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Summary. cell migration and invasion are crucial steps in many physiological events. However, they 
are also implicated in the physiopathology of many diseases, such as cancer. to spread through the 
tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor fami-
lies, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a 
complex scenario. the balance of cellular signals for proliferation and survival responses also regu-
lates migratory behaviours of tumor cells. to complicate the scene of crime drug resistance players 
can interfere thus worsening this delicate situation. the complete understanding of this molecular 
jungle is an impossible mission: some molecular aspects are reviewed in this paper. 
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Riassunto (Aspetti molecolari della migrazione ed invasione delle cellule tumorali). La migrazione e 
l’invasione cellulare rappresentano momenti cruciali in molti eventi fisiologici: questi due processi, 
tuttavia, sono anche implicati nella fisiopatologia di varie malattie, tra cui i tumori. Per diffonder-
si attraverso i tessuti, le cellule tumorali ricorrono a meccanismi che vedono il coinvolgimento di 
diversi componenti cellulari: famiglie di molecole di adesione, recettori tirosinchinasi, proteine del 
citoscheletro, proteine di segnalazione intracellulare intervengono in un complesso scenario mole-
colare. Le vie di segnalazione regolanti i processi di sopravvivenza e proliferazione cellulare giocano 
un ruolo importante anche nei comportamenti migratori delle cellule tumorali. a complicare la 
scena del crimine, marcatori proteici della farmacoresistenza contribuiscono al conferimento di un 
fenotipo maggiormente aggressivo, peggiorando in tal modo una situazione già di per sé delicata. 
La comprensione completa di questa “giungla molecolare” è una missione impossibile: in questa 
rassegna verranno presi in considerazione alcuni degli aspetti molecolari.

Parole chiave: neoplasie, invasione delle cellule tumorali, marcatori molecolari.
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INTRODUCTION
cell migration and invasion are crucial steps in 

many physiological events such as implantation of 
embryo, embryogenesis, morphogenesis, neurogen-
esis, angiogenesis, wound healing and inflammation 
[1, 2]. However, cell migration and invasion are also 
implicated in the pathophysiology of many diseases, 
such as cancer. Indeed, the capacity to produce me-
tastases, very different among cancers, is the main fea-
tures of malignant tumors and it is one of the main 
causes of death for cancer. this is due to the fact that 
metastases are constituted by cells much more resist-
ant, aggressive and efficient than those forming the 
primary tumor. 

In the last years, major efforts have been undertak-
en to understand the molecular mechanism underly-
ing the distinct steps of metastasis, which are (i) de-
tachment of tumor cells from the primary tumor, (ii) 
invasion into surrounding tissue, (iii) intravasation 
into blood or lymphatic vessels, (iv) dissemination in 
the blood stream or the lymphatic system and, finally, 
(v) extravasation and outgrowth at a secondary site. 

each of these steps requires a distinct molecular pro-
gram in which the modulation of the adhesive and 
migratory as well as the cytoskeletal properties of the 
disseminating tumor cells play essential roles.

tumors can spread in a variety of channels/ways: 
the most common pathway is tumor extending in 
continuity beyond the organ or structure of origin, 
i.e. when it passes from the original organ to another 
organ or vessel or cavity by continuity. Dissemination 
for contiguity occurs when tumor infiltrates tissue 
spaces of non continuous adjacent structures.

the most common pathways for distant spread in 
the chest and abdomen are the lymphatics, blood 
vessels, and coelomic cavities. cancer cells can dis-
seminate from the primary site via lymphatic routes 
(“lymphatic metastases”) and by haematogenous 
routes (“ab initio hematogeneous metastases”). 
Secondary haematogenous dissemination of lym-
phatic metastases also occurs from overt metastases 
to other distant sites. coelomic cavities involved in 
tumor dissemination include the pleural space of the 
thoracic cavity and the peritoneal spaces of the ab-
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domen and pelvis. the most commonly involved is 
the peritoneum, which carries tumor cells in ascitic 
fluid. the distribution of intraperitoneal metastases 
often corresponds to predictable flow patterns, the 
most classic example of which is seen with ovarian 
cancer. With this tumor, or any tumor demonstrat-
ing intraperitoneal spread, the paracolic gutters, 
cul-de-sac, omentum, and liver surface are common 
sites of metastases. In the chest, pleural dissemina-
tion typically spreads via gravitational forces and is 
often seen in the lower thoracic cavity [3]. 

each phase involved in the metastatic process re-
quires many specific molecular interactions between 
the tumor cells, the extracellular matrix (ecM) and 
the cells of the stroma. Liotta et al. [4] proposed the 
well-known three-steps theory for tumor cell inva-
sion: in the first step tumor cell adhere to specific 
components of the matrix through cell surface re-
ceptors; in the second step, the anchored tumor cell 
secrets hydrolytic enzymes which can locally de-
grade the matrix. the third step is represented by 
the tumor cell migration through the matrix region 
modified by proteolysis.

to spread through the tissues, tumor cells use 
mechanisms that are similar but not identical to 
those used by normal cells during physiological 
processes such as morphogenesis and migration of 
immune cells [5]. cell migration was firstly studied 
in fibroblasts, keratinocytes and myoblasts [6, 7]. 
Further studies showed that some basic strategies 
are also preserved in tumor cells. 

the cell migration through the tissues results from 
a continuous cycle of coordinated and interdepend-
ent steps that involve the cytoskeletal machinery [7, 
5]. Migration begins when a cell responds to an ex-
ternal signal that leads to the polarization and ex-
tension of a “leading front” in the direction of the 
movement. then, the leading front binds to ecM 
proteins, and the cell body shrinks: a traction force 
is thus generated, which determines the slow sliding 
of the cell body behind the migrating front.

In the first phase of the migration process the 
extension of cell protrusions is driven by actin po-
lymerization. this reaction may be increased by the 
actin monomer addition to existing filaments or by 
the nucleation of new actin filaments by arp2/3 (ac-
tin-related protein 2/3) [8]. arp2/3 is predominantly 
regulated by the family of adapter proteins WaSP 
(Wilscott-aldrich syndrome protein) and WaVe 
(WaSP-family verprolin-homologous protein), 
which act as a molecular platform for the forma-
tion of the complex responsible for actin nucleation. 
as described in the speculative model proposed by 
rohatgi et al., [9] cdc42 and lipids (PI(4,5)P2) may 
regulate actin assembly at membrane-proximal sites 
by recruitment and activation of the arp2/3 complex 
via N-WaSP-like proteins. Phosphoinositides bind 
and activate the guanosine-nucleotide-exchange 
factors (GeFs) that, in turn, regulate the activity of 
small GtPases [10] able to activate actin assembly 
regulatory proteins. 

the cellular protrusions that initially recognize 
and bind to the ecM may be morphologically dif-
ferent: lamellipodia, filopodia, pseudopodia and 
invadopodia [11], all contain filamentous actin. 
Indeed, the propulsion and elongation of pseu-
dopodia are driven by actin polymerization and by 
filament assembly [9, 12]. Growing cell protrusions 
reach and begin to bind to adjacent ecM by means 
of adhesion molecules such as integrins and cadher-
ins: these molecules are involved in the formation of 
“focal contacts”  complex composed of extracellular 
ligands, tyrosine kinase receptors and cytoskeletal 
proteins. 

ADHESION MOLECULES 
the high degree of specificity that characterizes 

both the cell recognition and the adhesion phe-
nomena requires the interaction between molecules 
to constitute cell-cell or a ecM-cell bridges. these 
proteins are the so-named “adhesion molecules” 
or caMs (cell-cell adhesion molecules), glycopro-
teins expressed on the cell surface. Most of caMs 
belongs to six protein families: cadherins, integrins, 
immunoglobulin superfamily, selectins, lymphocyte 
homing receptors. caMs are involved in many 
physiological and pathological processes, and it is 
now well known that they can assume a key role in 
the complex evolution of metastases [13]. 

cadherins (calcium-dependent adhesion mol-
ecules) belong to a large family of transmembrane 
glycoproteins that mediate cell-cell adhesions in 
a calcium-dependent manner [14]. the epithelial 
cadherin (e-cadherin) has been the first adhesion 
molecules to be discovered and characterized. thus, 
e-cadherin is the prototype member of cadherin 
family and plays a fundamental role in the devel-
opment and maintenance of adhesion between epi-
thelial cells [15]. e-cadherin consists of an extracel-
lular domain, constituted of five cadherin repeats 
(ec1, ec2, ec3, ec4 and ec5), a transmembrane 
domain, and an intracellular domain that binds to 
both P120 catenin and beta-catenin. It has been well 
documented that tumors of epithelial origin partial-
ly, or totally, lose the expression of e-cadherin with 
the acquisition of a more aggressive phenotype [16]. 
On the other hand, several studies have also shown 
the strong anti-invasive and anti-metastatic role of 
e-cadherin [17-19]. 

the large family of integrins comprises a wide 
number of cellular receptors, heterodimeric trans-
membrane glycoproteins constituted of two subu-
nits, the alfa chains associated with the beta chains 
through non-covalent bond [20]. Integrins are adhe-
sion molecules essential in the intercellular interac-
tions and in the integration (hence the name) of cells 
with the extracellular environment. Both alfa and 
beta chains penetrate into the cell membrane giving 
rise to the cytoplasmic domains essential for signal 
transduction. the molecular mass of alfa subunits 
varies between 120 and 180 kDa, whereas that of the 



68 Giuseppina Bozzuto, Paola Ruggieri and Agnese Molinari

beta subunits ranges from 90 to110 kDa. By differ-
ent combinations of 18 alfa chains and 8 beta chains 
are generated 24 distinct integrins [21]. Outside of 
the plasma membrane the alfa and beta subunits 
protrude about 23 nm, and the NH2 terminal ends 
of each chain are used to link the ecM. the main 
role of these adhesion molecules, in fact, is to medi-
ate cell-matrix and cell-cell interactions [22]. 

the integrins are involved in many physiological 
and pathological processes, including inflammation 
and wound repair [23], proliferation, differentiation 
and apoptosis [24]. In particular, they seem to have 
a crucial role in metastasis, by mediating the interac-
tion of tumor cells with the ecM [25]. these roles 
are possible thanks to the physical bond of adhesive 
contacts with the actin cytoskeleton, with the con-
sequent activation of cytoplasmic pathways medi-
ated by different signal proteins such as rho, Src, 
MaPKs and PKB [22]. evidence of the connections 
with the cytoskeleton comes from a large number of 
studies conducted by electron microscopy and dem-
onstrating the co-localization of integrins with the 
cytoskeletal structures [26]. the integrins bind to a 
wide range of matrix proteins, including laminin, fi-
bronectin, trombospondin, vitronectin and various 
types of collagen [27-29]. 

a widely used classification of integrin superfami-
ly is based on the type of chain constituting the het-
erodimer. VLas are integrins belonging to the beta1 
subfamily, and consist of six heterodimers. they are 
called “very late activation antigens” (VLas) be-
cause the first glycoproteins identified (VLa-1 and 
VLa-2) were only expressed at a late stage after t-
cell activation. the beta1 integrins are expressed on 
lymphocytes [20, 30], where they mediate the binding 
with the proteins of the ecM, playing an important 
role in the extravasation and migration in tissues 
during the immune response [31]. In this subfamily 
the beta1 subunit binds to 6 different alfa subunits, 
leading to the integrin classification VLa1, VLa2, 
VLa3, VLa4, VLa5, VLa6. VLa2 consists of the 
alfa 2 and beta 1 subunits, binds to different types of 
collagen (I-II-III-IV) and to laminin I. VLa5 (alfa5, 
beta1) binds to fibronectin and to the adhesion mol-
ecule L1caM (L1 cell adhesion molecule). 

another adhesion molecule widely expressed 
on lymphocytes is cD44. this small molecule is a 
membrane glycoprotein of class I of 85-95 kDa. 
cD44 is encoded by a single gene [32] but the het-
erogeneity of produced protein is partly generated 
by post-transcriptional modifications [33], that dif-
fer with respect to both cell type and growth con-
ditions. this glycoprotein is able to bind to lam-
inin, fibronectin, collagen and, particularly, to hy-
aluronic acid, an important ecM component [34]. 
the cD44 is a multifunctional receptor, not only 
important in the context of the immunological re-
sponse. Similar to integrins discussed above, cD44 
was initially detected on the membrane of the im-
mune system cells. Its identification on other type of 
cells has expanded its function [35]. Gilcrease et al. 

[23] demonstrated that a high expression of VLa2 
and cD44 was associated with a high capability of 
producing metastases by renal carcinoma. In fact, 
by analyzing the adhesion molecule expression in 37 
cell lines, isolated from nephrectomies, and the rela-
tive behaviour in the extra-renal stroma, a positive 
correlation was observed between invasive capacity 
and level of expression of both the molecules on the 
cell membrane. a study published in 2006 also high-
lighted the correlation between VLa2, VLa5 and 
cD44 adhesion molecules, and tumor metastases 
in human osteosarcoma cells [36]. Very important 
is also the association of cD44 with ezrin, radixin, 
myosin (erM) and merlin (moesin-ezrin-radixin-
like protein) proteins [37-39]. In particular, erM 
proteins are essential for the regulation of protein 
movements in the plasma membrane, cells shape 
and cell migration [40, 41]. 

 INTERACTION WITH THE ECM  
AND FORMATION OF FOCAL CONTACTS 
the integrin family of heterodymeric transmem-

brane receptors play a particularly important role 
in the interaction with ecM and formation of “fo-
cal contacts” [24, 42]. cells adhere to ecM via in-
tegrin-mediated adhesions that link matrix to actin 
cytoskeleton. In cultured cells, integrin-based mo-
lecular complexes form discrete morphological enti-
ties of several types. Small (0.5-1 µm) “dot-like” or 
“point contacts” also known as “focal complexes” 
are localized at the edges of lamellipodia. elongated 
(3-10 µm in length) streak-like structures associated 
with actin- and myosin-containing filament bundles 
(stress fibers) are known as “focal contacts” or “fo-
cal adhesions” [43]. “Podosomes” and “invadopo-
dia” are highly dynamic and specialized adhesive 
structures, rich in focal contacts. they contribute to 
remodel the cytoskeleton and the matrix by control-
ling both the local turnover of focal contacts and 
the degradation of ecM.

Following the contact with specific ecM ligands, 
integrins clusterize on the cell membrane, and recruit 
through their intracellular domain either adapter 
proteins or signal proteins. this leads to phospho-
rylation and dephosphorylation signals within the 
cell. In particular, cytoplasmic region of integrins 
directly interacts with adapter proteins such as alpha 
actinin, tensin, talin and the signal protein FaK (fo-
cal adhesion kinase). all these proteins can in turn 
bind to other adapter proteins to recruit in focal 
contacts actin ligands, such as vinculin, paxillin and 
alpha-actinin, which are all involved in the dynamic 
association with actin filaments. [43, 44]. 

assembly of focal contacts is regulated through 
various signaling pathways that include the phos-
phatidylinositol 3-phosphate (PI3K), the protein ki-
nase c (PKc) and rho family GtPases [44, 45]. 

the dynamics of focal cell-ecM adhesions is de-
termined by the cyclic formation and destruction of 
these structures, and both intracellular calpain pro-
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teinases and the ubiquitin-dependent proteasome 
system are involved in these regulatory mechanisms 
[46-48]. 

Focal adhesions allow the cell to acquire a “mor-
phological polarization”, which results in a direc-
tional motility. the generation of a protrusive force, 
produced by the asymmetric actin polymerization 
on the leading edge of the cell, and the generation of 
a contractility force within the cell, through the in-
teraction between actin filaments and myosin motor 
system, contribute to the process of directional mi-
gration. In some cases, during the processes of mi-
gration and invasion, tumor cells are able to adopt 
an “ameboid” mechanism of propulsion, involving 
integrin-independent adhesions and actomyosin-de-
pendent expansion/contraction cycles. these “ame-
boid” cells circumnavigate, rather than degrade, 
the ecM physical barrier [49]. In other cases, tu-
mor cells actively invade different tissues through a 
turnover of adhesion molecules that allow the cell 
to form contractility structures and degradate the 
ecM [50].

 CELL CONTRACTION: REGULATION  
OF ACTIN-MYOSIN COMPLEX 
actin-myosin contraction promotes the cell short-

ening along the long axis, and generate internal ten-
sion in the direction of the focal contacts located on 
the leading edge. Subsequently, the cell-substrate 
bonds preferentially dissolve at the rear edge of the 
cell, while the migration front, still attached, moves 
further forward [51, 52]. this induces the slow slid-
ing of the cell rear edge forward. Organization, 
assembly and the tension of the actin-myosin skel-
eton are controlled by different regulatory enzyme 
systems. One of such systems directly controls the 
myosin contractility, by modulating the light chain 
(myosin light chain, MLc) through the MLc kinase 
activity (MLcK) and MLc phosphatase (MLcP) 
counteraction. the activity of these enzymes, in 
turn, is regulated by another set of enzymes, the 
rho-GtPases, belonging to the group of small 
GtPases (guanosine triphosphatases). this group 
includes several members: rho, rac and cDc42 
proteins [53-55]. 

targets of rho protein are mDia1 (mammalian 
Diaphanous 1), LIMKs (LIM kinases), and rho-
associated kinase (rOcK). mDia1 is a mammalian 
homolog of Drosophila diaphanous and works as an 
effector of the small GtPase rho. LIM kinase-1 
(LIMK1) and LIM kinase-2 (LIMK2) are actin-
binding kinases that phosphorylate members of the 
aDF/cofilin family of actin binding and filament 
severing proteins. rho-associated kinase (rho-ki-
nase/rOcK/rOK) is a serine/threonine kinase and 
plays an important role in various cellular func-
tions.

rOcK phosphorylates and inhibits the activity of 
MLcP: this inhibition in turn results in increased 
MLc phosphorylation and, consequently, in an 

increase of the actin-myosin complex contractility. 
rOcK in cooperation with mDia1 can also stimu-
late the formation of “stress fibers”. rOcK phos-
phorylates and activates LIMK1 which in turn in-
hibits the depolymerisation of actin microfilaments 
[56]. Finally, mDia1 promotes actin polymerization 
and microtubule stabilisation. It has been suggested 
that mDia1 also increases the rate of cytoskeletal re-
organization [57]. 

the increase of contractile tension induced by rho 
results in the formation of numerous actin bundles 
associated with mature focal contacts. In contrast, 
rOcK and rho inhibition leads to actin disassembly 
and focal contacts processing in small focal complex-
es: this transformation is probably the consequence 
of the decrease in actin-myosin tension [56]. 

rho and MLcK allow cells to separately control 
the movements of cortical actin from the contrac-
tion of actin filaments, located in the deeper layers 
of the cytoplasm. Indeed, the contraction of actin 
filaments, controlled by myosin II, is induced pri-
marily by rho and its effector rOcK [58, 59]. In 
contrast, the cortical actin network seems to be reg-
ulated by MLcK and not by rho [60, 61]. 

therefore, the rho protein family plays a central 
role in regulating the movement of the cytoskeleton: 
the level of action of these proteins is regulated by 
the balance between a state of activation mediated 
by the GeFs exchange factors (GtPase exchange 
factors), which facilitate the replacement of GDP 
with GtP, and a state of inactivation where GaPs 
(GtPase-activating proteins) operate by attenuat-
ing the signal through the stimulated hydrolysis of 
bound GtP [62]. 

Besides rho, other proteins of the same group, rac 
and cDc42, can play an important role in regulating 
actin movements in migrating cells. activated rac 
stimulates the “ruffling” of the membrane, which re-
sults in the formation of the actin-rich cellular pro-
trusions lamellipodia, while activated cDc42 stim-
ulates the actin polymerization and the formation of 
the thin membrane protrusions filopodia [62]. the 
activity of rho GtPase also regulates other types 
of dynamic structures such as cadherin-dependent 
intercellular junctions, thus mediating the transition 
from epithelial to mesenchymal phenotype. the epi-
thelial-mesenchymal transition (eMt) is a frequent 
event in the progression of various malignancies 
and is characterized by loss of expression of e-cad-
herin and acquisition of expression of N-cadherin 
and vimentin.

THE INVADOPODIA
the invadopodia are cellular protrusions rich in 

actin that can mediate the proteolysis of ecM [63-
65]. the molecular origin and the role of invadopo-
dia in particularly aggressive tumors such as glio-
mas, breast carcinomas and melanomas have been 
recently discussed [63]. these subcellular organelles 
have been observed for the first time in fibroblasts, 
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genetically modified by inserting v-Src oncogene, 
which encodes for a protein with tyrosine kinase ac-
tivity. Following transformation, this protein is con-
stitutively activated and cells, grown on fibronectin, 
form prominent protrusions with both adhesive and 
degradation properties [66, 67]. the invadopodia 
have a diameter varying between 0.1 and 0.8 µm and 
their length can be up to 2 µm. Several markers are 
used for their identification: F-actin (filamentous 
actin form), arp2/3, N-WaSP and cortactin, SH3-
proteins involved in various tumors [69-73].

the maturation of invadopodia sees a four-steps 
process: (i) location of cortactin on the site of the 
protrusion formation; (ii) recruitment of Mt1-
MMP metalloproteinase (membrane-type type 1 
MMP); (iii) degradation of the matrix; (iv) dissocia-
tion of the cortactin from the cell membrane [70]. 

Several proteins are involved in the molecular 
pathways responsible for the invadopodia forma-
tion, whose invasive properties are attributed mainly 
to integrin-ligand binding (Figure 1) [69]. the mo-
lecular cascade starts with the ecM-integrin link-
age, together with the interaction of growth factors, 
such as the “epidermal growth factor” (eGF) and 
the “fibroblast growth factor” (FGF), with their re-
ceptors. the recruitment and the activation of other 
components occur downstream, outlining a complex 
molecular network in which many pathways are still 
unknown. Src is the first cytosolic protein involved, 
and it is activated by phosphorylation. Following 
the activation mediated by activated Src, cortactin 
binds to N-WaSP, F-actin and arp2/3 (these two 
molecules are also triggered by activated N-WaSP), 
and inhibits actin depolimerization. this coopera-
tive action is essential to allow the actin assembly, 
physiological process essential in invadopodia for-
mation. experiments with rNa interference, nega-
tive mutants or inhibitory antibodies show that pro-
teins such as cortactin [70, 72, 74], N-WaSP [73, 75], 
aMaP1/aSaP1 (protein belonging to arf GaP 
family, and complexed with a peptidase acting as 
GtPase) [76] and tks5/Fish (an anchor protein with 
SH3-domains) [77] are necessary for the degradation 

of ecM mediated by the invadopodia in various tu-
mor cell lines. tks5/Fish, thanks to its anchoring do-
mains, binds to N-WaSP, whereas aMaP1/aSaP1 
binds to cortactin: these associations are important 
for the subsequent formation of invadopodia.

 FOCUSED PROTEOLYSIS OF ECM:  
THE METALLOPROTEINASES 
Degradation and remodeling of ecM are essen-

tial stages of migration, invasion and metastasis of 
cancer cells. these processes are primarily mediated 
by two types of proteolytic enzymes: the plasmino-
gen activator system components and the matrix 
metalloproteinases (MMPs) [78]. 

the MMPs belong to a family of zinc-dependent 
endopeptidases, highly conserved and structurally 
related, capable of degrading many components of 
basement membrane and ecM [79]. the substrates 
of MMPs include a wide variety of proteins such as 
chemotactic molecules, adhesion molecules, protein-
ase inhibitors, cell surface receptors, blood coagula-
tion factors, growth factors and growth factor-bind-
ing proteins. Studies on the activity of MMPs in vari-
ous cells and tissues, demonstrated the importance of 
these enzymes in many physiological (e.g. embryonic 
development, bone resorption, angiogenesis) and 
pathological processes (e.g. rheumatoid arthritis, mul-
tiple sclerosis, tumor growth and metastasis) [80, 81]. 

Human MMPs generally contain a signal pep-
tide, a N-terminal pro-peptide domain, a catalytic 
domain that includes highly conserved zinc-binding 
sites, and a hinge region followed by an hemopexin-
like c-terminal domain (Figure 2a). 

they can be divided into different classes according 
to their sequence homology, substrate specificity, cel-
lular localization and structure (Figure 2b). MMP-2 
and MMP-9 gelatinases present an additional domain 
inserted between the catalytic domain and the active 
site domain. Mt-MMPs may have an additional trans-
membrane domain site, either a glycosylphosphatidyli-
nositol anchor site (GPI) or a Ig-like domain that de-
termines the localization on the cell surface.

Fig. 1 | Molecular pathway underlying 
invadopodia formation and ECM 
degradation. GF and RTK indicate 
the growth factor and the relative 
receptor tyrosine kinase, respectively. 
Lines indicate an association between 
components; arrows an activation 
sequence.
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according to substrate five MMP subclasses have been 
defined: collagenases (MMP-1, MMP-8, MMP-13), 
gelatinases (MMP-2, MMP-9), stromalysins (MMP-3, 
MMP-10, MMP-11), metalloelastases (MMP-12, 
MMP-18, MMP-19), matrilysins (MMP-7), mem-
brane-type-MMPs (Mt-MMPs) [82, 83]. 

the expression, secretion, and activity of MMPs 
are finely controlled in normal tissue. In particular, 
the expression of MMPs is regulated at both tran-
scriptional and post-transcriptional level. Several 
factors influence the transcription of genes cod-

ing for these endopeptidases, including cytokines, 
growth factors, hormones, oncogenes and tumor 
promoters [84, 85]. cytokines and growth factors 
are able to regulate the expression of metallopro-
teinases through the MaPKs pathway that includes 
proteins such as erK 1/2 (extracellular regulated 
kinase 1/2), JNK/SaPK1/2 (c-Jun N-terminal ki-
nase 1/2) and p38MaPK. thus, the activation of 
aP-1 and etS transcription factors by the mitogen 
kinases is responsible of the maximum expression 
of MMPs [85].

Fig. 2 | a) General structure  
of metalloproteinases. 
b) Classification of MMPs  
according to their structure. 
(Modified from: Lafleur MA, 
Handsley MM, Edwards DR. 
Metalloproteinases and their inhibi-
tors in the angiogenesis. expert rev 
Mol Med 2003;5:1-39). 
© Cambridge University Press. 
Reproduced with kind permission. 
. 

A

B
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at post-transcriptional level, the biological activ-
ity of MMPs is regulated by their state of activation. 
Many MMPs are secreted from cells in latent form as 
zymogens (pro-MMPs). the pro-MMPs conversion 
in a functionally active form requires a more specific 
multi-stage process known as “cysteine switch” and 
that leads to the proteolytic removal of parts of the 
molecule (Figure 3). a highly conserved cysteine-
rich domain, located in the prodomain, links to zinc 
ion in the active site (Figure 3a). the prodomain 
cleavage leads to the rupture of the zinc-cysteine (Zn-
c) bond, followed by the amino-terminal prodomain 
loss (Figure 3b): in this way the active site becomes 
accessible. For many MMPs proteolytic activation 

begins in the extracellular space by serine proteases, 
or by other members of the family of MMPs [86]. 
On the cell surface, the Mt-MMPs (membrane-type 
MMPs) have been identified as potent physiological 
activators of several MMPs [82, 87]. 

the activity of MMPs is modulated by the family 
of “tissue inhibitors of metalloproteinases” (tIMPs) 
that are able to inhibit active MMPs after binding 
in their catalytic domain. In addition, tIMP-1 and 
tIMP-2 regulate the activation of some pro-MMPs 
by binding to their carboxy-terminal domains. In 
particular, tIMP-1 inhibits the activation of pro-
MMP-9, while tIMP-2 binds and regulates the ac-
tivation of pro-MMP-2 [88]. as shown in Figure 4, 
Mt1-MMP can form a complex with tIMP-2, which 
subsequently serve as a receptor for pro-MMP-2. a 
second molecule of Mt1-MMP adjacent to the com-
plex, not inhibitor-linked can convert pro-MMP-2 
in its active conformation [79, 89]. In particular, at 
low concentrations, tIMP-2 promotes the formation 
of a complex with pro-MMP-2 and Mt1-MMP on 
the cell surface, thus leading to activation of MMP-2 
(Figure 4a). However, at high concentrations tIMP-
2 inhibits the activation (Figure 4b). 

the active MMPs may remain localized on the cell 
surface through binding with membrane molecules, 
and this leads to a more focused ecM degradation. 
the expression of MMPs and tIMPs changes dur-
ing the neoplastic transformation. a high secretion 
of MMPs by tumor cells has been demonstrated in 
many types of cancer [3, 90] and the imbalance be-
tween MMPs and their specific inhibitors seem to 
play an important role in the tumor growth and in-
vasion [3, 78].

 ROLE OF MITOGEN-ACTIVATED PROTEIN 
KINASES (MAPKS) IN THE PROCESSES 
OF CELL MIGRATION AND INVASION 
Many extracellular signals converge on the path-

way of proteins belonging to the serine/threonine 

Fig. 4 | Mechanism of activation of 
pro-metalloproteinase 2 (pro-MMP-2). 
a) When present at low concentrations, 
TIMP-2 can form a complex with a 
molecule of MT1-MMP, which in turn 
will serve as a receptor for proMMP-2. 
A second molecule of unbound MT1-
MMP, adjacent to the complex, can 
convert proMMP-2 in its active con-
formation. b) At high concentrations, 
TIMP-2 forms a complex with both 
proMMP-2 molecules, already bound to 
MT1-MMP, and with MT1-MMP free 
molecules thus inhibiting the activation 
of MMP-2 (Modified from: Lafleur 
MA, Handsley MM, Edwards DR. 
Metalloproteinases and their inhibitors 
in the angiogenesis. expert rev Mol 
Med 2003;5:1-39). 
© Cambridge University Press. 
Reproduced with kind permission.

Fig. 3 | “Cysteine switch” activation mechanism. a) A conserved 
cysteine-rich domain, located in the pro-domain, forms a bond with 
the coordinated zinc ion located in the active site. b) The cleav-
age of the pro-domain leads to the breaking of zinc-cysteine bond 
followed by the amino-terminal pro-domain loss (Modified from: 
Somerville RPT, Oblander SA, Apte SS. Matrix metalloprotein-
ases: old dox with new tricks. Genome Biol 2003;4:216-26).
© BioMed Central. Reproduced with kind permission.
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kinase family and known as MaPKs. MaPKs play 
an important role in cell proliferation, oncogenesis, 
differentiation, inflammation and response to stress 
[91], but several evidence suggest that these kinases 
is also essential for cell migration [92]. 

all MaPKs contain tyrosine-X-threonine motifs 
(where X is any amino acid) in the activation do-
main and are activated through a kinase cascade in 
which MaPKKKs (MaPKs kinase kinase) activates 
MaPKK (MaPKs kinase) which, in turn, activates 
MaPK by the phosphorylation of threonine and 
tyrosine residues located in the activation domain 
(Figure 5). Based on differences in the activation 
domain, MaPK family can be subdivided into three 
groups: kinases regulated by extracellular signals 
(erK1/2), which display a threonine-glutamine-
tyrosine motif, p38 MaPK isoforms which have a 
threonine-alanine-tyrosine motif, and JNK1/2/3 
which present threonine-proline-tyrosin.

Numerous experimental observations have shown 
that erK1/2 is directly involved in cell motility [93-
95]. Some growth factors and ecM components ac-
tivate erK through signalling pathways involving 
ras, raf and MeK1/2. Once activated, erK phos-
phorylates different substrates including MLcK, 
calpain, paxillin and FaK [96-99].

the MLcK phosphorylation determines the focal 
contact turnover and the formation of cell mem-
brane protrusions at the migrating front [60, 100]. 
activated calpain, instead, interacts with the cy-
toskeleton proteins by promoting focal contact dis-
assembly [95]. Finally, the phosphorylation of FaK 
and paxillin by erK may regulate the focal contact 
dynamics likely by affecting the interaction between 
FaK and paxillin [97]. 

recent studies have shown that p38 MaPK in-
volved in inflammation, apoptosis, cardiomyocyte 

hypertrophy and cell differentiation, plays a key role 
in the migration of different cell types, [101-104]. 
p38 MaPK activity is stimulated by many growth 
factors, cytokines and chemotactic substances that 
activate MeK3/6: this protein, in turn, phosphor-
ylates and activates p38 MaPK [105]. p38 MaPK 
substrates are mainly MaPKaPK2/3 (a protein ac-
tivated by either MaPK or MK), paxillin and cald-
esmon which, directly or through the phosphoryla-
tion of other proteins, lead to the reorganization of 
actin and the formation of the “stress fibers” and 
adhesion structures, thus stimulating the directional 
migration of cells [106]. Studies on Drosophila em-
bryos have shown that JNK is involved in the con-
trol of actin cytoskeleton in the formation of filopo-
dia and lamellopodia, and in the movement of cells 
during neural tube closure [107, 108]. It was also 
demonstrated that JNK determines the formation 
of “stress fibers” and their accumulation in the lead-
ing front of fibroblasts [109]. 

 RELATIONSHIP BETWEEN DRUG 
RESISTANCE AND INVASION 
In the past studies on drug resistance and invasion 

generally proceeded along different research paths. 
Later the interest was focused on the possible rela-
tionship between the two phenomena. currently, 
many experimental evidence suggest a possible cor-
relation between drug resistance instaurance and 
acquisition of a highly aggressive phenotype. this 
relationship has been demonstrated by two obser-
vations: (i) drug resistant tumor cells are more in-
vasive and metastatic, when compared with sensi-
tive tumor cells, (ii) in some cases, most metastatic 
tumors show a greater resistance to chemotherapy 
[110]. the resistance of tumors to chemotherapy is a 

Fig. 5 | Activation pathways of mitogen-activated protein kinases (MAPKs).
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multifactorial and complex phenomenon that often 
involves different cellular mechanisms [111]. two 
types of resistance are known: an “intrinsic resist-
ance” that occurs in cells never exposed to chemo-
therapy and an “acquired resistance” induced in re-
sponse to chemotherapeutic treatment [112, 113]. 

the main cellular mechanisms so far identified, 
and that play a significant role in the phenomenon 
of drug resistance can be classified into five groups:

1. drug-target interaction (target resistance); 
2.  alterations of drug activation, or inactivation, 

by endogenous biochemical systems present in 
tumor cell (metabolic resistance); 

3. alteration of DNa repair; 
4.  alteration in the ability of cancer cell to respond 

to death (resistance to apoptosis); 
5.  increased drug transport through cell membrane 

(transport molecule-mediated resistance). after 
selection for resistance to a single drug, cancer 
cells may also show cross-resistance to other drugs, 
structurally and functionally not related [114]. 
this phenomenon is known as “multidrug resist-
ance” (MDr) and could explain why combined 
treatments that involve the use of cytotoxic agents 
with different targets can be not efficacious. MDr 
acquisition, induced by the treatment with a cyto-
toxic agent, is generally associated with an increase 
of transport proteins that results in a reduced in-
tracellular concentration of cytotoxic drug. 

the currently known active transporters that play 
an important role in MDr phenomenon are: mem-
bers of the P-glycoprotein/taP (aBcB-P-gp) sub-
family (Figure 6), members of the of MDr-associ-
ated protein subfamily (aBcc1-MrP1), members 
of the MXr/BcrP (aBcG) subfamily and the lung 
resistance related protein (LrP). except for LrP, all 
belong to the superfamily of aBc transporters. 

If P-gp, MrP and LrP are three important mark-
ers of drug resistance, immunohistochemical analy-
ses showed that they are also markers of invasion and 
metastasis [110, 115]. Moreover, a study on human 
prostate carcinoma cell lines and its resistant vari-
ants with different metastatic capacity [116] gave the 
following results: cultured, highly metastatic cells ex-
press higher levels of bFGF m-rNa, IL-8, MMP-
2, MMP-9 and P-gp than poorly metastatic parental 

cells line. these data suggest a possible correlation 
between metastasis and drug resistance mediated by 
P-gp [117]. an in vivo study conducted by Bradley et 
al. [118] showed that different stages of tumor pro-
gression displayed different levels of P-gp m-rNa 
expression. Surprisingly, 460 lung metastases were 
examined and each metastasis was positive for P-gp. 
Moreover, in an in vitro study it was demonstrated 
that human hepatoma cells rich in P-gp showed in-
creased invasive properties, when compared to cells 
expressing low levels of P-gp [119]. Bates and col-
leagues [120] found that a cD44 isoform, normally 
involved in migration and invasion, coferred chem-
oresistance to colon carcinoma cells. also a study of 
lung carcinoma cells showed that the standard form 
of cD44 is able to increase the expression of the 
MrP2 transporter (belonging to the family of “atP-
binding cassette”), resulting in the acquisition of a 
drug resistance phenotype by NScLc cell line [121]. 

the human breast cancer drug resistant cell line 
McF-7 aDr which overexpress P-gp shows a differ-
ent invasive and metastatic potential when compared 
to the parental line [122, 123] shown that the loss of 
e-cadherin and the increase of N-cadherin during 
the acquisition of the resistant drug phenotype cor-
related with the increase in metastasizing capacity 
of McF-7 aDr cells. the variation in expression of 
cadherin could be due to the control by twist tran-
scription factor. In fact, twist overexpression results 
in the epithelial-mesenchymal transition (eMt) 
with the increase in cell motility and invasion. Many 
studies have shown that the transcriptional activa-
tion of the MDr1 transporter is regulated by the 
MaPK pathway [124, 125], while others have shown 
that also Snail, a transcription factor that mediates 
eMt, is regulated by the MaPK pathway as well 
[126]. Further studies on the involvement of P-gp 
in the mechanisms of cell migration and invasion 
have shown that treating McF-7 aDr cells with the 
transport substrates of the molecule an increase in 
the production of cD147, and MMP-2 and MMP-9 
is achieved [127]. So the expression and activity of 
drug resistance genes could simultaneously cross-
activate genes that induce tumor metastasis.

Finally, malignant melanoma shows high levels of 
intrinsic drug resistance associated with a highly in-

Fig. 6 | Two-dimensional model of hu-
man P-glycoprotein based on the analy-
sis of the amino acid sequence and its 
functional domains. ATP binding sites, 
phosphorylation sites, peptide linker, gly-
cosylation sites and 12 transmembrane 
domains can be identified (Modified from: 
Di Pietro A, Dayan G, Conseil, G, Steinfels 
E, Krell T, Trompier D, Baubichon Cortay 
H, Jault J. P-glycoprotein-mediated resist-
ance to chemotherapy in cancer cells 
using recombinant cytosolic domain to 
establish structure-function relationship. 
Braz J Med Biol res 1999;32:925-39). 
Reproduced with kind permission.
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vasive phenotype. cD44, it is the major cell surface 
receptor to hyaluronan, implicated in cell adhesion, 
metastasis and tumor progression [128, 129]. When 
overexpressed in melanoma cells cD44 enhances 
the experimental metastatic potential and tumori-
genicity [128], but its clinical significance in cutane-
ous melanoma is still unclear.

cD44 proteins assemble intracellular complexes 
that are important in signal transduction: key play-
ers in this regulation are ezrin, radixin and moesin 
(erM) proteins. erM proteins are involved in many 
physiological functions including regulation of actin 
cytoskeleton, control of cell shape, adhesion, motili-
ty and modulation of signal transduction pathways. 
In the phosphorylated form erM proteins anchor 
cD44 to actin and support cell proliferation [130].

advances on ezrin involvement in the metastatic 
phenomenon has been recently reviewed [131]. Novel 
molecular processes driven by ezrin activation in-
clude: phagocytosis, acquisition of resistance to 
chemotherapeutics and triggering of programmed 
cell death signals. Federici et al., [132] highlight that 
ezrin activity is mandatory for both the maintenance 
of migratory and invasive capacity of tumors and 
conservation of the ability to feed through other cells. 
this occurs through the specific molecular association 
between ezrin and molecules involved in many activi-
ties of metastatic cells, such as cD44 and Lamp-1. 
Particularly, the molecular interaction between ezrin 
and Lamp-1 was never been described together with 
its importance in allowing Lamp-1 membrane locali-
zation in metastatic cells. 

the association of Pgp with actin mediated by erM 
family proteins was demonstrated in drug resistant 
human tumor cells. Such an association appeared to 
be essential for the maintaining of the MDr pheno-
type [133]. Successively, a relationship between cD44 
and the MDr1 transporter Pgp does exist in carci-
noma cell lines [134]. In this study it was stated that 
the expression of Pgp alone does not increase the mi-
gration potential and that it is the interaction of Pgp 
with cD44 that affects cell migration.

In an our recent study [135], we investigated the 
role of the drug transporter P-glycoprotein (Pgp) 
in the invasion potential of drug-sensitive (M14 
Wt, Pgp-negative) and drug-resistant (M14 aDr, 
Pgp-positive) human melanoma cells. In particu-
lar, co-immunoprecipitation experiments assessed 
the association of Pgp with the adhesion molecule 
cD44 in multidrug resistant (MDr) melanoma 
cells, compared with parental ones. In MDr cells, 
the two proteins colocalized in the plasma mem-
brane as visualized by confocal microscopy and 
immunoelectron microscopy on ultrathin cryosec-
tions. MDr melanoma cells displayed a more in-
vasive phenotype compared with parental cells, as 
demonstrated by quantitative transwell chamber 
invasion assay. the Pgp molecule, after stimulation 
with specific antibodies, appeared to cooperate with 
cD44, through the activation of erK1/2 and p38 
MaPK proteins. this activation led to an increase 
of metalloproteinase (MMP-2, MMP-3, and MMP-
9) mrNas, and proteolytic activities, which are as-
sociated with an increased invasive behavior. rNa 

Fig. 7 | SEM observations of drug-
sensitive (M14 WT) cell invasion 
through MatrigelTM. During invasion  
intense focused proteolysis is visible 
in sensitive cell samples, indeed the 
extracellular matrix appears digested 
around the cell. 



76 Giuseppina Bozzuto, Paola Ruggieri and Agnese Molinari

interference experiments further demonstrated Pgp 
involvement in migration and invasion of resistant 
melanoma cells. a link was identified between MDr 
transporter Pgp, and MaPK signaling and invasion. 
Finally, differently from drug-sensitive (Pgp-nega-
tive) melanoma cells, which showed an “individual 
mesenchimal” behaviour (Figure 7), Pgp-overex-
pressing melanoma cells adopted a ‘chain collective’ 
migration strategy reflecting potential high meta-
static capacity (Figure 8).

Finally, new perspectives raise from a growing 
body of literature data which suggest a key role of 
tumor acidic microenvironment in cancer develop-
ment, progression, and metastasis [136]. as reviewed 
in Fais et al [136], V-atPases play a crucial function 
in determining the acidification of tumor microen-
vironment and are overexpressed in many types of 
metastatic cancers and positively correlated to their 
invasion and metastasis. the promoting effect of V-
atPases on cancer invasion and metastasis mainly 
relies on their ability to maintain an acidic pH of 
extracellular microenvironment and very acidic 
luminal pH. this pathway is in turn related to the 
activation, secretion, and cellular distribution of 
many proteases involved in the digestion of ecM. 
Molecular inhibition of V-atPases by small inter-
fering rNa in vivo as well as a pharmacologic inhi-
bition through proton pump inhibitors (PPIs) led to 
tumor cytotoxicity and marked inhibition of human 
tumor growth in xenograft models. 

Noteworthy, tumor acidity is also related to tumor 
cannibalism, a characteristic of malignancy and 
metastatic behaviour. through this function meta-
static tumors feed off  other cells, either dead or alive, 
including the t lymphocytes that should kill them. 
experimental data have shown that cannibalism is 
increased in acidic culture conditions [137]. a new 
marker of malignancy with a specific role in tumor 
cannibalism and in the establishment of metastatic 
phenotype has been recently proposed [138]. tumor 
cannibalism has some similarities to the phagocytic 
activity of Dictyostelium discoideum. recently, ph-
g1a has been described as a protein that is primarily 
involved in the phagocytic process of this microor-
ganism. the closest human homologue to phg1a 
is transmembrane 9 superfamily protein member 4 
(tM9SF4). tM9SF4 is highly expressed in human 
malignant melanoma cells deriving from metastatic 
lesions, whereas it is undetectable in healthy hu-
man tissues and cells. tM9SF4 is predominantly 
expressed in acidic vesicles of melanoma cells, in 
which it co-localizes with the early endosome anti-
gens rab5 and early endosome antigen 1. tM9SF4 
silencing induced marked inhibition of cannibal 
activity, which is consistent with a derangement of 
intracellular pH gradients, with alkalinization of 
acidic vesicles and acidification of the cell cytosol. 
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Fig. 8 | SEM observations of drug-
resistant (M14 ADR) cell invasion 
through MatrigelTM. In the lower 
side of the filter, the invadopodia of 
resistant cells appeared to infiltrate 
between the stitches of MatrigelTM  
in the absence of focused proteolysis.
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