NT:	n	D	21)	N	1 1
\mathbf{C}	N	ĸ	B.	.71	١.,١	ш	,,,

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

10.6 McClung Toabe Medium (MCTM) 10.6.1 Composizione del terreno 10.6.2 Preparazione 10.7 Soluzione Acqua + Tween 80 10.7.1 Composizione 10.7.2 Preparazione 11. REQUISITI E MODALITÀ DI MANIPOLAZIONE/CONSERVAZIONE DEI CAMPIONI	13 13 13 13 13 14
12. PRINCIPIO DEL METODO	14
12.1 Ricerca delle tossine botuliniche 12.2 Ricerca dei clostridi produttori di tossine botuliniche 13. DESCRIZIONE DEL PROCEDIMENTO	14 14 15
 13.1 Tipologia di campione da sottoporre ad analisi 13.2 Ricerca e tipizzazione delle tossine botuliniche 13.2.1 Protocollo del Mouse Test 13.2.2 Ricerca e tipizzazione delle tossine botuliniche nei campioni di siero 13.2.3 Ricerca e tipizzazione delle tossine in campioni liquidi (alimenti, mangimi ed estratti) e/o contenenti una fase acquosa 13.2.4 Ricerca e tipizzazione delle tossine botuliniche in campioni solidi (alimenti, mangimi, feci, tessuti, organi interni) e/o contenenti una fase oleosa 13.3 Ricerca di clostridi produttori di tossine botuliniche 13.3.1 Preparazione del campione e allestimento delle colture di arricchimento 13.2.2 Ricerca e tipizzazione delle tossine botuliniche nelle colture di arricchimento 13.4 Isolamento di colonie pure di clostridi produttori di tossine botuliniche – parte opzionale 13.4.1 Selezione e purificazione delle colonie tipiche 13.4.2 Conferma della tossicità delle colonie tipiche 13.4.3 Tipizzazione delle tossine botuliniche dalle colonie singole 13.5 Identificazione dei clostridi produttori di tossine botuliniche 14. CONVALIDA DEI RISULTATI 	15 15 16 18 20 21 21 24 25 26 26 26 26 26
14.1 Ricerca delle tossine botuliniche14.2 Ricerca dei clostridi produttori di tossine botuliniche15. ESPRESSIONE DEI RISULTATI	26 27 27
16. CONTROLLI DI QUALITA'	27
17. RIESAME DELLA VALIDAZIONE	27
18. ARCHIVIAZIONE E CONSERVAZIONE	28
19. DESTINATARI	28

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA
	RICERCA DI TOSSINE BOTULINICHE
	(METODO COLTURALE E MOUSE TEST)

REV. 1

Appendice 1 29

1. SCOPO E CAMPO DI APPLICAZIONE

Il metodo descrive le modalità seguite per la ricerca dei clostridi produttori di tossine botuliniche e delle tossine botuliniche in campioni alimentari, mangimi, campioni biologici (siero, feci, tamponi rettali, lavaggi intestinali, contenuto gastrico, tessuti, organi interni), campioni ambientali e colture di arricchimento. Tale metodo si applica alla ricerca dei clostridi produttori di tossine botuliniche e delle tossine botuliniche responsabili del botulismo umano ed animale.

I materiali idonei per la ricerca di tossina botulinica nei focolai di origine alimentare includono il siero, le feci, il lavaggio intestinale, il contenuto gastrico e l'alimento/mangime sospetto; nelle infezioni di ferite, prelevare siero, feci, tessuti da tolettatura della ferita.

I materiali idonei per la ricerca dei clostridi produttori di tossine botuliniche sono le feci, i lavaggi intestinali, i tamponi rettali, il contenuto gastrico, l'alimento/mangime sospetto, i tessuti da tolettatura della ferita e gli organi interni. A volte anche i campioni ambientali possono essere utili per stabilire la fonte probabile di infezione (es. casi di botulismo infantile, casi di botulismo da ferita in tossicodipendenti, casi di botulismo animale).

I campioni da analizzare devono essere conformi ai criteri per l'accettazione dei conferimenti stabiliti dalla PGCPSS01.00n; in particolare i campioni destinati alla ricerca dei clostridi produttori di tossine botuliniche e delle tossine botuliniche dovrebbero pervenire in laboratorio in condizioni di refrigerazione; comunque la temperatura non è un parametro critico ai fini dell' esito analitico.

2. RIFERIMENTI

Per tutti i documenti di seguito elencati si fa riferimento all'ultima revisione.

CDC, Botulism Manual – Handbook for Epidemiologists, Clinicians, and Laboratory Workers. Atlanta, GA, Centers for Diseases Control and Prevention, 1998, pp. 15-21.

AOAC Official Method 977.26, Clostridium botulinum and its toxins in foods. Bacteriological Analytical Manual online. Chapter 17 Clostridium botulinum. http://www-cfsan.fda.gov/.

ISO 7218 Microbiologia di alimenti e mangimi per animali - Requisiti generali e guida per le analisi microbiologiche.

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

UNI EN ISO/IEC 17025 - Requisiti generali per la competenza dei laboratori di prova e taratura.

UNI EN ISO 11133 Microbiologia di alimenti, mangimi per animali e acqua. Preparazione, produzione, immagazzinamento e prove di prestazione dei terreni colturali.

ISO/TS 17919 Microbiology of the food chain — Polymerase chain reaction (PCR) for the detection of food-borne pathogens — Detection of botulinum type A, B, E and F neurotoxin-producing clostridia.

PGGDSP01.00n "Gestione della documentazione".

PGRMSP01.00n "Redazione metodi di prova".

PGGASP01.00n "Gestione delle apparecchiature".

PGCPSP01.000 "Gestione campioni e pratiche".

POQTBM1.00n "Preparazione, sterilizzazione e controllo di qualità dei terreni e dei materiali destinati alla microbiologia".

POQMSP01.00n "Controllo di qualità interno".

POMRBM01.00n "Gestione materiali di riferimento".

POVDBM02.00n "Validazione dei metodi di prova – Microbiologia".

PGVDSP 01.00n "Validazione metodi di prova".

<u>Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici".</u>

3. TERMINI E DEFINIZIONI

Per gli scopi di questo documento, si applicano i seguenti termini e definizioni.

3.1 Clostridi produttori di tossine botuliniche

Microrganismi anaerobi sporigeni, appartenenti al genere *Clostridium*, in grado di produrre tossine botuliniche in determinate condizioni ambientali. Attualmente fanno parte di questa classe di microrganismi, *Clostridium botulinum, Clostridium butyricum* produttore di tossina botulinica tipo E, *Clostridium baratii* produttore di tossina botulinica tipo F.

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

I ceppi produttori di tossine botuliniche tipo A, B, E, F sono principalmente correlati al botulismo umano. I ceppi produttori di tossine tipo C e D sono correlati al botulismo animale. *C. botulinum* tipo G è stato associato al momento soltanto ad un caso di botulismo da ferita nell'uomo.

3.2 Clostridium botulinum

Batterio anaerobio sporigeno con spora in posizione sub-terminale rispetto al corpo bastoncellare, che in determinate condizioni ambientali è in grado di produrre tossine botuliniche tipo A, B, C, D, E, F, G, $\underline{\mathbf{H}}$.

I ceppi di *C. botulinum* tipo C e D responsabili del botulismo animale hanno esigenze di anaerobiosi più stringenti rispetto ai ceppi responsabili del botulismo umano (tipo A, B, E, F, G e <u>H</u>), per cui per una loro coltivabilità ideale è necessario pre-ridurre i terreni colturali lasciandoli in condizioni di anaerobiosi per almeno 2 giorni prima dell'utilizzo.

3.3 Tossine botuliniche

Proteine termolabili, solubili in fase acquosa, in grado di provocare la sindrome neuroparalitica del botulismo nell'uomo e in molte specie animali. Attualmente sono state identificate 7 varianti antigeniche di tossine botuliniche che vengono classificate con le lettere dell'alfabeto dalla A alla G. È stata identificata anche un'ottava variante, indicata con la lettera H, scaturita da un riarrangiamento genomico delle tossine tipo A e F. Sono responsabili del botulismo umano le tossine tipo A, B, E, F. Le tossine tipo C e D sono generalmente associate al botulismo animale. La tossina tipo G è stata al momento associata soltanto ad un caso di botulismo da ferita. Per quanto riguarda il botulismo animale è stata osservata una certa correlazione fra specie animale e tipo di tossina. Nei bovini la maggior parte dei focolai è correlata alla tossina tipo D, anche se sono riportati in letteratura focolai dovuti alle tossine tipo B, C, A. Nei cavalli la tossina più frequentemente responsabile del botulismo è la tipo B. Negli uccelli e negli animali da pelliccia è più frequente il rinvenimento di tossina tipo C. Nei pesci e in alcune specie di uccelli che si cibano di pesce si ritrova tossina tipo E.

I geni codificanti per le tossine botuliniche tipo C e tipo D, sono veicolati da batteriofagi lisogenici, che facilmente possono essere persi durante le procedure di laboratorio rendendo i microrganismi non tossigeni. Le tossine espresse da questi geni fagici possono ricombinare tra loro e determinare i cosiddetti mosaici. Il mosaico tipo CD è costituito da 2/3 di tossina tipo C e 1/3 di tossina tipo D; il mosaico tipo DC è costituito da 2/3 di tossina tipo D e 1/3 di tossina tipo C. I mosaici sembrano esercitare una tossicità maggiore rispetto alle loro varianti non mosaico.

3.4 Antitossine botuliniche

Anticorpi specifici per la neutralizzazione delle tossine botuliniche. Per gli scopi di cui alla presente procedura operativa si distinguono antitossina trivalente e antitossine monovalenti. L'antitossina trivalente è una soluzione che contiene anticorpi in grado di

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

neutralizzare le tossine botuliniche tipo A, tipo B, tipo E. Le antitossine monovalenti sono specifiche soluzioni in grado di neutralizzare un solo tipo di tossina botulinica. Per gli scopi di cui alla presente procedura sono utilizzate 7 tipi di antitossine monovalenti in grado di neutralizzare rispettivamente le tossine botuliniche tipo A, tipo B, tipo C, tipo D, tipo E, tipo F e tipo G.

3.5 Botulismo

Sindrome neuroparalitica causata dall'azione delle tossine botuliniche. Si manifesta come una paralisi flaccida, simmetrica, discendente, che può colpire l'uomo e molte specie animali. Sono state identificate diverse forme di botulismo:

- <u>botulismo alimentare</u>, provocato dall'ingestione di tossine botuliniche preformate negli alimenti;
- <u>botulismo infantile</u>, provocato dalle tossine botuliniche prodotte *in situ* dai clostridi produttori di tossine botuliniche che in determinate condizioni possono colonizzare temporaneamente il tratto intestinale di lattanti con età inferiore ad un anno;
- <u>botulismo intestinale dell'adulto</u>, si presenta in adulti e ragazzi con le stesse caratteristiche del botulismo infantile;
- <u>botulismo da ferita</u>, provocato dalla infezione di una ferita da parte di *Clostridium botulinum*;
- <u>botulismo iatrogeno</u>, provocato dall'erroneo utilizzo delle tossine botuliniche per scopi terapeutici o cosmetici.

Il botulismo alimentare e quello da ferita sono comuni sia all'uomo che agli animali. In alcune specie animali sono state identificate forme tossinfettive che presentano lo stesso meccanismo patogenetico del botulismo infantile e da colonizzazione intestinale dell'adulto.

3.6 Campioni biologici

I campioni biologici da analizzare in caso di botulismo possono differire a seconda della forma della malattia e dello stato del paziente. Generalmente si analizzano siero, feci, tamponi rettali, lavaggi intestinali, contenuto gastrico, tessuti, organi interni.

3.7 Alimenti acidi o acidificati

Gli alimenti acidi sono tutti quegli alimenti che naturalmente hanno un valore di pH minore di 4.6. Sono invece definiti alimenti acidificati tutti quegli alimenti che vengono acidificati per aggiunta di sostanze acide (aceto, correttori di acidità) fino al raggiungimento di un pH minore o uquale ai 4.6.

Gli insilati per uso zootecnico sono generalmente acidificati.

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA	
	RICERCA DI TOSSINE BOTULINICHE	
	(METODO COLTURALE E MOUSE TEST)	

REV. 1

3.8 Mouse test

Il mouse test rappresenta il metodo "gold standard" per la ricerca delle tossine botuliniche. Si effettua su topini da laboratorio mediante inoculo intraperitoneale del campione tal quale o estratto e della brodocoltura da testare.

4. ABBREVIAZIONI

<u>PM</u>	Reparto Pericoli Microbiologici Connessi agli Alimenti	
ВМ	Biologia molecolare e microbiologia (abbreviazione utilizzata nella codifica dei documenti e nelle sigle relative alle funzioni)	
CNRB	Centro Nazionale di Riferimento per il Botulismo	
DD	Direttore del Dipartimento	
DR	Direttore di Reparto	
PO	Procedura Operativa	
PTP	Personale Tecnico abilitato all'esecuzione di attività di prova	
RAF	Referente area funzionale	
RAQ	Responsabile Assicurazione Qualità	
RSA-3	Responsabile Settore Analitico CNRB	
SP	Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare	

5. RESPONSABILITÀ

Il personale tecnico abilitato all'esecuzione del metodo di prova per la ricerca delle tossine botuliniche e dei clostridi produttori di tossine botuliniche è responsabile dell'esecuzione della prova, nonché dei dati grezzi, delle registrazioni sul foglio di lavoro, e delle osservazioni

Il RSA è responsabile della verifica dell'intero procedimento analitico, dei risultati analitici ottenuti, della verifica della loro corretta trascrizione nel rapporto di prova. È responsabilità del Servizio Biologico e per al Gestione della Sperimentazione Animale dell'ISS, la fornitura e la gestione degli animali stabulati.

6. NORME DI IGIENE E SICUREZZA

Le norme di igiene e sicurezza di seguito riportate, sono quelle espresse nel "CDC botulism manual". L'agente eziologico di tutte le forme di botulismo è la tossina botulinica. Minime quantità di tossine assunte per ingestione, inalazione o per assorbimento attraverso la congiuntiva o una ferita possono causare grave intossicazione e morte. Per questo motivo, tutti i campioni sospettati di contenere tossine botuliniche devono essere manipolati con cautela e solamente da personale appositamente addestrato.

C. botulinum e gli altri clostridi produttori di tossine botuliniche finora identificati appartengono alla classe di rischio II ed agiscono attraverso la produzione di tossine. Tutte le operazioni relative ai passaggi colturali sono pertanto svolte indossando obbligatoriamente il camice, i guanti ed eventualmente occhiali di protezione o visiera. E'

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

necessario da parte dell'operatore particolare attenzione nel togliere i guanti al momento della sospensione del lavoro e nell' indossarli al momento dell'avvio o della ripresa delle attività. Sia prima che al termine delle prove, l'operatore provvede al lavaggio delle mani con il sapone disinfettante in uso presso il laboratorio. In caso di sversamento di materiale sospettato di contenere tossina botulinica, questa può essere neutralizzata usando una soluzione 0.1M di idrossido di sodio. I clostridi produttori di tossine botuliniche vengono neutralizzati da una soluzione di ipoclorito di sodio (1g/litro di cloro disponibile) per un tempo di contatto di 15-20 minuti o altro idoneo disinfettante. Per sversamenti di sangue o grandi quantità di materiale organico si raccomanda l'utilizzo di una soluzione di ipoclorito di sodio contenente 5 g/litro di cloro disponibile. Se il materiale sgocciolato contiene sia il microrganismo che la tossina si devono usare in sequenza sia l'ipoclorito di sodio che l'idrossido di sodio.

7. APPARECCHIATURE

- 7.1 Anse sterili;
- 7.2 Autoclave in grado di raggiungere la temperatura di 121°C;
- 7.3 <u>Bagnomaria settato a 50°C ±1°C e a 70°C ±1°C oppure idoneo strumento con</u> capacità equivalenti
- 7.4 Bilancia tecnica;
- 7.5 Buste sterili per stomacher a battuta;
- 7.6 Centrifuga in grado di raggiungere almeno 12000 x g:
- 7.7 Congelatore a $T < -18^{\circ}C$;
- 7.8 Filtri a siringa tipo Millipore 0.45 µm;

7.9 Filtri a disco tipo Millipore 0.45 µm;

- 7.10 Frigoriferi +3°C \pm 2°C e +5°C \pm 3°C;
- 7.11 Giare per anaerobiosi o idoneo apparato per l'incubazione in condizioni di anaerobiosi;
- 7.12 Igrometro per la misurazione della water activity (oppure altra tipologia di strumento idoneo per la misurazione della water activity);
- 7.13 Incubatore a 37 °C ±1°C;
- 7.14 Incubatore a 30°C ±1°C;
- 7.15 Microscopio ottico con obiettivo per immersione 100x e oculari 10x;
- 7.16 pH metro:
- 7.17 Piastre di Petri con diametro di 90 mm;
- 7.18 Pipette graduate **sterili**;
- 7.19 Provette da batteriologia **sterili**;
- 7.20 Provette con tappo a vite o a scatto;
- 7.21 Siringhe da 1 ml con aghi tipo insulina;

7.22 Sistema di filtrazione per acqua;

7.23 Stomacher a battuta oppure idoneo strumento con capacità equivalenti.

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

8. MATERIALI

Tutti i reagenti sono da intendersi del grado di purezza PA.

- 8.1 Acqua distillata;
- 8.3 Agar batteriologico;
- 8.4 Alcol etilico assoluto:
- 8.5 Alcol etilico denaturato;
- 8.6 Amido solubile;
- 8.7 Carbonato di calcio;
- 8.8 Cisteina:
- 8.9 Cloruro di sodio:
- 8.10 Cooked meat medium;
- 8.11 Diidrogeno fosfato di sodio;
- 8.12 Egg yolk emulsion;
- 8.13 Estratto di lievito;
- 8.14 Gelatina;
- 8.15 Glucosio:
- 8.16 Idrogeno fosfato di sodio;
- 8.17 Peptone;
- 8.18 Solfato di ammonio;
- 8.19 Solfato di magnesio;
- 8.20 Triptone;
- 8.21 Tween 80 (polisorbato 80).

9. MATERIALI DI RIFERIMENTO

Per gli scopi di cui alla presente PO si utilizzano i seguenti materiali di riferimento:

- Antitossina botulinica trivalente (anti-A, anti-B, Anti-E) [titolo minimo 10 I.U./ml per ogni antitossina]
- Antitossina polivalente (anti-A, anti-B, anti-C, anti-D, anti-E, anti-F, anti-G) [titolo

minimo 10 I.U./ml per ogni antitossina]

- Antitossina botulinica anti-A [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-B [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-C [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-D [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-E [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-F [titolo minimo 10 I.U./ml]
- Antitossina botulinica anti-G [titolo minimo 10 I.U./ml]

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA
	RICERCA DI TOSSINE BOTULINICHE
	(METODO COLTURALE E MOUSE TEST)

REV. 1

10.PREPARAZIONE TERRENI E REAGENTI

10.1 Triptone Peptone Glucose Yeast extract broth (TPGY)

10.1.1 Composizione del terreno

Triptone	g 50
Peptone	g 5
Estratto di lievito	g 20
Glucosio	g 4
Acqua distillata	ml 1000

10.1.2 Preparazione

Dissolvere in un idoneo contenitore di vetro tipo Pirex gli ingredienti usando acqua distillata. Se necessario, aliquotare 9 ml di terreno in provette per batteriologia. Sterilizzare in autoclave a 121° C per 15 minuti. pH finale del terreno 7.0 ± 0.2 . Conservare il terreno sterilizzato in frigorifero a $+ 5^{\circ}$ C $\pm 3^{\circ}$ C per non oltre 4 settimane.

10.2 Triptone Peptone Glucose Yeast extract broth tamponato (TPGY tamponato)

10.2.1 Composizione della base

_	
Triptone	g 50
Peptone	g 5
Estratto di lievito	g 20
Glucosio	g 4

10.2.2 Composizione del tampone

- 10.2.2.1 Soluzione A. Dissolvere 138 g di diidrogeno fosfato di sodio (NaH₂PO₄) in 1000 ml di acqua distillata.
- 10.2.2.2 Soluzione B. Dissolvere 142 g di idrogeno fosfato di sodio (Na₂HPO₄) in 1000 ml di acqua distillata.
- 10.2.2.3 Composizione del tampone. A 250 ml della soluzione A, aggiungere goccia a goccia la soluzione B finché il pH finale del tampone non raggiunga il valore di 7.2 ±0.2.

10.2.3 Preparazione del TPGY tamponato

Dissolvere, in un idoneo contenitore di vetro tipo Pirex, i componenti della base in 500 ml di acqua distillata. Aggiungere 100 ml del tampone di cui al punto 7.2.2.3, quindi portare al volume finale di un litro aggiungendo acqua distillata. Sterilizzare in autoclave a 121°C per 15 minuti. pH finale del terreno 7.2 \pm 0.2. Conservare il terreno sterilizzato in frigorifero a \pm 5°C \pm 3°C per non oltre 4 settimane.

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

10.3 Egg Yolk Agar (EYA)

10.3.1 Composizione del terreno

Triptone	g 5
Peptone	g 20
Estratto di lievito	g 5
NaCl	g 5
Agar batteriologico	g 20
Acqua distillata	ml 1000
Egg yolk emulsion	ml 80

10.3.2 Preparazione

Dissolvere gli ingredienti in acqua distillata. Sterilizzare il terreno in autoclave a 121°C per 15 minuti. Raffreddare il terreno alla temperatura di 45-50 °C. Aggiungere sterilmente 80 ml di Egg yolk emulsion, quindi distribuire in piastre di Petri sterili. pH finale del terreno 7.0 \pm 0.2. Conservare le piastre in frigorifero a + 5°C \pm 3°C per non oltre 4 settimane.

10.4 Tampone Fosfato Gelatina

10.4.1 Composizione del Tampone Fosfato Gelatina

Gelatina	g 2
Idrogeno fosfato di sodio	g 4
Acqua distillata	ml 1000

10.4.2 Preparazione

Dissolvere gli ingredienti in acqua distillata. Sterilizzare il tampone in autoclave a 121° C per 15 minuti. pH finale 6.2 ± 0.2 . Conservare il tampone in frigorifero a $+5^{\circ}$ C \pm 3°C per non oltre 4 settimane.

10.5 Cooked Meat Fortificato (CMF)

10.5.1 Composizione del terreno

Cooked Meat Medium	g 1.25
Amido solubile	g 0.01
Estratto di lievito	g 0.1
Carbonato di calcio	g 0.05
Solfato di ammonio	g 0.1
Glucosio	g 0.08
Cisteina	g 0.01
Acqua distillata	ml 10

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

10.5.2 Preparazione

Dissolvere gli ingredienti in acqua distillata. Sterilizzare il terreno in autoclave a 121°C per 15 minuti. pH finale 7.6 \pm 0.2. Conservare il terreno sterilizzato in frigorifero a + 5°C \pm 3°C per non oltre 4 settimane.

Prima dell'uso è preferibile mantenere il terreno in condizioni di anaerobiosi per almeno 2 giorni.

10.6 McClung Toabe Medium (MCTM)

10.6.1 Composizione del terreno

Triptone	g 40
Estratto di lievito	g 5.0
Agar batteriologico	g 20.0
Cloruro di sodio	g 2.0
Glucosio	g 2.0
Idrogeno fosfato di sodio	g 5.0
Soluzione al 5% di solfato di magnesio	ml 0.2
Acqua distillata	ml 900
Egg Yolk emulsion	ml 100

10.6.2 Preparazione

Dissolvere gli ingredienti in acqua distillata. Sterilizzare il terreno in autoclave a 121°C per 15 minuti. Raffreddare il terreno alla temperatura di 45-50 °C. Aggiungere sterilmente 80 ml di Egg yolk emulsion, quindi distribuire in piastre di Petri sterili. pH finale del terreno 7.4 \pm 0.2. Conservare le piastre in frigorifero a \pm 5°C \pm 3°C per non oltre 4 settimane.

Prima dell'uso è preferibile mantenere il terreno in condizioni di anaerobiosi per almeno 2 giorni.

10.7 Soluzione Acqua + Tween 80

10.7.1 Composizione

Tween 80 (polisorbato 80)	<u>g 10</u>
Acqua distillata	<u>ml 1000</u>

10.7.2 Preparazione

<u>Dissolvere il Tween 80 in acqua distillata e sterilizzare a 121°C per 15 minuti.</u> Conservare il tampone per non oltre 4 settimane.

AREA BIOLOGIA MOLECOLARE E MICROBIOLOGIA

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

11. REQUISITI E MODALITÀ DI MANIPOLAZIONE/CONSERVAZIONE DEI CAMPIONI

Tutti i campioni eccetto quelli provenienti da ferite, devono essere mantenuti in condizioni di refrigerazione, preferibilmente non congelati, ed esaminati prima possibile. I campioni prelevati da ferite devono essere trasportati al laboratorio a temperatura ambiente ed in idonei contenitori. Gli alimenti dovrebbero essere mantenuti possibilmente nel loro contenitore originale.

La quantità ideale di siero da analizzare è 10-15 ml. Questa quantità di campione permette l'identificazione della specifica tossina botulinica ed eventualmente la ripetizione del test, qualora si rendesse necessaria. Volumi minori di 3 ml possono dare risultati non conclusivi.

La quantità ideale di feci o lavaggio intestinale (enema) da prelevare (preferibilmente prima del trattamento con l'antitossina) è di 25-50 g o 25-50 ml, anche se quantitativi minori di campione e prelievi effettuati dopo il trattamento con l'antitossina, hanno permesso la conferma dell'evento di botulismo e l'isolamento dell'agente eziologico. Nel caso di lavaggio intestinale dovrebbe essere utilizzata acqua sterile non batteriostatica. In considerazione del fatto che la stipsi è uno dei segni clinici maggiormente ricorrenti in casi di botulismo, è possibile analizzare anche i tamponi rettali (valido soltanto nel caso del botulismo umano). Per quanto riguarda gli alimenti, le confezioni sospette vanno inviate in laboratorio evitando il più possibile la manipolazione del loro contenuto. In ogni caso il quantitativo ideale per effettuare la ricerca completa di tossine botuliniche e clostridi produttori di tossine botuliniche è almeno 50 g e/o ml. È comunque possibile analizzare confezioni contenenti tracce dell'alimento o del suo liquido di governo.

La quantità ideale di coltura di arricchimento da testare per la ricerca delle tossine botuliniche e dei clostridi produttori di tossine botuliniche è 10 ml.

Prima di aprire gli alimenti inscatolati, pulire il coperchio o la parte superiore della scatola con acqua e sapone, sciacquare, rimuovere l'eccesso di acqua e asciugare con una soluzione di alcol etilico al 70%. I contenitori con i fondelli deformati dovrebbero essere raffreddati prima dell'apertura e flambati con estrema cautela.

12. PRINCIPIO DEL METODO

12.1 Ricerca delle tossine botuliniche

Ricerca delle tossine botuliniche presenti nel campione da analizzare mediante inoculazione intraperitoneale in topini da laboratorio (mouse test).

12.2 Ricerca dei clostridi produttori di tossine botuliniche

Ricerca dei clostridi produttori di tossine botuliniche mediante semina del campione da analizzare in idonei terreni colturali di arricchimento (TPGY, CMF o TPGY tamponato).

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

Per la ricerca dei clostridi produttori di tossine botuliniche tipo A, B, E, F utilizzare i terreni TPGY oppure TPGY tamponato. <u>Il terreno di arricchimento TPGY tamponato si utilizza se si analizzano 25 g di campione.</u> Per la ricerca di clostridi produttori di tossine botuliniche tipo C e D utilizzare il terreno di arricchimento CMF.

Ricerca delle tossine botuliniche prodotte nelle colture di arricchimento mediante mouse test.

Parte opzionale: Isolamento di colonie pure e conferma della tossicità. Eventuale identificazione del ceppo isolato.

NOTA 1: La ricerca dei clostridi produttori di tossine botuliniche può essere effettuata mediante metodiche biomolecolari basate sull'amplificazione degli acidi nucleici (es. metodo CNRB 31.00n). In ottemperanza alle disposizioni del Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici", è fatto obbligo, dove possibile, di utilizzare metodiche analitiche alternative all'uso degli animali.

13. DESCRIZIONE DEL PROCEDIMENTO

13.1 Tipologia di campione da sottoporre ad analisi

- · Campioni alimentari;
- Mangimi;
- Campioni biologici (feci, tamponi rettali, lavaggi intestinali, contenuto gastrico, tessuti e organi interni);
- Colture di arricchimento;
- Campioni ambientali;

13.2 Ricerca e tipizzazione delle tossine botuliniche

Aprire asetticamente il campione in una cappa di sicurezza biologica, oppure, in alternativa, all'interno di una ampia busta di plastica per evitare la formazione di aerosol.

13.2.1 Protocollo del Mouse Test

Animali: topini bianchi da laboratorio (*Mus musculus*) del peso di 15-30 g. Per lo svolgimento di una prova è necessario utilizzare animali di peso omogeneo.

Materiali di riferimento: antitossine botuliniche trivalenti/polivalenti e monovalenti.

Inoculo degli animali: iniezione intraperitoneale degli animali (in doppio) con siero o surnatanti trattati secondo gli schemi 1, <u>1A</u>, 2, <u>2A</u>, 3, <u>3A</u> usando siringhe da 1 ml con ago "tipo insulina". Per identificare le varie coppie di animali inoculate, colorare ogni set di topi con un pennarello ad acqua. Per evitare che la colorazione venga abrasa dall'animale,

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI
	PRODUTTORI DI TOSSINE BOTULINICHE E PER LA
	RICERCA DI TOSSINE BOTULINICHE
	(METODO COLTURALE E MOUSE TEST)

REV. 1

colorare il primo tratto della coda e il pelo del dorso in posizione caudale.

Osservazione degli animali: Osservare periodicamente per 3 giorni la sintomatologia caratteristica e registrare la morte dei topi utilizzando la scheda, modulo PGPAAC01.l8n della Procedura generale PGPAAC 01.00n, collocata sulla gabbietta contenente i topi. I sintomi caratteristici del botulismo nei topi iniziano con arruffamento del pelo, respiro addominale affaticato, debolezza nelle zampe e paralisi totale. La morte è causata da insufficienza respiratoria.

La morte dell'animale immediatamente dopo l'inoculo indica la presenza di sostanze non riconducibili alle tossine botuliniche oppure errore dell'operatore che ha effettuato l'inoculo stesso. La morte è utilizzata come parametro per indicare la positività come riportato nei successivi schemi 1, 1A, 2, 2A, 3, 3A.

13.2.2 Ricerca e tipizzazione delle tossine botuliniche nei campioni di siero

Porre 1 ml di siero in ciascuna di 2 provette. In una provetta aggiungere 0.25 ml antitossine botuliniche trivalenti/polivalenti. Mescolare la sospensione siero-antitossina evitando la formazione di schiuma.

Incubare a temperatura ambiente per almeno 30 minuti.

Inoculare 2 topini bianchi da laboratorio per via intraperitoneale con 0.4 ml di siero non trattato e 2 topini con 0.5 ml di miscela siero-antitossine botuliniche trivalenti/polivalenti (schema 1).

Osservare la sintomatologia caratteristica e registrare la morte dei topi.

Interpretazione dei risultati: se nel campione è presente tossina botulinica, i topi inoculati con il campione di cui alla provetta N. 1 (schema 1 o 1A) moriranno entro 3 giorni. I topi inoculati con il campione di cui alle provette N. 2 (schema 1 o 1A) non moriranno in quanto la tossina eventualmente presente viene inattivata dall'antitossina.

SCHEMA 1

Provetta N.	Volume di Siero (ml)	Volume di Antitossina (ml)	Tipo di Antitossina	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)
1	1.0	-	-	0.8	0.4
2	1.0	0.25	Trivalente/polivalente*	1.0	0.5

*Poiché la tossina tipo F è estremamente rara, l'antitossina trivalente anti A, B, E, sarà sufficiente a confermare la quasi totalità dei casi di botulismo umano. In caso di morte di tutti gli animali inoculati, ripetere il test neutralizzando anche con l'antitossina botulinica anti-F oppure neutralizzare con l'antitossina polivalente. Per l'analisi di campioni relativi al botulismo animale è preferibile l'utilizzo di antitossina polivalente, ma in considerazione della difficoltà di reperimento, lo Schema 1 può essere sostituito dallo Schema 1A.

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

Provetta N.	Volume di Siero (ml)	Volume di Antitossina (ml)	Tipo di Antitossina	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)
1	1.0	-	-	0.8	0.4
2	1.0	0.25	Trivalente A,B,E	1.0	0.5
3	1.0	0.25+0.25	Anti-C – anti-D	1.0	0.5

Qualora il test di cui allo schema 1 o 1A risultasse positivo, si disponesse di sufficiente quantitativo di campione <u>e fosse necessario per ragioni analitiche e/o terapeutiche conoscere il tipo di tossine presente nel campione</u>, effettuare la tipizzazione della tossina stessa seguendo lo schema 2 o 2A.

NOTA 2: Nei casi di botulismo la terapia con il siero antitossine botuliniche deve essere effettuata prima possibile, senza attendere i risultati della conferma di laboratorio, pertanto e in ottemperanza alle disposizioni del Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici", tale fase analitica non è determinante e può essere evitata. Il responsabile della prova e/o del settore analitico potrà tuttavia valutare caso per caso se necessario procedere con la tipizzazione delle tossine botuliniche presenti nel campione.

SCHEMA 2

Provetta N.	Volume di campione o estratto (ml)	Volume di Antitossina (ml)	Tipo di Antitossina	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)
1	1.0	-	-	0.8	0.4
2	1.0	0.25	anti- A	1.0	0.5
3	1.0	0.25	anti- B	1.0	0.5
4	1.0	0.25	anti- E	1.0	0.5
5	1.0	0.25	anti- F	1.0	0.5

Per l'analisi dei campioni relativi al botulismo animale lo Schema 2 deve essere sostituito dallo Schema 2A.

SCHEMA 2A.

00.12.11.1							
Provetta N.	Volume di campione o estratto (ml)	Volume di Antitossina (ml)	Tipo di Antitossina	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)		
1	1.0	-	-	0.8	0.4		

CNRB3	0.001	PRO	REV. 1			
2	1.	n	0.25	anti- A	1.0	0.5
3	1.		0.25	anti- B	1.0	0.5
4	1.	0	0.25	anti- C	1.0	0.5
5	1.	0	0.25	anti- D	1.0	0.5
6	1.	0	0.25	anti- E	1.0	0.5
7	1.	0	0.25	anti- F	1.0	0.5
8	1.	0	0.25	anti- G	1.0	0.5

Interpretazione dei risultati: il tipo di tossina presente è indicato dalla morte dei topi inoculati con il campione contenuto nella provetta n.1 e in tutte le provette eccetto quella corrispondente al tipo di antitossina specifica che avrà protetto i topi.

13.2.3 Ricerca e tipizzazione delle tossine in campioni liquidi (alimenti, mangimi ed estratti) e/o contenenti una fase acquosa

Omogenizzare il campione e prelevarne asetticamente un'aliquota.

Centrifugare l'aliquota per 20 minuti a $8000 \times g$. Qualora il surnatante non risultasse perfettamente limpido è possibile ripetere la centrifugazione, oppure filtrare con filtri tipo Millipore a siringa, con pori del diametro di $0.45 \mu m$.

Porre 1 ml di surnatante in ciascuna di 2 provette. In una provetta aggiungere 0.25 ml di siero antitossina trivalente/polivalente. Mescolare la sospensione surnatante-antitossina evitando la formazione di schiuma. Incubare a temperatura ambiente per almeno 30 minuti.

Porre 1.5-2 ml di surnatante in un'altra provetta e far bollire per 10 minuti a bagnomaria. Inoculare 2 topini per via intraperitoneale con 0.4 ml di surnatante non trattato, 2 topini con 0.5 ml di miscela surnatante-antitossina trivalente/polivalente e 2 topi con 0.5 ml di surnatante trattato al calore (schema 3 o 3A).

Osservare la sintomatologia caratteristica e registrare la morte dei topi.

Interpretazione dei risultati: Se nel campione è presente tossina botulinica, i topi inoculati con il campione di cui alla provetta N. 1 (schema 3 o 3A) moriranno entro 3 giorni. I topi inoculati con il campione di cui alle provette N. 2 (schema 3 o 3A) non moriranno in quanto la tossina eventualmente presente viene inattivata dall'antitossina. I topi inoculati con il campione di cui alla provetta N. 3 (schema 3 o 3A) non moriranno in quanto le tossine botuliniche sono termolabili.

NOTA 3: Nel caso di analisi di campioni per i quali non sussista la condizione di urgenza analitica, al fine di limitare il più possibile il numero di animali utilizzati a fini scientifici (Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici"), è possibile effettuare l'inoculo degli animali di cui allo schema 3 in due tempi. Dapprima inoculare gli animali con il campione di cui alle provette N. 1 e N. 3; successivamente e solo in caso di positività (morte dei soli animali inoculati con il campione della provetta N. 1) inoculare nuovamente gli animali con il campione di

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

cui alla provetta N. 1 e con il campione di cui alla provetta N. 2.

N.B. Non è possibile formulare un risultato di positività per tossine botuliniche nel campione esaminato senza aver effettuato il test di cui allo schema 3 in maniera completa; è invece possibile formulare un risultato di negatività per tossine botuliniche nel campione esaminato effettuando l'inoculazione dei soli campioni di cui alle provette N. 1 e N. 3.

SCHEMA 3

Provetta N.	Volume di Surnatante (ml)	Volume di Antitossina (ml)	Trattamento	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)
1	1.0	-	-	0.8	0.4
2	1.0	0.25	Antitossina trivalente/	1.0	0.5
3	1.5	-	bollitura 10 min.	1.0	0.5

*Poiché la tossina tipo F è estremamente rara, l'antitossina trivalente anti A, B, E, sarà sufficiente a confermare la quasi totalità dei casi di botulismo umano. In caso di morte degli animali di cui alle provette N. 1 e 2, ripetere il test neutralizzando anche con l'antitossina botulinica anti-F oppure neutralizzare con l'antitossina polivalente. Per l'analisi di campioni relativi al botulismo animale è preferibile l'utilizzo di antitossina polivalente, ma in considerazione della difficoltà di reperimento del prodotto, lo Schema 3 può essere integrato come definito nello Schema 3A.

NOTA 4: Nel caso di analisi di campioni per i quali non sussista la condizione di urgenza analitica, al fine di limitare il più possibile il numero di animali utilizzati a fini scientifici (Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici"), è possibile effettuare l'inoculo degli animali di cui allo schema 3A in due tempi. Dapprima inoculare gli animali con il campione di cui alle provette N.1 e N. 3; successivamente e solo in caso di positività (morte dei soli animali inoculati con il campione della provetta N.1) inoculare nuovamente gli animali con il campione di cui alla provetta N. 1 e con i campioni di cui alle provette N. 2 e N. 4.

N.B. Non è possibile formulare un risultato di positività per tossine botuliniche nel campione esaminato senza aver effettuato il test di cui allo schema 3A in maniera completa; è invece possibile formulare un risultato di negatività per tossine botuliniche nel campione esaminato effettuando l'inoculazione dei soli campioni di cui alle provette N. 1 e N. 3.

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA	F
	RICERCA DI TOSSINE BOTULINICHE	_
	(METODO COLTURALE E MOUSE TEST)	

REV. 1

SCHEMA 3A

Provetta N.	Volume di Siero (ml)	Volume di Antitossina (ml)	Tipo di Antitossina	Volume caricato in siringa (ml)	Volume inoculato/topo (ml)
1	1.0	-	-	0.8	0.4
2	1.0	0.25	Trivalente A,B,E	1.0	0.5
3	1.5	-	Bollitura 10 min.	1.0	0.5
4	1.0	0.25+0.25	Anti-C – anti-D	1.0	0.5

Qualora il test di cui allo schema 3 o 3A risultasse positivo e si disponesse di un sufficiente quantitativo di campione, effettuare la tipizzazione della tossina seguendo lo schema 2 o 2A.

13.2.4 Ricerca e tipizzazione delle tossine botuliniche in campioni solidi (alimenti, mangimi, feci, tessuti, organi interni) e/o contenenti una fase oleosa

Omogenizzare il campione e prelevarne asetticamente un'aliquota in busta stomacher. Aggiungere all'aliquota prelevata 1 ml di tampone fosfato gelatina freddo per ogni g di campione prelevato. Per campioni disidratati (es. crocchette per cani) il fattore di diluizione 1:1 non permette di ottenere una quantità di estratto liquido idonea per l'inoculazione negli animali. Sarà quindi necessario aumentare tale rapporto di diluizione aggiungendo poco alla volta il tampone fosfato gelatina fino ad ottenere una fase liquida sufficiente per lo svolgimento delle fasi analitiche successive. Evitare un'eccessiva diluizione del campione per evitare di diluire eccessivamente le tossine botuliniche eventualmente presenti nello stesso. Omogeneizzare in stomacher (30 secondi a 230 rpm) oppure mediante altro sistema con efficienza equivalente. Per matrici solide che potrebbero provocare la rottura del sacchetto stomacher è opportuno omogenizzare il campione per sminuzzamento con forbici e/o bisturi sterili.

Incubare in frigorifero alla temperatura di $+3^{\circ}$ C \pm 2°C per almeno 30 minuti. Le tossine botuliniche rimangono stabili a temperatura di refrigerazione, per cui è possibile protrarre l'incubazione in frigorifero overnight.

Centrifugarne una idonea porzione in centrifuga refrigerata per 20 minuti a 8000 x g. Qualora il surnatante non risultasse perfettamente limpido è possibile ripetere la centrifugazione oppure filtrare con filtri tipo Millipore a siringa con pori del diametro di 0.45 μ m.

Analizzare il surnatante come descritto al punto 13.2.3 (schema 3). Qualora il test di cui allo schema 3 o 3A risultasse positivo, effettuare la tipizzazione della tossina seguendo lo schema 2 o 2 A di cui al punto 13.2.2.

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

13.3 Ricerca di clostridi produttori di tossine botuliniche

13.3.1 Preparazione del campione e allestimento delle colture di arricchimento

Aprire asetticamente il campione in una cappa di sicurezza biologica, oppure, in alternativa all'interno di una ampia busta di plastica per evitare la formazione di aerosol.

Nota: Può essere utile effettuare l'osservazione microscopica delle forme microbiche presenti nel campione da sottoporre ad analisi. I clostridi produttori di tossine botuliniche appaiono come bastoncelli sporigeni Gram positivi. Particolarmente importante risulta la posizione e la forma delle spore. C. botulinum appare come un bastoncello con spora debordante in posizione sub-terminale rispetto al corpo bastoncellare, che assume la forma di una racchetta da tennis. C. butyricum appare come un bastoncello con spora non debordante in posizione centrale rispetto al corpo bastoncellare, che assume la forma di una spilla da balia. C. baratii appare come un bastoncello con spora non debordante in posizione sub-terminale rispetto al corpo bastoncellare (appendice n. 1).

13.3.1.1 Campioni alimentari e mangimi in porzione test da 25 g

Se si analizzano campioni provenienti da botulismo animale il terreno TPGY tamponato deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere pre-ridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

- A. Rimuovere l'ossigeno disciolto nel terreno TPGY tamponato facendolo bollire per 10 minuti in bagnomaria.
- B. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- C. Pesare 25 g ± 2 g di campione in busta stomacher sterile ed aggiungere 225 ml di TPGY tamponato; omogeneizzare in stomacher (30 secondi a 230 rpm).
- D. Trattare termicamente il terreno seminato, in bagnomaria a 70°C ± 1°C per 10 minuti, quindi raffreddare fino a temperatura ambiente (per rendere più veloce questo passaggio, il terreno inoculato può essere raffreddato in acqua o in bagno di acqua e ghiaccio).
- E. Incubare in condizioni di anaerobiosi alla temperatura di 30°C ± 1°C per 96 h ± 2h. Se <u>e solo se</u> dopo tale periodo la coltura non presenta crescita microbica (assenza di torbidità e di produzione di gas) protrarre l'incubazione per ulteriori 8 giorni. <u>Dopo quest'ulteriore periodo di incubazione, in assenza di crescita microbica, il campione può essere considerato negativo, senza necessità di effettuare ulteriori analisi.</u>
- F. Proseguire come indicato al successivo punto 13.3.2.
- G. Per quanto riguarda i campioni alimentari, può essere utile eseguire la misurazione del pH e dell'aw, in quanto a valori di pH minori di 4.6 e aw minore di 0.935 i clostridi

	METODO PER LA RICERCA DI CLOSTRIDI
CNRB30.001	PRODUTTORI DI TOSSINE BOTULINICHE E PER LA
CIVINDS0.001	RICERCA DI TOSSINE BOTULINICHE
	(METODO COLTURALE E MOUSE TEST)

REV. 1

produttori di tossine botuliniche non sono in grado di crescere e produrre le tossine botuliniche. È altresì utile la valutazione dei caratteri organolettici dell'alimento.

13.3.1.2 Residui di campioni alimentari e mangimi

Se si analizzano campioni provenienti da botulismo animale il terreno TPGY deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere pre-ridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

- A. Effettuare una sospensione campione/tampone fosfato gelatina in rapporto 1:1.
- B. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- C. Prelevare 2 ml della sospensione campione/tampone fosfato gelatina di cui sopra, e seminare in 9 ml di TPGY. Se si dispone di un quantitativo inferiore a 2 ml, seminare l'intera sospensione campione/tampone fosfato gelatina.

Proseguire quindi secondo quanto descritto nei punti D-G del paragrafo 13.3.1.1.

13.3.1.3 Tamponi rettali

- A. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- B. Seminare 1-2 tamponi rettali (in base alla quantità di campione depositata nel tampone stesso) in 9 ml di TPGY.

Proseguire guindi secondo guanto descritto nei punti D-F del paragrafo 13.3.1.1.

13.3.1.4 Lavaggi intestinali (enema)

Se si analizzano campioni provenienti da botulismo animale il terreno TPGY deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere pre-ridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

- A. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- B. Seminare 1-2 ml di campione in 9 ml di TPGY.

Proseguire quindi secondo quanto descritto nei punti D-F del paragrafo 13.3.1.1.

13.3.1.5 Campioni fecali, tessuti ed organi interni

Se si analizzano campioni provenienti da botulismo animale il terreno TPGY deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere pre-ridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE	REV.
	(METODO COLTURALE E MOUSE TEST)	

7. 1

- A. Effettuare una sospensione campione/tampone fosfato gelatina in rapporto 1:1.
- B. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- C. Prelevare 2 ml della sospensione campione/tampone fosfato gelatina di cui sopra, e seminare in 9 ml di TPGY. Se si dispone di un quantitativo inferiore a 2 ml, seminare l'intera sospensione campione/tampone fosfato gelatina.

Proseguire quindi secondo quanto descritto nei punti D-F del paragrafo 13.3.1.1.

13.3.1.6 Essudato da ferita

Se si analizzano campioni provenienti da casi di botulismo animale il terreno TPGY deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere preridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

- A. Effettuare una sospensione campione/tampone fosfato gelatina in rapporto
- B. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- C. Prelevare 2 ml della sospensione campione/tampone fosfato gelatina di cui sopra, e seminare in 98 ml di TPGY. Se si dispone di un quantitativo inferiore a 2 ml, seminare l'intera sospensione campione/tampone fosfato gelatina.

Proseguire quindi secondo quanto descritto nei punti D-F del paragrafo 13.3.1.1.

<u>É possibile analizzare anche garze e bende utilizzate per la toelettatura della ferità</u> purché non contengano sostanze batteriostatiche o battericide. In questo caso le garze e/o le bende devono essere trattate come un normale campione seguendo le indicazioni riportate nei punti A-C.

13.3.1.7 Campioni disidratati

Se si analizzano campioni provenienti da casi di botulismo animale il terreno TPGY deve essere sostituito dal terreno CMF. Tale terreno prima dell'uso deve essere preridotto lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

- A. Effettuare una sospensione campione/tampone fosfato gelatina in rapporto
- B. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA	DDW 4
	RICERCA DI TOSSINE BOTULINICHE	REV. 1
	(METODO COLTURALE E MOUSE TEST)	

C. <u>Pesare 2 g della sospensione campione/tampone fosfato gelatina di cui sopra, e seminare in 9 ml di TPGY. Se si dispone di un quantitativo inferiore a 2 g, seminare l'intera sospensione campione/tampone fosfato gelatina.</u>

Proseguire secondo quanto descritto nei punti D-F del paragrafo 13.3.1.1.

13.3.1.8 Miele

- A. <u>Porre il campione in bagnomaria settato a 50°C ±1 °C per 30 minuti per fondere il miele. Mescolare il campione invertendo la confezione/contenitore.</u>
- B. Pesare 25 g ± 2 g di miele in un provettone da centrifuga sterile e addizionare 50 ml della soluzione acqua + tween 80 preriscaldata a 50°C ±1 °C. Se si dispone di un quantitativo di campione minore, dissolvere in una soluzione di acqua + tween 80 mantenendo le proporzioni 1:2. Mescolare fino a completa dissoluzione del campione.
- C. Centrifugare a 8000 x g per 30 minuti.
- D. Rimuovere con cura la fase liquida. Porre il deposito in frigorifero alla temperatura di 5 °C ± 3 °C.
- E. Filtrare la fase liquida con il sistema di filtrazione dell'acqua, utilizzando filtri tipo Millipore a disco con pori da 0.45 μm. Se il filtro dovesse impaccarsi sostituirlo con uno nuovo.
- F. Rimuovere l'ossigeno disciolto nel terreno TPGY facendolo bollire per 10 minuti in bagnomaria. Raffreddare fino alla temperatura di 70°C ±1 °C in bagnomaria.
- G. Seminare il/i filtro/i in 9 ml di TPGY.
- H. Seminare il sedimento in 9 ml di TPGY.

Proseguire secondo quanto descritto nei punti D-F del paragrafo 13.3.1.1.

13.3.1.9 Colture di arricchimento

Per le colture di arricchimento procedere direttamente come indicato al successivo punto 13.3.2.

In presenza di quantitativi inferiori a 3 ml di coltura di arricchimento procedere secondo quanto descritto al precedente punto 13.3.1.4.

13.3.2 Ricerca e tipizzazione delle tossine botuliniche nelle colture di arricchimento

Prelevare almeno 5 ml della coltura di arricchimento e trattare come indicato al precedente punto 13.2.3 (schema 3 <u>o 3A</u>). Qualora la ricerca risultasse positiva, effettuare la tipizzazione della tossina utilizzando lo stesso surnatante diluito 1:10 con tampone fosfato gelatina sterile come indicato al precedente punto 13.2.2 (schema 2 o 2A). La tipizzazione dei clostridi produttori di tossine botuliniche nelle colture di arricchimento, può essere

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

effettuata anche mediante metodiche biomolecolari <u>basate sull'amplificazione degli</u> <u>acidi nucleici (es. metodo CNRB 31.00n)</u>. In ottemperanza alle disposizioni del <u>Decreto Legislativo n. 26 del 14 marzo 2014 "Attuazione della Direttiva 2010/63/UE sulla protezione degli animali utilizzati a fini scientifici", è fatto obbligo, dove possibile, di utilizzare metodiche analitiche alternative all'uso degli animali.</u>

13.4 Isolamento di colonie pure di clostridi produttori di tossine botuliniche – parte opzionale

NOTA 5: L'isolamento di colonie pure di clostridi produttori di tossine botuliniche, non è rilevante ai fini dell'espressione del risultato. Il risultato fa riferimento alla presenza o assenza di clostridi produttori di tossine botuliniche, ma non definisce la specie batterica produttrice delle tossine stesse.

Il seguente paragrafo viene applicato esclusivamente ai fini della caratterizzazione dei ceppi di riferimento prodotti dal CNRB.

Contemporaneamente al mouse test per la valutazione della tossicità delle colture di arricchimento, è possibile effettuare dalle colture stesse, degli strisci di isolamento in piastre di EYA o MCTM* (quest'ultimo è indicato per i ceppi di C. botulinum tipo C e D). Per facilitare l'isolamento dei clostridi produttori di tossine botuliniche, prima dello striscio di isolamento può essere utile sottoporre 0.5-1.0 ml della coltura di arricchimento a trattamento termico in bagnomaria alla temperatura di $70^{\circ}C \pm 1^{\circ}C$ per 10 minuti. Qualora si ipotizzasse la presenza di C. botulinum tipo E, oppure di C. butyricum tipo E (che hanno una resistenza termica minore) è consigliabile effettuare sulla coltura di arricchimento il trattamento con l'alcol invece del trattamento termico. A questo proposito prelevare 0.5-1.0 ml della coltura di arricchimento e aggiungere un uguale volume di alcol assoluto (sterilizzato per filtrazione usando filtri tipo Millipore a siringa, con pori del diametro di 0.45 μ m) ed incubare a temperatura ambiente per un'ora agitando la sospensione ogni 15 minuti.

Incubare le piastre in condizioni di anaerobiosi per 48 h \pm 2 h alla temperatura di 37 °C \pm 1°C.

* In caso di isolamento dei ceppi di *C. botulinum* tipo C e D pre-ridurre, prima dell'uso, il terreno MCTM lasciandolo in condizioni di anaerobiosi per almeno 2 giorni.

13.4.1 Selezione e purificazione delle colonie tipiche

In piastra di EYA o MCTM le colonie tipiche di *C. botulinum* appaiono generalmente rugose con contorno irregolare e mostrano superficie iridescente quando osservate a luce obliqua. Questo effetto è dovuto all'azione della lipasi che dà un aspetto perlaceo e si estende anche oltre la colonia seguendone i contorni. Le colonie di *C. botulinum* tipo C, D ed E possono essere circondate da una zona (2-4 mm) di precipitato biancastro dovuto all'azione della lecitinasi. Le colonie tipiche di *C. butyricum* e *C. baratii* produttori di tossine

CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)

REV. 1

botuliniche, sono lipasi negative. Appaiono di colore chiaro, leggermente trasparenti con margini irregolari quasi piatte.

Selezionare almeno 5 colonie tipiche e servendosi di un'ansa sterile strisciare ogni colonia su due piastre di EYA o MCTM. Incubare una piastra in condizioni di anaerobiosi e una piastra in condizioni di aerobiosi per 48 h \pm 2 h alla temperatura di 37°C \pm 1°C. Se le colonie cresceranno soltanto sulla piastra incubata in anaerobiosi, la coltura può essere considerata pura.

13.4.2 Conferma della tossicità delle colonie tipiche

Non tutte le colonie tipiche pure sono capaci di produrre tossine botuliniche; è quindi necessario effettuare la conferma di tossicità su un certo numero di colonie. A tal fine selezionare almeno 5 colonie pure e con l'utilizzo di un'ansa sterile trapiantarle in provette di TPGY (in caso di ceppi di *C. botulinum* tipo C o D trapiantare le colonie pure in provette di CMF).

Incubare le provette di TPGY o CMF in condizioni di anaerobiosi per 96 h \pm 2 h alla temperatura di 30 °C \pm 1°C.

Trascorso il periodo di incubazione trattare la coltura come indicato al precedente punto 13.2.3.

13.4.3 Tipizzazione delle tossine botuliniche dalle colonie singole

Qualora il mouse test per la conferma della tossicità delle colonie tipiche di cui al precedente punto <u>13.4.2</u> risultasse positivo, effettuare la tipizzazione delle tossine botuliniche come indicato al precedente punto **13.2.3.**

La tipizzazione delle tossine botuliniche dalle colonie singole, può essere effettuata anche mediante metodiche biomolecolari di PCR.

13.5 Identificazione dei clostridi produttori di tossine botuliniche

L'identificazione dei clostridi produttori di tossine botuliniche non fa parte dello scopo della presente Procedura Operativa.

14. CONVALIDA DEI RISULTATI

14.1 Ricerca delle tossine botuliniche

Per la ricerca delle tossine botuliniche, sono considerati positivi i test in cui risultano morti i topi inoculati con campioni tal quali, e vivi quelli inoculati con gli stessi dopo trattamento di neutralizzazione delle tossine botuliniche (mediante aggiunta di antitossine o trattamento di bollitura).

La specificità del mouse test è dimostrata dall'uso di antitossine botuliniche trivalenti/polivalenti e monovalenti e dalla morte degli animali inoculati. **Non è possibile**

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA	
CIVINDS0.001	RICERCA DI TOSSINE BOTULINICHE	
	(METODO COLTURALE E MOUSE TEST)	

REV. 1

formulare un risultato di positività per presenza di tossine botuliniche nei campioni esaminati se la prova non è stata condotta integralmente (schemi 3 e 3A).

14.2 Ricerca dei clostridi produttori di tossine botuliniche

Per la ricerca dei clostridi produttori di tossine botuliniche, sono considerati positivi i test in cui viene evidenziata presenza di tossine botuliniche nelle colture di arricchimento (punto 13.4.2).

15. ESPRESSIONE DEI RISULTATI

La ricerca dei clostridi produttori di tossine botuliniche e la ricerca delle tossine botuliniche viene effettuata con metodo qualitativo ed è espressa come determinazione della presenza o assenza dei clostridi produttori di tossine botuliniche e/o delle tossine botuliniche, nel campione analizzato.

- Qualora sia stata rilevata la presenza di **tossine botuliniche** nel campione esaminato, il risultato si esprime come: *positivo*.
- Qualora **non** sia stata rilevata la presenza di **tossine botuliniche** nel campione esaminato, il risultato si esprime come: negativo.
- Qualora sia stata rilevata la presenza di **clostridi produttori di tossine botuliniche** nel campione esaminato, il risultato si esprime come: positivo.
- Qualora non sia stata rilevata la presenza di clostridi produttori di tossine botuliniche nel campione esaminato, il risultato si esprime come: negativo.

16. CONTROLLI DI QUALITA'

Il controllo di qualità interno del metodo viene eseguito con cadenza annuale applicando le prescrizioni della procedura POQMSP01.00n "Controllo di qualità interno".

Il controllo di qualità dei terreni e dei materiali viene effettuato applicando le prescrizioni della POQTBM1.00n "Preparazione, sterilizzazione e controllo di qualità dei terreni e dei materiali destinati alla microbiologia".

17. RIESAME DELLA VALIDAZIONE

Annualmente il laboratorio procede ad un riesame della validazione del metodo. Ove possibile nel riesame sono tenuti in considerazione i risultati di sensibilità e specificità relativi agli ultimi 5 anni. Il riesame può essere effettuato rianalizzando i risultati ottenuti dalle prove effettuate su campioni a titolo ignoto del microrganismo da ricercare, oppure quelli derivati dalla partecipazione a prove valutative. I parametri di prestazione del metodo presi in considerazione sono: sensibilità, specificità, ripetibilità ed accuratezza. In caso di scostamento dei valori relativi ai parametri di prestazione del

CNRB30.001	METODO PER LA RICERCA DI CLOSTRIDI	
	PRODUTTORI DI TOSSINE BOTULINICHE E PER LA	1
CINDSOLOUI	RICERCA DI TOSSINE BOTULINICHE	
	(METODO COLTURALE E MOUSE TEST)	

REV. 1

metodo ottenuti in sede di riesame rispetto ai requisiti specificati nel piano di validazione, la validazione deve essere ripetuta.

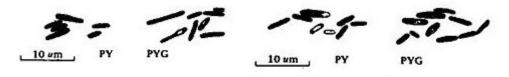
L'esito del riesame della validazione viene registrato utilizzando il modulo "Dichiarazione di idoneità" PGVDSP01.I2n.

18. ARCHIVIAZIONE E CONSERVAZIONE

La copia originale in formato cartaceo della presente procedura è conservata presso l'Archivio del SGQ del Dipartimento gestito dal RAQ-SP.

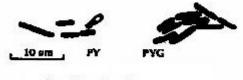
19. DESTINATARI

La procedura è distribuita in forma controllata dal RAQ-SP alle seguenti funzioni: DD-SP, DR-PM, RAF-BM, RVD-2-BM, RSA-3-BM ed a tutto il personale tecnico abilitato all' esecuzione della prova.



CNRB30.001

METODO PER LA RICERCA DI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE E PER LA RICERCA DI TOSSINE BOTULINICHE (METODO COLTURALE E MOUSE TEST)


REV. 1

Appendice 1 MORFOLOGIA DEI CLOSTRIDI PRODUTTORI DI TOSSINE BOTULINICHE OSSERVATI AL MICROSCOPIO OTTICO

Clostridium botulinum, type A.

Clostridium butyricum.

Clostridium baratii,