• Neuropathology Reference Center

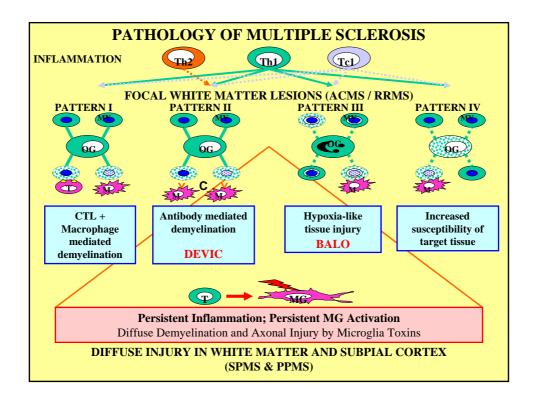
- Determination of neuropathological phenotype of experimental models, created in the consortium
- Expression of new target molecules in brain tissue
- Genotype / pathology phenotype correlation in multiple sclerosis
- DNA collection from MS autopsy tissue and MS biopsy patients

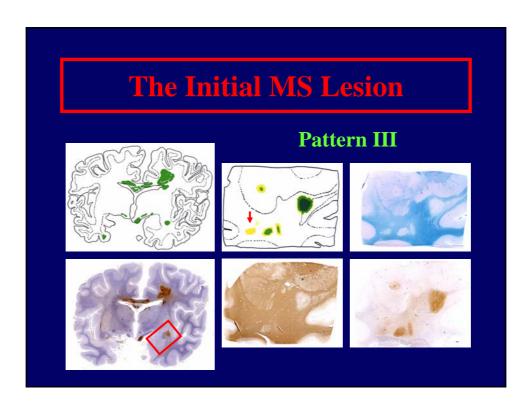
NeuroproMiSe WP H1

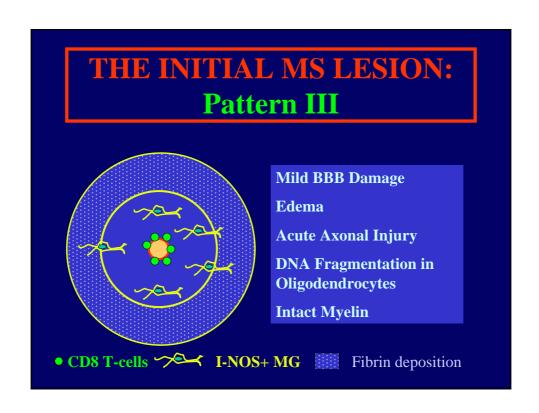
- Determination of neuropathological phenotype of experimental models, created in the consortium
 - Conventional neuropathology
 - Immunocytochemistry, confocal laser microscopy, immune electron microscopy
 - In situ hybridization
 - Morphometry
 - Established interaction (P3,6,8,12,14)

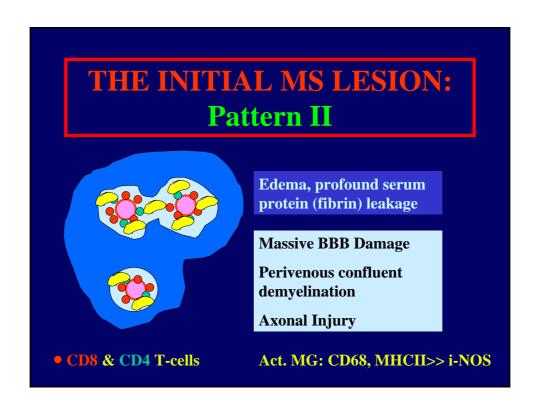
- Expression of new target molecules in brain tissue
 - Archival experimental material
 - Normal brain, EAE models (transfer, active, CD4 or CD8 mediated), brain trauma, ischemia, excitotoxicity, neurodegeneration;
 - Archival human material
 - Normal, multiple sclerosis, other encephalitis, vasculitis, leukoencephalopathies, ischemia, neurodegeneration (AD, others)

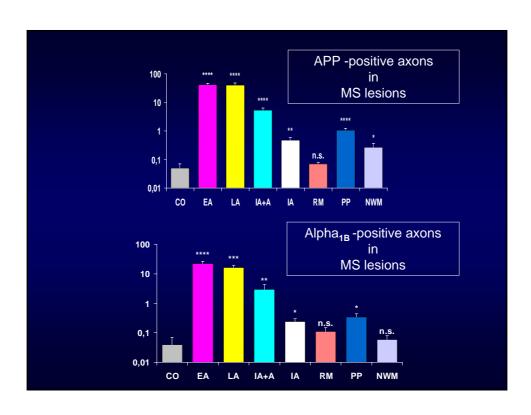
NeuroproMiSe WP H1 Partner 5 (MUW)

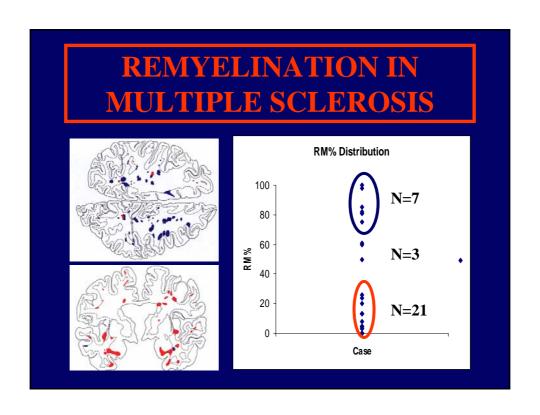

MS Material	Göttingen	Vienna	Rochester	Total
Biopsies	170	29	620	819
Early Autopsies	12	31	33	76
Chronic Autopsies	114	40	78	232

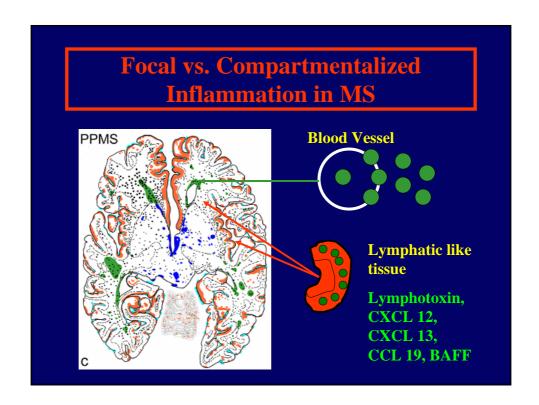

- Genotype / pathological phenotype corelation
 - Quantitative determination of pathological phenotype
 - Inflammation, patterns of demyelination, extent of remyelination, extent of axonal injury
 - Genotyping
 - PCR based
 - SNP screening (biopsies; P2b)


NeuroproMiSe WP H1


- Methods of genotyping:
 - Biopsies:
 - Identification of biopsied patients
 - Genotyping from blood samples (SNP)
 - Genotyping of paraffin material
 - Autopsies:
 - Genotyping of paraffin material


- Pathological Phenotype of MS
 - What is the initial lesion in acute and early MS
 - What are the mechanisms behind different patterns of demyelination in MS
 - Do the patterns of inflammation and tissue damage differ between early (RR) and late (progressive) MS
 - Interindividual differences in the extent of tissue damage (demyelination, oligodendrocyte damage, remyelination





• Workplan 18 Months:

- Experimental:
 - see WPs Identification, Validation
- Human studies
 - Quantitative phenotypic characterization of MS lesions
 - Identify mechanisms of inflammation and tissue injury in situ
 - Validate methods of genotyping in archival material
 - Identification and clincal characterization of MS biopsy patients (Aim: inclusion of 100 MS biopsy patients)

Hellenic Pasteur Institute, Partner 14 Subproject Horizontal Integration WPH2

Pre-existing knowledge

•Differentially expressed genes staged during development of experimental MS (EAE, Tg6074), stroke (pMCAO) and Alzheimer disease (TgAPP23)

Neuropromise Workplan (5 year)

Generation & validation of algorithm

- · Functional categorisation of differentially expressed genes for each disease.
- Identification of disease-unique and disease-common genes and pathways.
- Modification of algorithm sensitivity using blind data sets.

"Humanisation" of algorithm (collaboration with P5) $\,$

 Testing of relevance for corresponding human disease by expression analysis of selected disease-relevant genes/pathways in appropriate human samples

$Effectiveness\ for\ evaluation\ of\ the rapeutic\ regimens\ (collaboration\ within\ consortium)$

• Testing of effectiveness for evaluation of experimental therapies