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Summary. Polyphenols have been demonstrated to have clear antioxidant activities in vitro. However, 
in complex biological systems, they exhibit additional properties which are yet poorly understood. 
Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical 
importance for the normal embryonic development and for the maintenance of tissue homeostasis 
in the adult organism. The malfunction of the death machinery may play a primary role in various 
pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can directly in-
teract with specific steps and/or proteins regulating the apoptotic process in different ways depend-
ing on their concentration, the cell system, the type or stage of the pathological process. A growing 
body of in vitro evidence has provided interesting insights in the comprehension of the cellular and 
molecular mechanisms responsible for the modulation of apoptosis. However additional and harder 
studies are needed to better elucidate the mechanisms of action and the real in vivo effectiveness of 
polyphenols in order to propose them as potential candidates for chemoprevention and treatment 
of cancer and cardiovascular diseases. 
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Riassunto (Apoptosi nel cancro e nell’aterosclerosi: l’attività dei polifenoli). I polifenoli risultano 
possedere spiccate proprietà antiossidanti in vitro. Tali composti, comunque, mostrano ulteriori 
funzioni, ancora poco conosciute, in sistemi biologici complessi. L’apoptosi è un processo ordinato 
di morte cellulare geneticamente controllato presente negli organismi viventi e conservato durante 
l’evoluzione. Essa ha un importante ruolo durante lo sviluppo embrionale e accompagna l’organi-
smo nell’intero arco della vita controllando il delicato equilibrio cellulare a livello di organi e tessuti. 
L’alterato funzionamento del processo apoptotico può favorire l’insorgere di patologie proliferative 
o degenerative. I polifenoli sono in grado di agire direttamente sulle singole fasi e/o singole proteine 
influenzando il processo apoptotico in modi diversi che dipendono dalla loro concentrazione, dal 
tipo cellulare utilizzato e dal tipo o fase del processo patologico studiato. Evidenze sperimentali 
hanno contribuito ad ampliare la comprensione dei meccanismi d’azione dei polifenoli. Ulteriori ed 
approfonditi studi dovranno comunque provare la loro reale efficacia in vivo, al fine di proporli come 
potenziali candidati per la prevenzione e cura sia del cancro che delle malattie cardiovascolari. 

Parole chiave: polifenoli, apoptosi, carcinogenesi, aterosclerosi. 
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INTRODUCTION 
Cancer and coronary heart disease are the most 

important disorders that cause alarming mortality 
and morbility in humans. Research efforts of the last 
30 years have shown that dietary habits and lyfestyle 
may reduce their risk. Many foods because of their 
components, may provide protection against a vari-
ety of pathologies characterized by oxidative stress, 
including cancer and CVDs [1]. In particular it is well 
known that fruits and vegetables, rich in antioxidant 
compounds, are involved in prevention and protec-
tion against degenerative chronic diseases which are 
characterized by ROS overproduction and dysregu-
lated apoptosis. Apoptosis is a genetically controlled 

and evolutionarily conserved form of cell death of 
critical importance for normal embryonic develop-
ment and for the maintenance of tissue homeostasis 
in the adult organism [2]. The malfunction of the 
death machinery may play a primary or secondary 
role in various diseases, with essentially too little or 
too much apoptosis leading to proliferative or de-
generative diseases, respectively. The machinery re-
sponsible for killing and degradation of the cell via 
apoptosis become activated through various stimuli. 
In addition, cell signalling pathways, mitogenic and 
stress responsive pathways are involved in the regu-
lation of apoptotic signalling [3]. The fine-tuning of 
the balance between the pro- and anti-apoptotic fac-

Indirizzo per la corrispondenza (Address for correspondence): Claudio Giovannini, Centro Nazionale per la Qualità degli Alimenti 
e per i Rischi Alimentari, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy. E-mail: clagiovn@iss.it.



407Polyphenols and apoptosis 

tors within each of these pathways in a cell leads to 
programmed cell death or survival. 

Polyphenols, commonly contained in vegetables 
and fruits, represent more then 8000 different com-
pounds, classified in different classes based on their 
chemical structure [4]. The most abundantly occur-
ring polyphenols in plants are flavonoids and phe-
nolic acids that account for 60% and 30%, respec-
tively, of dietary polyphenols [5]. 

Several polyphenols have been demonstrated to 
have clear antioxidant properties in vitro, since they 
can act as chain breakers, radical scavengers and 
metal chelators depending on their chemical struc-
tures which also influence their antioxidant power 
[6]. A hierarchy has been established for the different 
polyphenolic compounds within each class on the 
basis of their capability to protect lipids, proteins or 
DNA, against oxidative injury. Many of their bio-
logical actions have been attributed, thus, to those 
antioxidant properties. On the other hand, pro-oxi-
dant effects of polyphenols have also been described 
to have opposite effects on cell physiology processes. 
As antioxidants they improve cell survival, as pro-
oxidants they may indeed induce apoptosis and cell 
death, and block cell proliferation. 

Accumulating evidence indicates that polyphe-
nols exhibit several additional properties in com-
plex biological systems, mainly responsible for their 
protective effects. By virtue of these properties, 
among which the modulation of apoptotic process, 
polyphenols have been receiving more and more at-
tention as therapeutic agents against cancer and car-
diovascular diseases [7, 8]. Aim of this review is to 
focus the role of dietary polyphenols in modulating 
apoptosis, providing new insights into the molecular 
mechanisms underlying their protective effects. 

APOPTOSIS 
Apoptosis is characterized by a set of morphological 

changes including chromatin condensation, nuclear 
fragmentation, membrane blebbing and cell shrinkage 
[2]. Apoptosis can occur in mammalian cells by the 
extrinsic or intrinsic pathways (Figure 1). The extrin-
sic or death receptor pathway is activated when a 
specific ligand binds its corresponding cell-surface 
death receptor. Death receptors, such as tumour 
necrosis factor (TNF) receptor, TNF-related ap-
optosis-inducing ligand (TRAIL) receptor and Fas 
receptor, belong to the TNF receptor superfamily. 
In particular, the well-characterized Fas receptor 
(also called APO-1 or CD95) is activated by binding 
Fas ligand that leads to its trimerization and to the 
recruitment of Fas-Associated protein with Death 
Domain (FADD). The consequent conformational 
changes result in the binding of procaspases-8 to 
a supramolecular complex called Death-Inducing 
Signalling Complex (DISC) [9]. Caspase-8 activation 
can be blocked by cellular FADD-Like interleukin-
1β-converting enzyme Inhibitory Protein (c-FLIP). 
Conversely, caspase-8 can activate Bcl-2 interacting 

domain (Bid) (a proapoptotic member of the Bcl-2 
family described below) which, in turn, can directly 
affect the mitochondrial membrane potential, thus 
interacting with the intrinsic pathway (Figure 1). 

The intrinsic or mitochondrial pathway is activated 
by different agents, such as oxidants, toxicants, drugs 
or ionizing radiations, which all induce reactive oxy-
gen species (ROS) overproduction and the onset of 
oxidative stress. Activation of the intrinsic pathway 
is accompanied by the translocation of cytochrome 
c from the mitochondrial intermembrane space into 
the cytoplasm. Cytochrome c, as well as Apoptotic 
protease-activating factor 1 (Apaf-1), endonuclease 
G and Apoptosis-Inducing Factor (AIF), are released 
from mitochondria after membrane potential collapse 
and function as proapoptotic factors. Cytochrome c, 
Apaf-1, dATP and procaspase-9 form a supramo-
lecular complex termed ‘apoptosome’, that activates 
caspase-9 through autocatalysis. Both the mitochon-
drial-activated caspase-9 and the death receptor-ac-
tivated caspase-8 cleave procaspase-3 generating the 
active caspase-3 that, in turn, activates other executor 
caspases, cleaves cytoskeleton and activates specific 
DNase. In addition, the activity of caspases is regu-
lated by Inhibitors of Apoptosis Protein (IAPs) fam-
ily that inhibit the cleavage of procaspases and/or the 
activity of caspases (Figure 1). 

Among the molecules that exert their regulatory 
effect in determining cell fate, Bcl-2 protein family, 
p53 transcription factor and p66Shc represent im-
portant checkpoints which control the main steps of 
apoptotic process. 

Bcl-2 family of proteins. Members of the Bcl-2 
family of proteins are critical regulators of the mi-
tochondrial membrane potential. Bcl-2 proteins 
localize, or translocate, to the mitochondrial mem-
brane and modulate apoptosis by permeabilization 
of the inner and/or outer membrane, which leads to 
the release of cytochrome c, or by stabilizing barrier 
function. Most of the Bcl-2 family proteins are ca-
pable to interact each other, forming homo- or het-
ero-dimers, and functioning reciprocally as agonists 
or antagonists [10]. Maintenance or perturbation of 
mitochondrial membrane potential depends on the 
ratio between pro-apoptotic (Bax, Bad, Bak, Bid, 
Bcl-Xs) and anti-apoptotic (Bcl-2, Bcl-XL, Bag-1, 
Bcl-W) members of Bcl-2 family [11, 12]. 

p53. p53, also known as tumour protein 53, is a 
transcription factor that regulates cell cycle and ap-
optosis and hence functions as a tumour suppressor. 
In presence of DNA damage, p53 protein arrests 
cell cycle allowing time for cells to repair damaged 
DNA. When the damage cannot be successfully re-
paired, p53 acts as apoptotic signal. The loss of p53, 
or its mutations, decrease caspase activation and 
therefore apoptosis occurrence. p53 down-regulates 
anti-apoptotic genes. In addition, it can directly 
promote the translocation of the Fas death receptor 
from cytoplasmatic store to the plasma membrane 
[13], as well as the translocation of Bax protein from 
the cytoplasm to the mitochondria [14], thus allow-
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ing the activation of extrinsic or intrinsic pathway, 
respectively. In addition p53 can displace Bax or Bid 
from pre-existing complexes with Bcl-XL, by bind-
ing to Bcl-XL itself, and consequently triggering ap-
optosis [15]. 

p66Shc. p66Shc is an oxidative stress sensor pro-
tein recently identified as an important cytoplasmic 
signal transducer that regulates the apoptotic re-
sponse to oxidative stress [16, 17]. p66Shc has been 
identified as a splice variant of p52Shc/p46Shc, but 
unlike these variants, which are involved mainly in 
the transmission of mitogenic signals, p66Shc func-
tions in the intracellular pathway by converting 
oxidative signals into apoptosis. The mechanisms 
of action of p66Shc have not been elucidated yet. 
However, it is accepted that it acts as a sensor for 

ROS production and as the downstream target of 
activated p53, in p53-dependent apoptosis [18]. It 
has been shown that the tumour suppressor p53 
induces p66Shc up-regulation by increasing its sta-
bility and the increase of the p66Shc mithocondrial 
fraction. Expression of p66Shc is required for the 
ability of p53 to increase ROS production, leading 
cytochrome c release and consequently apoptosis. 
Finally p66Shc has been demonstrated to be ROS 
producer within mitochondria because it acts as an 
oxido-reductase enzyme able to oxidize cytochrome 
c and to induce H2O2 production, causing the open-
ing of permeability transition pores (PTP) and the 
release of the cytochrome [19]. 

ROS are the most likely agents able to induce DNA 
damage in atherosclerosis, leading to apoptosis of 

Fig. 1 | Apoptosis pathways. The estrinsic or death receptor pathway (left) is triggered by members of the death receptor superfamily 
such as Fas. Binding of Fas-L to its receptor induces trimerization of the receptor. recruitment of specific adaptor proteins (FADD) and 
consequently recruitment of pro-caspaes 8 molecules. The multi-molecular complex (DISC) results in the activation of caspase-8, which 
can be blocked by c-FLIP. Active caspase-8 can in turn activate Bid a pro-apoptotic member of Bcl-2 family proteins, which represents a 
crosstalk between extrinsic and intrinsic pathways.Oxidants, toxicants, drugs or ionizing radiation, which all induce ROS overproduction 
and the onset of oxidative stress, can activate the intrinsic pathway (right). The intrinsic or mitochondrial pathway is triggered by stress 
signalling, and DNA damage via p53 activities. One of these activity is up-regulation of p66Shc, which in turn acts as ROS producer 
within mitochondria. The death stimuli result in loss of mitochondrial membrane integrity and release of cythocrome c and Apaf-1 in the 
cytoplasm together with other pro-apoptotic factors. Members of the Bcl-2 family of proteins are critical regulators of the mitochondrial 
pathway. Maintenance or perturbation of mitochondrial membrane potential depends on the ratio between pro-apoptotic (Bax,) and 
anti-apoptotic (Bcl-2) members of Bcl-2 family, by causing or preventing cythocrome c release. Multiple molecules of cythocrome c, 
Apaf-1, dATP and procaspase-9 associates to form a supramolecular complex termed ‘apoptosome’, that activates caspase-9 through 
autocatalysis. Both the mitochondrial-activated caspase-9 and the death receptor-activated caspase-8 cleave procaspase-3 generating the 
active caspase-3 that, in turn, activates other execution caspases and cleaves cellular targets. Caspase activity is controlled by Inhibitors 
of Apoptosis Protein (IAPs) family. 
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the cells of arterial wall. Likewise, oxidative stress has 
been found in various cancer cells and DNA muta-
tions, which result from oxidative damage, represent 
the first step involved in mutagenesis and carcino-
genesis. Cancer cells constitutively generate large, but 
tolerable, amounts of reactive oxygen species (ROS) 
suggesting that a certain level of oxidative stress may 
be required to maintain a balance between prolifera-
tion and apoptosis [20]. Apparently, ROS function as 
signalling molecules in the mitogen-activated protein 
kinase (MAPKs) pathways [21] to activate redox-sen-
sitive transcription factors and responsive genes which 
are involved in the survival and proliferation of cells. 

The MAPK signalling cascades include extracel-
lular signal-related protein kinases (ERKs), JNK 
s/stress-activated protein kinases (SAPKs), and p38 
kinases. The ERK pathway has been associated with 
the regulation of cell proliferation since it transmits 
signals initiated by growth promoters, and may ul-
timately foster cell growth and survival [22]. In con-
trast, the activation of JNK and p38 kinases is con-
trolled by stress signalling, as oxidative stress, and 
has been associated with the induction of apoptosis 
[23, 24]. The balance between ERK and JNK activa-
tion is a key factor for cell survival since both a de-
crease of ERK and an increase of JNK are required 
for inducing apoptosis. 

The activated MAPKs translocate to the nucleus, 
where they phosphorylate a number of substrates, 
including the transcription factors AP-1 and NF-
κB which are linked to carcinogenesis and tumour 
promotion [22]. The activation of AP-1 and NF-κB 
promotes, in fact, survival and cellular proliferation, 
while their down-regulation sensitizes cells to apop-
tosis. 

CARCINOGENESIS 
In a stable mature tissue the rates of replication 

and cell death are balanced. Cell proliferation is reg-
ulated by checkpoints at the major stages of the cell 
cycle. If  anyone of these checkpoints is overruled 
cell can be prone to natural or induced mutations 
and unable to repair the damaged DNA. Mutated 
cells which escape the apoptotic control can become 
the progeny of neoplastic cell population.

Carcinogenesis, a multistage process characterized 
by an accumulation of genetic alterations, could be 
divided in three main stages [25]. In the initiation 
stage, cells opposite to carcinogens by the activation 
of different enzymes. Phase I enzymes (e.g. cytocrome 
P450) react with carcinogen or xenobiotic to form a 
potent electrophile, mutagenic compound, which is 
responsible for DNA damage and mutations leading 
to the onset of cancer development.

Although phase II enzymes (e.g. glutathione trans-
ferase) can detoxify these compounds by forming wa-
ter-soluble glutathione or sulfate conjugates which 
are easily eliminated by the body, this defence mech-
anism is often inadequate. The stage of tumour pro-
motion is characterized by cell proliferation which is 

induced by the activation and/or over-expression of 
enzymes involved in the synthesis of nucleotides and 
DNA (ornithine decarboxylase), and in the regula-
tion of the differentiation process (DNA polymerase 
or topoisomerase II). Moreover, during the promo-
tion stage, ROS overproduction occurs, mainly due 
to the over-expression of pro-oxidant enzymes (e.g. 
cyclo-oxygenase, lypoxygenase), which leads to cell 
damages and further DNA mutations. In the pro-
gression stage, the final stage of carcinogenesis, the 
mutated cells proliferate in uncontrolled manner, 
and acquire a metastatic potential. 

�MODULATION OF APOPTOSIS 
BY POLYPHENOLS IN CANCER CELLS 
Polyphenols can affect the overall process of carcino-

genesis by several mechanisms. First of all, exogenous 
polyphenols supplied with the diet [26, 27], contribute 
to counteract oxidative stress occurrence and, in so 
doing, they could contribute to the prevention of can-
cer onset and development. In fact they can modulate 
oxidative stress in cancer cells, thereby affecting signal 
transduction, activation of redox-sensitive transcrip-
tion factors and expression of specific genes that influ-
ence cell proliferation and apoptosis. 

In addition, a growing body of evidence indicates 
that polyphenols can directly interact with specific 
steps and/or proteins responsible for the regulation 
of apoptotic process such as the release of cyto-
chrome c with subsequent activation of caspases-9 
and caspases-3 [28-31], the increase of caspases-8 
and t-Bid levels [30], the down-regulation of Bcl-2 
and Bcl-XL expression, the enhanced expression of 
Bax and Bak [30, 32, 33] and the modulation of nu-
clear factor NF-κB [34]. 

Extensive data provide evidence for anticarcino-
genic effects of resveratrol [35-37], a phenolic com-
pound belonging to the class of stilbenes, found in 
many plant species and present in high amounts in 
grapes [38]. It causes cell cycle arrest and induces 
apoptosis in many human cancer cells, as prostate 
cancer cells [39], colon adenocarcinoma cells [40], 
esophageal carcinoma cells [41], breast cancer cells 
[42, 43], melanoma cells [44], pancreatic carcinoma 
cells [45], numerous human leukemia cells [46, 47], 
lung cancer cells [48]. The induction of apoptosis by 
resveratrol has been reported to be associated with 
increased caspase activity [40, 47-49], cell cycle dys-
regulation [50-52], decreased Bcl-2 and Bcl-XL lev-
els, and increased Bax levels [49, 53]. Interestingly, 
these pro-apoptotc action has been reported to be 
frequently associated with the activation of p53 [43, 
53]. A recently published paper demonstrated that 
the treatment of thyroid cancer cell lines with res-
veratrol caused an activation and nuclear translo-
cation of ERKs that was associated with increased 
phosphorylation and accumulation of p53 protein 
and apoptosis induction [54]. 

Components of green and black tea, such as the 
flavonoid epigallocatechin-3-gallate (EGCG) and 
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other theaflavins, induced apoptosis and blocked 
cell cycle progression in a variety of cancer cells 
[32, 55]. The apoptotis induced by EGCG appears 
to be mediated by the activation of different signal-
ling pathways probably depending on the cell type. 
At this regard, in human colorectal carcinoma cells, 
EGCG activates JNKs pathway [55]. On the con-
trary, in human prostate carcinoma cells, EGCG 
induced apoptosis, associated with stabilization of 
p53 and down-regulation of NFκB activity, result-
ing in a decreased expression of the anti-apoptotic 
protein Bcl-2 [56]. 

The hydroxybenzoic acid protocatechuic acid, one 
of the main metabolites of anthocyanins [57], also 
found in olives [58], brown rice [59] and tea [60], has 
been recently shown to induce apoptosis in human 
gastric adenocarcinoma cells through the Fas/Fas-L 
pathway, by activating JNK/p38 kinases. This event 
caused the mitochondrial translocation of Bax and 
the decrease of Bcl-2, triggering the cleavage of pro-
caspases and resulting in the apoptosis of gastric 
cells [61]. 

Caffeic acid, a hydroxycinnamic acid found in 
many types of fruits and in high concentrations in 
coffee [5], induced apoptosis in human breast cancer 
cells [62] by activating pro-apoptotic factors such as 
Fas, Bax and caspases. Likewise it increased cas-
pase-3 activity in stomach cancer, colon cancer and 
pro-myelocytic leukemia cell [63]. Furthermore, the 
treatment of glioma cells with caffeic acid induced 
the release of cytochrome c from mitochondria into 
cytosol and enhanced the expression of p53, Bax 
and Bak [64]. 

Pro-apoptotic activity, mediated by caspase-3 
dependent mechanism, has been observed in oral 
squamous carcinoma cells exposed to different phe-
nolic compounds derived from ginger, a common 
condiment for various foods and beverages [65, 66]. 
In human T-cell leukemia Jurkat cells, similar com-
pounds activate mitochondrial pathway and alter 
the balance between the pro- and anti-apoptotic 
proteins, down regulating the anti-apoptotic Bcl-2 
protein and enhancing the expression of the pro-ap-
optotic Bax [67]. 

Also curcumin, a polyphenolic compound derived 
from the rhizome of the plant Curcuma longa, in-
duced apoptosis by suppressing the constitutive 
expression of Bcl-2 and Bcl-XL, and activating 
caspase-7 and caspase-9 in mantle lymphoma [68] 
and multiple myeloma [69] cell lines. Recently it has 
been demonstrated that curcumin induces apoptosis 
in prostate cancer cells, by down-regulating the ex-
pression of Bcl-2 and Bcl-XL and up-regulating the 
expression of p53, Bax, Bak, and Bim [70]. 

As described above, cancer cells require a certain 
level of oxidative stress, particularly those that are 
highly invasive or metastatic, and ROS can act as 
signalling molecules in the MAPK pathway [20]. 

It follows that if  the excess of ROS can be scav-
enged by phenolic compounds which exert antioxi-
dant activity, the oxidative stress-responsive genes 

can be suppressed and, consequently, cancer cell 
proliferation inhibited. On the other hand, polyphe-
nols can induce the formation of ROS to achieve an 
intolerable level of oxidative stress in cancer cells. 
When the critical threshold for cancer cells to cope 
with oxidative stress has been reached, key cellular 
components, such as DNA, are irreparably dam-
aged. In addition, genes involved in initiating cell cy-
cle arrest and/or apoptosis are activated. Therefore, 
polyphenols can either scavenge the constitutive 
ROS or paradoxically generate additional amounts 
of ROS to inhibit the proliferation of cancer cells. 

Both the mechanisms of action seem to be strictly 
linked to the phenolic concentration and the experi-
mental conditions. It has been observed in fact that 
low or high concentrations of the same phenolic 
compound are responsible for antioxidant and pro-
oxidant activity, respectively [20, 71]. 

Several studies suggest that polyphenols, in par-
ticular EGCG or resveratrol, can scavenge the con-
stitutively high amounts of H2O2 in different can-
cer cells such as human epidermal keratinocytes, 
U-937 cells, Jurkat cells, HeLa cells, and H4 glioma 
cells [72-74]. Consequently they were able to block 
MAPK signalling, the activation NF-κB and AP-1, 
and, ultimately, the expression of responsive genes 
that stimulate cancer cell proliferation. Additionally, 
resveratrol prevented NF-κB activation induced by 
phorbol myristate acetate, lipopolysaccharide, oka-
daic acid, ceramide, and, most importantly, H2O2. 
Resveratrol had similar effects on the events which 
lead to the activation of transcription factors, as 
with the case of AP-1 in HeLa cells exposed to ei-
ther PMA or ultraviolet radiation [73]. 

The flavone apigenin, abundantly present in fruits 
and vegetables, induced growth inhibition of human 
anaplastic thyroid carcinoma cells, probably by di-
rectly inhibiting the phosphorylation of MAPK, or 
alternatively, by scavenging H2O2 that activates the 
protein kinases [75]. 

As described above, under certain experimental 
conditions, polyphenols can paradoxically have 
pro-oxidant effects and generate ROS acting thus as 
cytotoxic and pro-apoptotic agent. This is the case 
for EGCG, quercetin, and gallic acid which generate 
H2O2, in a time- and concentration-dependent man-
ner, when added to cell culture media resulting in 
stressful or cytotoxic effects [76]. Likewise, in Ha-ras 
gene-transformed human bronchial epithelial cells, 
a 24hr-treatment with 25 μM EGCG, or related tea 
catechins, induced apoptosis [77]. The death of the 
cells was attributed to H2O2 because the catechins 
induced formation of H2O2 and the addition of 
catalase prevented the apoptosis. In addition, the 
tea catechins decreased c-jun protein phosphoryla-
tion, which would be expected to lower AP-1 activ-
ity needed to transcriptionally activate some genes 
which promote cancer cell viability. Finally, the ap-
optosis induced by EGCG in human oral squamous 
carcinoma cells was attributed to the generation of 
H2O2 in cell culture medium [78]. 
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The induction of  intolerable amounts of  ROS in 
cancer cells can initiate apoptosis through MAPK 
activation as demonstrated in U937 promono-
cytic cells [79]. Similarly, tea catechins, including 
EGCG, induced ROS overproduction and acti-
vated MAPK before initiating caspase-mediated 
apoptosis [80]. 

It is worth of note that cancer cells, compared to 
normal cells, are more susceptible to be killed by 
anticancer drugs and polyphenols as well. This is 
probably because cancer cells are already close to a 
threshold for tolerating ROS. In fact, by using the 
same concentrations, phenolic compounds induced 
apoptosis in cultured cancer cells, but not in their 
normal counterparts as demonstrated for EGCG 
[81-84]. 

In agreement with these findings, internucleosom-
al DNA fragmentation was detected in A431 (hu-
man epidermoid carcinoma cells), HaCaT (human 
carcinoma keratinocytes), DU145 (human prostate 
carcinoma cell line) and L5178Y cell lines (mouse 
lymphoma cells), but not in NHEK cells (normal 
human epidermal keratinocytes) [85] after treatment 
with EGCG. Additionally, EGCG seems to possess a 
dual mechanism of action depending on the concen-
tration, although it appears that this flavanol exerts 
its action in a selective manner in normal and can-
cer cells. In normal keratinocytes, EGCG enhanced 
proliferation at 0.5 μmol/L and did not affect cell 
growth at 50 μmol/L, while it decreased cell prolif-
eration at both concentrations in a dose-dependent 
fashion in squamous carcinoma cell [81]. The dose-
dependent inhibitory effect of EGCG on cell pro-
liferation were also demonstrated in neuroblastoma 
SH-SY5Y cells, where low flavanol concentration (1 
μmol/L) induced an anti-apoptotic response, while 
higher concentration (50 μmol/L) caused a pro-ap-
optotic effect [86]. 

It should be also taken in account that polyphe-
nols can elicit different cellular responses depend-
ing on cell age. This has been clearly demonstrated 
in normal human primary epidermal keratinocytes 
by Hsu et al. [87]. The flavanol EGCG appeared to 
induce differentiation of immature keratinocyte af-
ter 24 h of treatment at concentrations of 15-200 
μmol/L, while cellular proliferation was stimulated 
in aged keratinocytes (15-25 days) when epidermal 
cells were incubated for 1 day with the catechin at 
high concentrations (100-200 μmol/L). The authors 
suggested the use of this polyphenol in the treatment 
of wounds or certain skin conditions characterized 
by altered cellular activities or metabolism. 

ATHEROSCLEROSIS 
One of the main risk factors for coronary heart 

damage as well as other CVDs is atherosclerosis. 
Atherosclerosis is an inflammatory process, trig-
gered by the presence of lipids in the vascular wall, 
and encompasses a complex interaction among in-
flammatory cells, vascular elements, and lipopro-

teins through the expression of several adhesion 
molecules and cytokines. The pathophysiology of 
atherosclerosis is complex, involving both apoptosis 
and proliferation at different phases of its progres-
sion. Subendothelial retention of lipoproteins is the 
key initiating event in atherosclerosis, provoking a 
cascade of events that lead to the pathogenic re-
sponse. 

In particular oxidatively modified LDL (oxLDL) 
are present in atherosclerotic lesions [39, 88, 89] 
and have been suggested to play a significant role 
in atherogenesis [90]. An elevated level of  plasma 
LDL concentration leads to an increased traffic of 
LDL particles inside the artery wall [91]. LDL par-
ticles trapped within arterial wall are prone to pro-
gressive oxidative damage. Minimally modified oxi-
dized LDL are responsible for the release of  chemi-
oactive factors by endothelial cells which initiate 
monocyte recruitment and promote their differen-
tiation in macrophages, determining the occurrence 
of  inflammatory process [92, 93]. Fully oxidized 
LDL, because of  modification of  apoprotein apoB, 
are recognized by scavenger receptors and internal-
ized in macrophages which, by accumulating lipids, 
change into foam cells [91]. Oxidative modification 
of  lipids and inflammation can differentially regu-
late the apoptotic and proliferative responses of 
vascular cells during the progression of  the athero-
sclerotic lesion. There is increasing evidence that 
human atherosclerosis is associated with damage to 
the DNA of the cells of  the vessel wall. DNA dam-
age produces a variety of  responses, including cell 
senescence, DNA repair or apoptosis. Apoptosis 
is frequently observed in endothelial cells, macro-
phages and vascular smooth muscle cells (VSMCs) 
in atherosclerotic plaques [94-96], and can directly 
contribute to the pathogenesis of  cardiovascular 
diseases. The apoptotic endothelial cells become 
pro-coagulant, promoting platelet and neutrophil 
aggregation and thereby amplify the inflammatory 
response [96]. In addition, apoptosis induces up-
regulation of  inflammatory genes with release of 
biologically active cytokines, such as IL-1β, and the 
release of  oxidized phospholipids capable of  induc-
ing monocyte-endothelial interactions. In advanced 
atherosclerotic plaques, up to 50% of the apoptotic 
cells are macrophages and this may promote core 
expansion and plaque instability. Both the inducers 
and the consequences of  macrophage apoptosis are 
likely to be different between early and late lesions. 
In fact, pro-apoptotic factor derived from activated 
endothelial cells, such as TNFα, Fas-L and NO, 
may be more important in early lesions, whereas 
oxLDL, oxysterol, hypoxia/ATP depletion and the 
intracellular accumulation of  unesterified choles-
terol may be relevant in the more mature lesions. 
Many diverse factors cause VSMCs apoptosis, such 
as macrophage direct killing, via TNFα, Fas-L or 
NO, oxLDL and ROS production. Loss of  VSMCs 
by apoptosis observed in the atherosclerosis plaques 
[95, 97] weaken the fibrous cap and predispose to 
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rupture leading to collagen exposure platelet activa-
tion, thrombosis and potential occlusion. 

�PROTECTIVE EFFECT OF PHENOLIC 
COMPOUND AND MODULATION OF 
APOPTOSIS IN ATHEROSCLEROSIS 
Epidemiological and in vivo studies in humans 

have shown an inverse association between the 
consumption of  polyphenols, or polyphenol-rich 
food, and the risk of  cardiovascular diseases, sug-
gesting protective effects of  phenolic compounds 
[98-101]. 

Several mechanisms by which polyphenols may re-
duce risk for cardiovascular diseases have been pro-
posed [102]. They affect plasma lipids and lipopro-
teins reducing plasma cholesterol and triglycerides. 
They also exert a protective effect on platelet func-
tion and haemostasis inhibiting platelet aggrega-
tion. Furthermore they control blood pressure and 
vascular reactivity promoting nitric oxide-induced 
endothelial relaxation. In conclusion they may op-
posite to the growth of atherosclerotic plaque by re-
ducing the expression of adhesion molecules, exert-
ing anti-inflammatory action and counteracting the 
macrophage-mediated oxidation of LDL. 

In particular, there is substantial evidence that 
polyphenols can exert their protective effects by 
blocking early events which lead to atherosclerosis 
such as LDL peroxidation and oxLDL-induced ap-
optosis. Several phenolic compounds, e.g. those con-
tained in green tea, red wine, extra virgin olive oil 
and liquorice root, have been demonstrated, in vitro, 
to inhibit macrophage cell-mediated oxidation of 
LDL and increase endogenous antioxidant defences 
[5, 26, 103, 104]. 

These findings are consistent with several in vivo 
studies that have demonstrated the capability of 
ingested polyphenols to ameliorate the oxidative 
status of  subjects with increased risk for CVD [26, 
105]. Extra virgin olive oil (EVOO) phenolic com-
pounds, in particular hydroxytyrosol, oloeuropein, 
tyrosol, protocatechuic acid, vanillic acid, are re-
sponsible for antioxidant and protective effects. In 
human, EVOO consumption has been shown to 
reduce LDL oxidizability [106-111], in postprandi-
al state [112] rather than in fasting state [112, 113]. 
However, while many studies have pointed out the 
anti-atherogenic effects exerted by polyphenols in 
protecting the vascular wall from oxidation, inflam-
mation, platelet aggregation and thrombus forma-
tion, few data are available for their anti-apoptotic 
activity which can play an important role in pre-
venting the onset and progression of  atherosclero-
sis. There is in vitro evidence that polyphenols exert 
further protective effects against apoptosis medi-
ated by oxLDL and hydrogen peroxide in different 
cell systems such as bovine aortic endothelial cells 
(BAEC) and fibroblasts [114], by affecting several 

proteins and signalling factors [115]. Specifically, it 
has been demonstrated that polyphenols can affect 
apoptosis by modulating the level of  expression of 
anti-apoptotic (Bcl-2, Bcl-xL) or pro-apoptotic 
(Bax, Bid, Bak) proteins [116, 117]. On the other 
hand, delphinidin, an anthocyanidin contained in 
grapes, is able to inhibit the release of  cytocrome c 
from mitochondria in endothelial cells by increas-
ing eNOS expression via MAPK inhibitor-sensi-
tive pathway [118]. Similarly, resveratrol has been 
shown to protect endothelial cells (HUVECs) 
against oxLDL-induced apoptosis by inhibiting 
cytochrome c release and activation of  caspase-3 
[119]. Kaempferol, another phenolic compound of 
red wine, inhibits apoptosis induced in VSMCs by 
7β-hydroxycholesterol, which is a component of 
oxLDL [120]. 

Finally, phenolic compounds contained in EVOO, 
have been shown to counteract the oxLDL-induced 
cytotoxicity and apoptosis in murine macrophage 
J774A.1 cells by strengthening the endogenous anti-
oxidant cell defences. This effect seems to be related 
more to the capability in inducing gene expression 
for GSH-related antioxidant enzymes, such as glu-
tathione peroxidase and glutathione reductase, than 
to the antioxidant power of the compounds [121, 
122]. Actually, it has been very recently suggested 
that the anti-apoptotic effect observed in the mac-
rophages could involve the modulation of p66Shc 
expression by the EVOO phenols [123]. 

CONCLUSION 
Apoptosis represents a protective mechanism against 

neoplastic transformation and development of tu-
mours by eliminating genetically damaged cells or cells 
that may be inappropriately induced to proliferate by 
mitogenic and proliferative stimuli. On the other hand, 
dysregulated apoptosis of the arterial wall cells is in-
volved in the occurrence of the complex sequence of 
events responsible for atherogenesis. 

Polyphenols can exert different actions in modu-
lating cell apoptosis; in fact, they can act as pro-ap-
optotic or anti-apoptotic agents depending on their 
concentration, the cell system, the type or stage of 
the degenerative process. A growing body of evi-
dence provides new insights in the comprehension 
of the cellular and molecular mechanisms respon-
sible for the modulation of apoptosis, by influenc-
ing signal transduction pathways and transcription 
factors. However, additional studies are still needed 
to better elucidate the mechanisms of action and 
the real in vivo effectiveness of polyphenols in or-
der to propose them as potential chemopreventive 
candidates for cancer treatment and cardiovascular 
diseases. 
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