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Summary. Pharmaceutical innovation is increasingly risky, costly and at times inefficient, which has 
led to a decline in industry productivity. Despite the increased investment in R&D by the industry, 
the number of new molecular entities achieving marketing authorization is not increasing. Novel 
approaches to clinical development and trial design could have a key role in overcoming some of 
these challenges by improving efficiency and reducing attrition rates. The effectiveness of clinical 
development can be improved by adopting a more integrated model that increases flexibility and 
maximizes the use of accumulated knowledge. Central to this model of drug development are novel 
tools, including modelling and simulation, Bayesian methodologies, and adaptive designs, such as 
seamless adaptive designs and sample-size re-estimation methods. Applications of these methodolo-
gies to early- and late-stage drug development are described with some specific examples, along with 
advantages, challenges, and barriers to implementation. Because they are so flexible, these new trial 
designs require significant statistical analyses, simulations and logistical considerations to verify 
their operating characteristics, and therefore tend to require more time for the planning and pro-
tocol development phase. Greater awareness of the distinct advantages of innovative designs by 
regulators and sponsors are crucial to increasing the adoption of these modern tools.

Key words: clinical trial, pharmaceutical preparations, drug approval.
 
Riassunto (Approcci innovativi allo sviluppo clinico e al progetto di sperimentazione). L’innovazione 
farmaceutica è sempre più rischiosa, costosa e a volte inefficace, il che ha portato ad una diminuzio-
ne della produttività industriale. Nonostante l’aumento degli investimenti nella ricerca e sviluppo da 
parte delle industrie, il numero delle nuove molecole che raggiunge l’autorizzazione per l’immissione 
sul mercato non è in aumento. I nuovi approcci allo sviluppo clinico e al piano di sperimentazione 
potrebbero avere un ruolo chiave per il superamento di alcune di queste sfide, attraverso il miglio-
ramento dell’efficacia e la riduzione delle misure di attrition. L’efficacia dello sviluppo clinico può 
essere migliorata attraverso l’adozione di un modello più integrato che aumenti la flessibilità e mas-
simizzi l’utilizzo di una maggiore conoscenza. Cruciali per questo modello di sviluppo di farmaci 
sono i nuovi strumenti, inclusi i modelli e la simulazione, le metodologie bayesiane e i progetti di 
adattamento, quali i disegni adattativi continui ed i metodi di rivalutazione della dimensione del 
campione. L’applicazione di questi metodi alla fase iniziale e finale dello sviluppo del farmaco è de-
scritta con alcuni esempi specifici, insieme ai vantaggi, alle sfide e alle barriere all’implementazione. 
A motivo della loro flessibilità, questi nuovi progetti di sperimentazione richiedono analisi statisti-
che significative, simulazioni e considerazioni logistiche per la verifica delle caratteristiche operative 
e pertanto tendono ad aver bisogno di maggior tempo per la fase di pianificazione e di sviluppo del 
protocollo. Una maggiore consapevolezza dei vari vantaggi dei progetti innovativi da parte degli enti 
regolatori e degli sponsor è essenziale per una crescente adozione di questi moderni strumenti.

Parole chiave: sperimentazione clinica, preparazioni farmaceutiche, approvazione di farmaci.
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A NEW DEVELOPMENT PARADIGM
Pharmaceutical innovation is increasingly risky, 

costly and at times inefficient, which has led to a de-
cline in industry productivity [1-3]. Estimates for the 
average cost of bringing a new drug to market range 
between $ 800 million and $ 2 billion, in which late-
stage failures and the rising costs of Phase II and III 
trials represent key components [4-9]. Despite the 
increased investment in R&D by the industry, the 

number of new molecular entities achieving market-
ing authorization is not increasing. Novel approaches 
to clinical development and trial design could have a 
key role in overcoming some of these challenges by 
improving efficiency and reducing attrition rates. 

The traditional approach to drug development 
separates clinical development into sequential, dis-
tinct phases, in which progress is measured at dis-
crete milestones, separated by “white space”. The ef-
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fectiveness of clinical development can be improved 
by adopting a more integrated model that increases 
flexibility and maximizes the use of accumulated 
knowledge. In this model, broader, more flexible 
phases leading to submission for approval are desig-
nated “exploratory” and “confirmatory” (Figure 1). 
This model is adaptive, parallel and data-led, and 
allows all available knowledge to be appropriately 
shared across the breadth of development studies to 
improve the quality, timeliness and efficiency of the 
process. Central to this model of drug development 
are novel tools, including modelling and simulation, 
Bayesian methodologies, and adaptive designs, such 
as seamless adaptive designs and sample-size re-es-
timation methods. 

MODELLING AND SIMULATION
Modelling is a key feature of  the more inte-

grated approach to drug development (Figure 1). 
Biological modelling is used to understand ge-
netic, biochemical and physiological networks, as 
well as pathways and processes underlying disease 
and pharmacotherapy [10, 11]. Pharmacological 
modelling guides clinical trial design, dose selec-
tion and development strategies [12, 13]. Finally, 
statistical modelling can be used to assess devel-
opment strategies and trial designs in populations 
[10, 11, 14]. These three types of  modelling should 
be used throughout the drug development process 
to maximize their synergies. Indeed, modelling and 
simulation activities are increasingly being used to 
support development strategies and health author-
ity interactions throughout all phases of  develop-
ment [15-19]. In addition, the US Food and Drug 
Administration (FDA) is currently posting selected 
pharmacometrics reviews and guidance documents 
on its website [20].

An important goal of  a drug development pro-
gram is the selection of  a dose and dosing regi-
men that achieves the target clinical benefit while 
minimizing undesirable adverse effects. Biological 
and pharmacological modelling can be very useful 
in this context [21, 22]. For example, we have used 
such modelling in the dose selection for canaki-
numab (Ilaris; Novartis), a monoclonal antibody 
that has recently been approved for the treatment 
of  the rare genetic disease, Muckle-Wells syn-
drome (Figure 2). Clinical data on the relationship 
between activity of  the therapeutic target (inter-
leukin 1), markers of  inflammation and remission 
of  symptoms were captured in a mathematical 
model that was continuously adjusted to fit emerg-
ing data. Simulation was then used to propose a 
suitable dose and dosing regimen to achieve the de-
sired response for the majority of  patients – in this 
instance, an 80% probability that 90% of  patients 
would remain flare-free for 2 months. The data de-
rived from this modelling exercise allowed for se-
lection of  a dosing regimen that was investigated 
and confirmed in a Phase III trial [23]. Similarly, 
modelling has been used to address regulatory que-
ries at filing regarding dose justification for a new 
molecular entity. In this instance, integration of 
safety and efficacy data across all clinical trials in 
the drug development program allowed for robust 
and simultaneous assessment of  benefit and risk. 

 BAYESIAN APPROACHES 
TO CLINICAL DEVELOPMENT
Bayesian methodology relies on the use of probabil-

ity models to describe knowledge about parameters 
of interest (for example, the treatment effect of a drug 
in development). Bayesian inference uses principles 
from the scientific method to combine prior beliefs 

Pharmaceutical R&D + D the new paradigm

Target
discovery and

validation

PoC1

clinical trials
Clinical

development

Exploratory phase Confirmatory phase

• Adaptive
• Parallel
• Data-led

1Proof-of-Concept

Target Proof-of-
Concept

Efficacy
Safety

Approval Market

Fig. 1 | A new paradigm for clinical de-
velopment. During the exploratory phase 
of development, this new model uses all 
available knowledge and tools, including 
biomarkers, modelling and simulation, 
as well as advanced statistical methodol-
ogy. Trials are designed to determine 
proof-of-concept (PoC) and to establish 
dose selection to a level of rigor that will 
enhance the likelihood of success in the 
confirmatory phase. During the con-
firmatory phase, modern designs, tools 
and knowledge are applied to larger-scale 
studies with the goals of identifying the 
target patient population in which the 
drug is efficacious, establishing the ben-
efit/risk ratio and confirming the optimal 
dose and dosing regimen. During this 
phase, innovative clinical trial designs 
such as adaptive or seamless studies 
compress timelines, improve dose and 
regimen selection, and reduce the number 
of patients assigned to non-viable dosing 
regimens. Modified from [36]
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with observed data, producing enhanced, updated 
information [24, 25]. Using Bayesian methodologies, 
initial beliefs about the parameters are summarized 
in their prior distribution. Then, new data values are 
collected experimentally and the probability distri-
bution of these values leads to the likelihood func-
tion (the observed evidence on the parameters). The 
two elements are then combined, using Bayes’ theo-
rem, to produce the posterior distribution of the pa-
rameters – that is, the updated knowledge given the 
observed evidence. By contrast, frequentist methods 
rely solely on observed evidence for inferences, and 
typically do not formally take into account prior in-
formation.

Bayesian methods may enhance the traditional 
approach to power calculations for sample size esti-
mates. By applying the posterior distribution to the 
traditional power curve, a more precise estimate of 
the underlying treatment difference can be obtained, 
as well as the probability distribution for the range 
of treatment differences that may be possible. This 
allows for a more precise and realistic estimate of 
the power calculation for a given sample size. 

Bayesian approaches may also maximize the use of 
limited information available in a proof-of-concept 
(PoC) trial. Early development studies for estab-
lishing PoC often use small patient cohorts (10-20 
subjects). These patients are typically observed for 

a relatively short period of time (several weeks) to 
evaluate early efficacy and safety signals, which are 
frequently measured on a continuous scale and ob-
served several times over the duration of the study. 
However, the endpoints are typically based on a sin-
gle time point and use dichotomized versions of the 
original variables to characterize responder and non-
responder behaviour. There are, therefore, two types 
of information loss that often occur in PoC studies: 
the dichotomization of continuous endpoints and a 
failure to use all of the available longitudinal meas-
urements collected in the study [24].

Because of small cohort sizes, only safety prob-
lems occurring in a relatively large percentage of 
patients can be reliably detected by dose-escalation 
procedures. Likewise, only relatively strong efficacy 
signals can be detected with reasonable statistical 
power. The detection of safety and efficacy signals 
can be made more efficient in various ways: by draw-
ing on data and information external to the trial, 
and deploying longitudinal modelling approaches to 
make use of all available information. Furthermore, 
the utility of PoC studies within drug development 
programs can be enhanced by incorporating the in-
formation obtained in them directly into later-phase 
trials [10, 11, 16, 17]. Bayesian modelling techniques 
are particularly useful in implementing these ap-
proaches. 

0 56 112 168 224 280 336 392 448 504
Time (days)

Free IL-1  is suppressed

Antibody

Antibody

Total IL-1  (complex)

C-reactive protein

Symptoms Flaring

Remission

Fig. 2 | A dose selection in the develop-
ment of a therapeutic for Muckle-
Wells syndrome. Muckle-Wells syn-
drome is a rare genetic disorder charac-
terized by fever, urticaria, joint pain, and 
malaise. A monoclonal antibody against 
interleukin -1β (IL-1β), canakinumab, 
has been developed to treat such an IL-
1-dependent inflammatory disease. The 
antibody is delivered parenterally and 
binds to free IL-1β, driving it into the 
inactive complex and leading to remis-
sion of symptoms [23]. Total IL-1β, 
which represents mainly the inactive 
complex, increases after dosing and 
can be measured. By the laws of mass 
action, the free and active form of IL-
1β, which cannot be measured, must 
decrease. However, the reduction in free 
IL-1β results in a decrease in markers of 
inflammation, including C reactive pro-
tein (which can be measured), and a re-
mission of clinical signs and symptoms 
of disease. The clinical data on these 
relationships can be captured in a math-
ematical model, shown in the figure, and 
is continuously adjusted in light of new 
data. This framework, simulation could 
then be used to propose a suitable dose 
and dosing regimen that would be pre-
dicted to produce a desired response for 
the majority of patients (for example, 
an 80% probability that 90% of patients 
will be flare-free for 2 months). 
 Reproduced with kind permission from 
[36].
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The core concept of adaptive trial design is that it 

uses accumulating data to decide on how to modify 
aspects of the study mid-trial, in a pre-planned man-
ner, without undermining the validity or integrity of 
the study [25-28]. Possible adaptations include ad-
justments to sample size, allocation of treatments, 
the addition or deletion of treatment arms, inclu-
sion and exclusion criteria for the study population, 
adjusting statistical hypotheses (such as non-inferi-
ority or superiority), and combining trials or treat-
ment phases. Adaptive trials have the potential to 
translate into more efficient drug development and 
better use of available resources.

Adpative approaches can be applied to both early 
and late development trial designs. In an adaptive 
dose-finding study [29, 30], the dose assignment(s) to 
the next subject, or next cohort of patients, is based 
on responses of previous subjects, and the dose as-
signment is chosen to maximize the information 
about the dose-response curve, according to some 
pre-defined objective metric (for example, variability 
in parameter estimates) (Figure 3).

Efficiency can be increased through the use of 
seamless adaptive designs, which aim to combine 
objectives traditionally addressed in separate tri-
als into a single trial [27, 31]. A specific example is 
the seamless adaptive Phase II/III design address-
ing objectives normally achieved through separate 
Phase II and III trials. The first stage of a seam-
less adaptive Phase II/III trial might be similar to a 
late-Phase II trial, with a control group and several 
treatment groups (for example, different dose levels 
of the same treatment). Results are examined at the 

end of the first stage, and one or more of the treat-
ment groups are selected to continue, along with 
the control group, into the trial’s second stage. The 
final analysis comparing the selected group(s) with 
the control will use data from the continuing groups 
from both stages of the trial.

There are three key potential advantages of seam-
less adaptive designs: a reduction in the duration of 
the clinical development program, by eliminating 
the time lag that traditionally occurs between Phase 
II and III trials; greater efficiency from the use of 
data from both stages, which might mean that fewer 
patients are required to obtain the same quality of 
information; and earlier acquisition of long-term 
safety data, gathered through continued follow-up 
of patients from the first stage [27, 31].

There are a number of requirements for success-
fully implementation of adaptive trial designs [25-
28]. Drug responses should be rapidly observable 
relative to accrual rate. Adaptive trials also neces-
sitate more up-front statistical work to model dose-
response curves and to perform simulations – and 
many simulations are required to find the best com-
binations of sample size, the randomization ratio be-
tween placebo and drug, starting dose and number 
of doses. This in turn demands efficient program-
ming to develop complex algorithms and programs, 
and fast computing platforms.

A number of logistical and regulatory actions must 
be fulfilled to avoid compromising an adaptive trial. 
To maintain trial integrity, the processes by which 
interim data are examined and selection decisions 
are made and implemented must be considered very 
carefully. First, the actual algorithm for determin-
ing the adaptation to implement must be specified 
in advance. This is usually accomplished by creating 
a charter for the independent data monitoring com-
mittee charged with the responsibility of performing 
the unblinded interim analysis and communicating 
as appropriate with the sponsor. 

SAMPLE SIZE RE-ESTIMATION
Sample size re-estimation (SSR) provides a mech-

anism for appropriately using the information 
obtained during a study to inform and adjust the 
necessary sample size going forward [32, 33]. These 
methods provide the flexibility to either increase or 
decrease the sample size at an interim point in the 
trial. This is important in cases in which there is 
uncertainty about between-subject variance in the 
response or uncertainty about the clinically mean-
ingful effect size at which to power the trial. This 
process increases confidence that an appropriate 
sample size has been chosen to answer the primary 
study questions. 

SSR usually involves the choice of a suitable initial 
sample size, including one or more interim analy-
ses at which the sample size will be re-assessed [32]. 
There are two distinct strategies – the group sequen-
tial strategy and the adaptive SSR strategy – for 

Re
sp

on
se

Wasted
doses

Dose Wasted
doses

Adaptive dose finding

Increased number of doses + adaptive allocation

Fig. 3 | Adaptive dose finding. In a traditional dose-finding trial, select-
ing a few doses may not adequately represent the dose-response rela-
tionship and many patients will be allocated to “non-informative” doses 
(wasted doses), as shown. In adaptive dose-finding, the strategy is to 
initially include only a few patients on many doses to explore the dose-re-
sponse, then to allocate the dose range of interest to more patients. This 
reduces the allocation of patients to non-informative doses [29, 30]. 
Reproduced with kind permission from [36]. 
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choosing the initial sample size, and then altering 
it on the basis of  data obtained at various interim 
analysis time points. The group sequential strat-
egy, which is also an adaptive design, begins with 
a large up-front sample size commitment and cuts 
back if  the accruing data suggest that the large 
sample size is not needed. The adaptive SSR strat-
egy proceeds in the opposite direction, starting 
out with a smaller initial sample size commitment 
but with the option to increase it should the ac-
cruing data suggest that such an increase is war-
ranted [32-35]. 

These methods apply equally to situations of 
unknown effect size δ or standard deviation σ (be-
tween subject variability). An illustrative example 
for unknown σ is shown in Figure 4. There are two 
ways to obtain the new sample size in the situa-
tion of  unknown σ: blinded and unblinded. In the 
instance of  blinded sample size re-estimation, the 
sponsor uses pooled data to estimate σ. This is 
permitted with no penalty to the analysis criteria 
(that is, alpha, or the probability of  Type I (false 
positive) error). For unblinded sample size re-es-
timation, the sponsor sets up a mechanism (pos-
sibly with the DMC) whereby the SSR is based on 
an unblinded estimate of  variability at the interim 
analysis. Sample size may be altered one or more 
times, but the maximum statistical information 
must be pre-specified.

 MOVING FORWARD WITH  
INNOVATIVE CLINICAL TRIAL DESIGNS
Because they are so flexible, these new trial de-

signs require significant statistical analyses, simu-
lations and logistical considerations to verify their 
operating characteristics, and therefore tend to 
require more time for the planning and protocol 

development phase. Regulatory agencies and insti-
tutional review boards also need to approve the 
design format for interim analysis, and these dis-
cussions can sometimes take considerable time. 
Maximizing the use of  all potential prior infor-
mation requires greater collaboration across func-
tional silos in organizations to avoid compart-
mentalization of  data, and lack of  common data 
standards may prevent the optimal integration 
of  disparate sources of  data. These problems are 
compounded by competitive hurdles to sharing 
what is considered proprietary information about 
novel therapies that may prevent the exchange of 
data. Overcoming internal resistance and aver-
sion to change also represents a major hurdle for 
incorporating the prospective use of  novel trial 
designs and methodologies, and modelling and 
simulation, into clinical development programs. 
Greater awareness of  the distinct advantages of 
innovative designs by regulators and sponsors are 
crucial to increasing the adoption of  these mod-
ern tools.
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If the sample size is not increased, the power
at the final analysis would be 64%

Interim
analysis

sample size
re-estimation

Sample size re-estimation

Final analysis

Control

Active
Learning

LPFV

δ =0.375
Power = 90%

σ = 1.4
n = 295

δ =0.375
Power = 90%

σ = 1.0
n = 150

Enrollment

Fig. 4 | Re-estimating sample size 
while maintaining statistical power. 
Hypothetical example of a study in 
which sample size re-estimation due 
to uncertainty about δ led to increase 
in sample size to ensure 90% power 
was maintained. At the beginning of 
the trial, the planned sample size was 
estimated at 150 patients based on 
a standard deviation of 1.0. At the 
interim analysis, the actual standard 
deviation was 1.4. Even though the 
effect size was as originally predicted, 
an increase in sample size to 295 
patients would be required to 
maintain 90% power. Without the 
sample size re-estimation, the power 
at the final analysis would only be 
64% and there would be much 
greater risk of a failed trial. 
LPFV: last patient first visit. 
Reproduced with kind permission from 
[36].
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