ISTITUTO SUPERIORE DI SANITÀ

La qualità ambientale del Fosso della Casaccia (Roma). Valutazione dell'impatto ecologico dello scarico di acque reflue del Centro Ricerche ENEA "Casaccia"

A cura di Paolo Formichetti (a), Josè Giancarlo Morgana (b), Giulio Izzo (b) e Laura Mancini (a)

> (a) Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Roma (b) ENEA, Centro Ricerche Casaccia, Roma

> > ISSN 1123-3117

Rapporti ISTISAN 08/20

Istituto Superiore di Sanità

La qualità ambientale del Fosso della Casaccia (Roma). Valutazione dell'impatto ecologico dello scarico di acque reflue del Centro Ricerche ENEA "Casaccia".

A cura di Paolo Formichetti, Josè Giancarlo Morgana, Giulio Izzo e Laura Mancini 2008, 70 p. Rapporti ISTISAN 08/20

Lo studio, frutto di un accordo tra Istituto Superiore di Sanità ed ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente), ha riguardato la valutazione degli effetti sul Fosso della Casaccia di una serie di scarichi provenienti dall'adiacente, omonimo, Centro di Ricerche ENEA (CRE). L'effetto di tali scarichi, comprendenti le acque nere del centro e i reflui di un impianto di trattamento e stoccaggio di rifiuti a bassa radioattività, sull'ecosistema del corpo idrico recettore è stato valutato rilevando una serie di parametri quali la struttura della comunità di macroinvertebrati bentonici, le caratteristiche chimiche e microbiologiche dei sedimenti e dell'acqua, la funzionalità dell'intero corso d'acqua oltre ad una serie di indicatori ecotossicologici. Tale approccio multi-disciplinare ha mostrato una generale compromissione dell'ecosistema in esame e ne ha sottolineato l'estrema fragilità anche in virtù della sua ridotta portata e, di conseguenza, di una scarsa capacità auto-depurativa, nonché di interventi di manutenzione che, se non pianificati adeguatamente da un punto di vista tecnico e stagionale, influenzano negativamente la qualità dell'ecosistema stesso.

Parole chiave: Centro Ricerche ENEA, Acque superficiali, Macroinvertebrati, Funzionalità fluviale, Analisi chimiche, Ecotossicologia

Istituto Superiore di Sanità

Environmental quality of the "Fosso della Casaccia" stream (Rome, Italy). Evaluation of the ecological impact of wastewaters from the ENEA Research Centre "Casaccia".

Edited by Paolo Formichetti, Josè Giancarlo Morgana, Giulio Izzo and Laura Mancini 2008, 70 p. Rapporti ISTISAN 08/20 (in Italian)

The study concerned the evaluation of ENEA Research Centre wastewaters' effect on the nearby stream "Fosso della Casaccia". These pollutants consist of black waters and low radioactivity substances. The effects on stream's ecosystem were evaluated using macroinvertebrate community structure, diatom community structure, chemical and microbiological analysis of sediments and water, stream's ecological functionality level, toxicological indicators. The results showed a general strong pollution degree of the ecosystem that could also reach a higher level due to the low flow of the stream (and consequent low self-depuration effect of the stream itself). Maintenance interventions, if not adequately planned, can also negatively influence the stream ecosystem.

Key words: ENEA Research Centre, Freshwaters, Macroinvertebrates, Chemical analysis, Eco-toxicology

Autori dei contributi del presente Rapporto.

Per l'ISS: Laura Mancini, Paolo Formichetti, Simone Ciadamidaro, Giorgio Pace, Elio Pierdominici, Anna Maria D'Angelo, Maria Elena Beltrami, Stefania Marcheggiani, Marcello Iaconelli, Valentina Della Bella, Camilla Puccinelli, Alida Leonardi, Francesca Ciutti, Francesca Anna Aulicino.

Per l'ENEA Casaccia: Giulio Izzo, Silvia Rosa, Josè Giancarlo Morgana, Giada Migliore, Amedeo Allegro, Silvia Procacci. Per la Provincia di Viterbo, Assessorato all'Ambiente: Paolo Andreani

Per l'Università della Tuscia (Viterbo): Giovanni Damiani

Per informazioni su questo documento scrivere a: laura.mancini@iss.it.

Il rapporto è accessibile online dal sito di questo Istituto: www.iss.it.

Citare questo documento come segue:

Formichetti P, Morgana JC, Izzo G, Mancini L. (Ed.). La qualità ambientale del Fosso della Casaccia (Roma). Valutazione dell'impatto ecologico dello scarico di acque reflue del Centro Ricerche ENEA "Casaccia". Roma: Istituto Superiore di Sanità; 2008. (Rapporti ISTISAN 08/20)

Presidente dell'Istituto Superiore di Sanità e Direttore responsabile: *Enrico Garaci* Registro della Stampa - Tribunale di Roma n. 131/88 del 1° marzo 1988

Redazione: *Paola De Castro, Sara Modigliani* e *Sandra Salinetti* La responsabilità dei dati scientifici e tecnici è dei singoli autori.

INDICE

ateriali e metodi	
Microbiologia	
Analisi chimico-fisiche in situ	
Analisi chimiche	
COD	
BOD5	
Cloruri	
Azoto totale	
Durezza totale	
Tensioattivi anionici	
Nitrati	
Ammonio	
Nutrienti	
Raccolta di macroinvertebrati bentonici e calcolo dell'IBE (Indice Biotico Esteso).	
Approccio ecosistemico: l'IFF (Indice di Funzionalità Fluviale)	
Ecotossicologia: valutazione della tossicità dei sedimenti	
Test di tossicità acuta con Vibrio fischeri	
Test di tossicità cronica con Heterocypris incongruens	
Criteri di valutazione della tossicità	
Diatomee bentoniche	
Campionamento delle diatomee e analisi di laboratorio	
sultati	
Microbiologia	
Chimica	
Nutrienti nelle acque	
IBE	
Descrizione delle comunità macrobentoniche tramite metriche	
IFF	
Ecotossicologia	
Diatomee bentoniche	

INTRODUZIONE

L'accordo stipulato tra l'Istituto Superiore di Sanità e l'ENEA ha comportato una valutazione dell'impatto provocato dallo scarico di acque contenenti i reflui di un impianto di trattamento e stoccaggio di rifiuti a bassa radioattività sullo stato ecologico del Fosso della Casaccia, corpo idrico recettore di suddetto scarico.

Lo studio, svolto nell'arco di 5 anni (2002-2006) ha previsto una fase iniziale avente come obiettivo una caratterizzazione dell'ambiente. A tale scopo sono state selezionate una serie di stazioni di campionamento lungo il Fosso della Casaccia e sono stati rilevati, con riferimento alla direttiva 2000/60/CE per la definizione dello stato ecologico dei fiumi, una serie di parametri ambientali. Pertanto sono stati presi in considerazione: i macroinvertebrati bentonici, le caratteristiche fisico chimiche e microbiologiche dei sedimenti e dell'acqua, la vegetazione presente sulle sponde e nell'alveo, la funzionalità del corso d'acqua e una serie di indicatori ecotossicologici. Questi parametri sono stati utilizzati anche nella successiva fase di monitoraggio iniziata subito dopo il primo scarico di reflui.

L'approccio multi-livello allo studio delle condizioni ecologiche dell'ecosistema recettore degli scarichi ha permesso di ricercare l'insorgere di alterazioni di diversa natura delle componenti biotiche e abiotiche di questi corsi d'acqua.

AREA DI STUDIO E DESCRIZIONE DELLE STAZIONI

Il Fosso della Casaccia nasce in località Pantanelle di sotto, nei pressi di Anguillara (Roma) e in corrispondenza del centro abitato di Galeria confluisce nel fiume Arrone, emissario del lago di Bracciano. Il Fosso è alimentato principalmente da acque sorgive, acque di drenaggio provenienti dai terreni circostanti e da acqua piovana e presenta quindi un regime variabile e stagionale. Poco prima di immettersi nell'Arrone, il Fosso della Casaccia scorre lungo il confine ovest del Centro di Ricerca ENEA-Casaccia (CRE) (Figura 1).

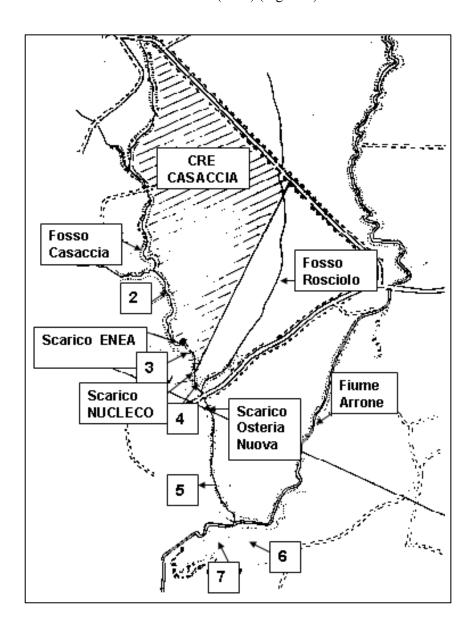


Figura 1. Localizzazione delle stazioni di campionamento prima dell'allaccio dello scarico del CRE Casaccia al depuratore di Osteria Nuova e prima dello spostamento dello Scarico Nucleco

Nell'arco dello studio l'ubicazione degli scarichi provenienti dal Centro di Ricerca è variata. Fino ad ottobre 2002 il Fosso riceveva sia uno scarico proveniente da un depuratore interno allo stesso centro di ricerche (e dedicato al trattamento di acque nere), che uno scarico proveniente da un impianto di trattamento di rifiuti a bassa radioattività (Nucleco). A partire dall'ottobre 2002 lo scarico del depuratore interno al centro è stato allacciato al depuratore di Osteria Nuova i cui scarichi vengono riversati nel Fosso della Casaccia più a valle, poco prima della confluenza con il Fosso Rosciolo. Nel tratto più a monte del Fosso il Centro ha continuato a riversare acque bianche di varie provenienze (impianti di raffreddamento, ecc.). All'inizio del 2003 anche lo scarico della Nucleco è stato spostato più a valle arrivando a immettersi nel Fosso in prossimità dello scarico del Depuratore di Osteria Nuova (Figura 2).

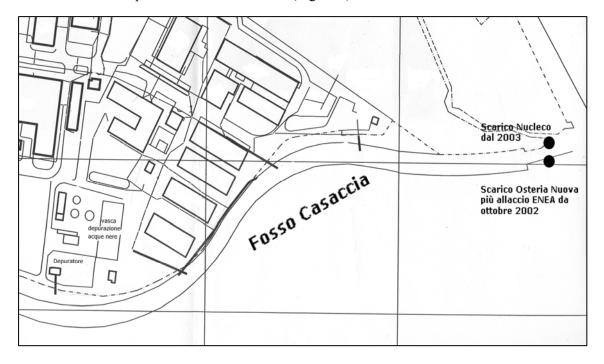


Figura 2. Localizzazione degli scarichi a partire da ottobre 2002 (allaccio acque ENEA al depuratore di Osteria Nuova) e inizio 2003 (scarico Nucleco)

Lungo il Fosso sono stati selezionate 4 stazioni di campionamento numerate, dal 2 al 5 (la stazione 1 è stata eliminata durante lo studio) (Figura 1). Altre due stazioni sono state individuate lungo il fiume Arrone, rispettivamente a monte (stazione 6) e a valle (stazione 7) dell'immissione del Fosso della Casaccia.

La stazione 2 è stata scelta a monte dello scarico del depuratore della Casaccia, così come era posizionato fino ad ottobre 2002. In questo punto il fosso, che presenta una larghezza dell'alveo bagnato di circa 1 m e dell'alveo di piena di circa 2,5 m, scorre adiacente alla recinzione del centro di ricerca (situato in sinistra idrografica). La sponda sinistra risulta così caratterizzata da una cementificazione che si spinge nelle vicinanze dell'alveo, mentre la sponda destra è più naturale e l'ambiente circostante è costituito da campi incolti. La vegetazione riparia interessa quindi esclusivamente la sponda destra con prevalenza di pioppi (*Populus* sp.) e rovi, mentre in alveo dominano il canneto (*Typha latifolia*) e il giunco acquatico, che determinano una sostenuta ritenzione del detrito organico, costituito da materiale grossolano e

frammenti fibrosi. La velocità della corrente è quasi impercettibile e il substrato è prevalentemente sabbioso e limoso con presenza di un sottile feltro incrostante.

La stazione 3, subito a valle dello scarico citato prima, presenta le stesse caratteristiche della stazione precedente, distando da questa solo pochi metri. Il substrato in alveo è prevalentemente ghiaioso ed è rilevabile una localizzata presenza di anaerobiosi sul fondo.

La stazione 4 si trova alcune decine di metri a valle dello scarico Nucleco così come ubicato fino a fine 2002. In questo tratto il fosso scorre fra campi incolti (in sinistra idrografica) e campi coltivati (in destra) e non presenta manufatti artificiali né lungo le sponde, né sul fondo. La larghezza dell'alveo bagnato è di circa 2 m, mentre quello di piena è circa 6 m. La vegetazione riparia è costituita anche in questa stazione da pioppi (*Populus* sp.) e rovi, mentre nell'alveo il canneto (*Typha latifolia*) provoca una moderata ritenzione del detrito organico costituito prevalentemente da frammenti fibrosi e, in misura minore, da frammenti polposi. Il flusso idrico ha una velocità laminare, il substrato del fondo è, in ordine di prevalenza, ghiaioso e sabbioso, si riscontra un sottile feltro incrostante e non si notano condizioni di anaerobiosi sul fondo. Tale stazione è stata traslata, ad aprile 2003, di una ventina di metri verso valle (dopo il ponte sulla s.s. Braccianense) a seguito dello spostamento dello scarico delle acque nere del Centro e di quello della Nucleco e della nuova ubicazione dei relativi scarichi.

La stazione 5, posta a valle di una cascatella, si trova in un tratto del fosso caratterizzato da un ambiente circostante molto naturale, costituito da un'ampia fascia di vegetazione riparia arborea e arbustiva, sia in destra che in sinistra idrografica. Tale vegetazione è costituita da aceri, lecci (*Quercus ilex*), alberi di fico (*Ficus carica*), rovi e cespugli di belladonna (*Atropa belladonna*), mentre l'alveo è caratterizzato dalla presenza di callitrice, veronica (*Veronica* sp.) e giunco acquatico. La larghezza dell'alveo bagnato è di circa 3 m mentre è di 5 m quella dell'alveo di piena. La velocità della corrente è media con limitata turbolenza, e il substrato è prevalentemente roccioso con zone sabbiose nei tratti di deposito. La materia organica si presenta in strutture prevalentemente grossolane, con limitata presenza di frammenti polposi. La ritenzione è scarsa, l'anaerobiosi sul fondo assente, gli organismi incrostanti costituiscono un feltro sottile.

La localizzazione delle stazioni è stata progettata all'inizio dello studio in maniera da valutare gli effetti del depuratore dell'ENEA (stazioni 2 e 3), dei reflui della Nucleco (stazione 4) e per valutare le capacità autodepurative del corso d'acqua (stazione 5). Nel corso dello studio la localizzazione della stazione 4 è stata variata per valutare l'effetto congiunto dello scarico Nucleco e dello scarico del depuratore di Osteria Nuova (comprendente le acque nere della Casaccia).

MATERIALI E METODI

Microbiologia

Per la definizione della qualità delle acque dal punto di vista microbiologico sono stati ricercati i seguenti microrganismi indicatori di contaminazione fecale, la cui presenza è indice di una probabile presenza di patogeni:

- Coliformi totali
- Escherichia coli
- Enterococchi

I campioni di acqua per le analisi microbiologiche sono stati prelevati in bottiglie sterili, riposti in frigoriferi portatili a 4 °C e trasportati in laboratorio. Le analisi sono state effettuate entro le 24 ore successive.

La tecnica utilizzata per tutti i parametri è stata quella delle membrane filtranti. Con questa tecnica i microrganismi presenti in un campione d'acqua vengono filtrati attraverso membrane costituite da dischi di esteri di cellulosa con pori aventi diametro di 0,45 µm. Le membrane vengono successivamente poste in capsule Petri contenenti terreno di coltura agarizzato che permette, dopo un adeguato periodo di incubazione a temperatura idonea, lo sviluppo di colonie batteriche sulla superficie della membrana.

Poiché non è possibile determinare il numero di cellule batteriche dalle quali si è sviluppata una singola colonia, i risultati vengono espressi come "unità formanti colonia" (UFC). Per ogni campione si sono filtrate diverse aliquote (1 mL, 10⁻¹ mL, 10⁻² mL) ed i risultati ottenuti sono stati riportati a 100 mL.

I terreni utilizzati per isolamento dei ceppi, preparati seguendo le istruzioni delle ditte produttrici, sono di seguito elencati:

- T.B.X MEDIUM, Oxoid: terreno reidratato con acqua distillata, scaldato a bagnomaria per la completa dissoluzione, sterilizzazione a 121 °C per 15 min., piastrato in capsule Petri; semina del campione ed incubazione a 44 °C per 24 h;
- M-ENDO AGAR LES (paradosaniline cloruro): Merck, reidratazione con acqua distillata scaldato a bagnomaria fino a completa dissoluzione, piastrato in capsule di Petri; semina del campione ed incubazione a 37 °C per 48 h;
- ENTEROCOCCUS AGAR BASE AND SLANETZ E BARTELY: Merck (sb), reidratato con acqua distillata, scaldato a bagnomaria fino a completa dissoluzione, sterilizzato in autoclave a 121 °C per 15 min., piastrato in capsule di petri; semina del campione ed incubazione a 37 °C per 24 h.

Analisi chimico-fisiche in situ

Sono state effettuate sul campo (in coincidenza con le date dei campionamenti) misurazioni di pH, conducibilità, temperatura e ossigeno disciolto utilizzando le seguenti sonde portatili della ditta WTW:

- pH 330i/SET (2B20-0011)
- Oxi 330/SET (2A20-10111)
- Cond. 3158i/SET (2C10-0011)

Analisi chimiche

COD

La domanda chimica d'ossigeno COD (*Chemical Oxygen Demand*) corrisponde alla quantità d'ossigeno proveniente da bicromato potassico, la quale reagisce sulle condizioni del procedimento specificato con le sostanze ossidabili contenute in 1 L di acqua. Pertanto si procede con l'ossidazione del campione di acqua con soluzione solforica calda di bicromato potassico e solfato d'argento come catalizzatore. Il cloruro viene mascherato dal solfato di mercurio. Quindi si procede con la determinazione fotometrica della concentrazione degli ioni gialli di $Cr_2O_7^{2-}$ non consumati leggendo alla lunghezza d'onda di 348 nm in un intervallo di misura compreso tra 4,0-40,0 mg/L di COD.

BOD5

La domanda biologica di ossigeno BOD5 (*Biological Oxygen Demand*) misura la frazione di ossigeno disciolto (in mg/L) utilizzata da una popolazione microbica eterogenea per metabolizzare, in condizioni specifiche di temperatura, il materiale organico biodegradabile presente in una quantità d'acqua. Poiché la completa biodegradazione della sostanza organica richiederebbe un periodo troppo lungo (circa 20 giorni), nella pratica tale periodo viene ridotto a 5 giorni. In questo studio l'analisi è stata svolta sempre a partire dal giorno di campionamento dell'acqua, utilizzando il sistema Oxitop della WTW, basato sulla misura di variazione di pressione effettuata attraverso l'uso di un sensore elettronico di pressione.

Cloruri

Gli ioni cloruro reagiscono con il tiocianato di mercurio (II) per formare cloruro mercuroso scarsamente dissociato. Il tiocianato liberatosi forma con gli ioni Fe (III) il rosso tiocianato ferrico, la cui concentrazione viene determinata fotometricamente alla lunghezza d'onda di 468 nm in un intervallo di misura compreso tra 5 e 125 mg/L di Cl-. Il procedimento è analogo a EPA 325,1 + 2 ed US Standard Methods 4500-Cl-.

Azoto totale

Composti di azoto organici ed inorganici vengono trasformati in nitrato secondo il metodo di Koroleff attraverso il trattamento con un agente ossidante in termoreattore. In presenza di acido solforico concentrato, il nitrato reagisce con un derivato dell'acido benzoico formando un nitrocomposto di colore rosso intenso, il quale viene determinato spettrofotometricamente alla lunghezza d'onda di 517 nm in un intervallo di misura compreso tra 0,5 –15,0 mg/L di Azoto.

Durezza totale

La durezza (totale) di un'acqua trae origine dal suo contenuto in sali dei metalli alcaliniterrosi: calcio, magnesio, stronzio e bario (generatori di durezza). Solitamente stronzio e bario sono presenti nelle acque in tracce, pertanto la durezza viene definita come contenuto di un'acqua in ioni calcio (Ca++) e ioni magnesio (Mg++). Solitamente per l'indicazione della durezza si fa riferimento al solo calcio, cioè anche il contenuto di ioni Mg++ viene espresso come contenuto in calcio. Il calcio e il magnesio reagiscono in soluzione alcalina con porpora ftaleina formando un colorante violetto, che viene determinato fotometricamente alla lunghezza d'onda di 574 nm, in un intervallo di misura compreso tra 5-150 mg/L di calcio. Utilizzando un agente selettivo di mascheramento si può differenziare tra calcio e magnesio.

Tensioattivi anionici

I tensioattivi anionici di tipo solfonati e solfati formano con la sostanza colorante cationica blu di metilene una coppia ionica, che viene estratta selettivamente con cloroformio. Il colore azzurro della fase cloroformica viene determinato fotometricamente alla lunghezza d'onda di 653 nm in un intervallo di misura compreso tra 0,05-2,00 mg/L MBAS (Sostanze Attive al Blu di Metilene).

Nitrati

I nitrati, in presenza di cloruro in soluzione di acido solforico fortemente acida, formano con resorcina un colorante indofenolico violetto-rosso, il quale viene determinato fotometricamente alla lunghezza d'onda di 505 nm in un intervallo di misura compreso tra 0,5-13 mg/L di NO₃

Ammonio

Dopo alcalinizzazione a pH 13 (con il reattivo NH4-1B) l'ammoniaca reagisce con l'ipoclorito (reattivo NH4-2B) per dare monocloramina che in una reazione catalizzata in due tempi forma con timolo (reattivo NH4-3B) un indofenolo azzurro la cui concentrazione viene determinata fotometricamente alla lunghezza d'onda di 690 nm in un intervallo di misura compreso tra 0.01-3.90 mg/L di NH4+.

Nutrienti

La determinazione dei nutrienti nelle acque è stata effettuata impiegando una strumentazione, progettata dalla *Lachat Chemicals Inc. Instrument*, che utilizza la tecnica del *Flow Injection Analisys* (FIA) ed il sistema automatizzato per l'analisi spettrofotometrica di campioni di acqua *Easy Chem Plus Systea*.

La FIA è un tipo di analisi a flusso continuo che utilizza analiticamente lo scorrere continuo di un fluido, non segmentato da bolle d'aria, nel quale vengono iniettati volumi altamente riproducibili di campione che vengono mescolati con i reattivi (descritti di seguito) e determinati spettrofotometricamente.

L'applicazione di questo principio all'analisi automatica rende il sistema veloce, preciso, accurato, estremamente versatile e semplice da adoperare. Questa tecnica può essere considerata un ibrido degli analizzatori a flusso segmentato (SFA) e della cromatografia ad alta risoluzione (HPLC).

Determinazione del fosforo come ortofosfato

Metodo: QuikChem n.11-115-01-1-B; EASY Phosphate 365.1-01 Range: 0.002-0.1 mg P-PO43-/L; 0.002-0.2 mg P-PO43-/L

Principio: lo ione ortofosfato (PO43-) reagisce, in condizioni acide, con l'ammonio molibdato e con l'antimonio potassio tartrato per formare il complesso antimonio-1, 2-fosforo

molibdeno acido. Questo complesso è ridotto con acido ascorbico per formare un acido eteropolare blu (blu di molibdeno). L'assorbanza del complesso blu proporzionale alla concentrazione di ortofosfato nel campione è misurata a 660 nm o 880 nm.

Determinazione dell'Azoto: Nitrati + Nitriti, Nitriti

Metodo: QuickChem n. 11-107-04-1-C; Easy Nitrate 353.2-01; Easy Nitrite 351.1-01 Range: 0.02-2.0 mg N- NO2- o N-NO3- /L; 0.007 - 0.3 mg N -NO2- /L; 0.1-5.0 mg/L

come NO3-

Principio: I nitrati vengono quantitativamente ridotti a Nitriti tramite il passaggio dei campioni attraverso una colonnina di Cadmio copperizzato.

Gli ioni nitrito (Nitrati ridotti più i Nitriti originali) reagiscono con la sulfanilamide in ambiente acido per formare un diazo-composto che complessa con N-(1-naphthyl)ethylendiamina diidrodicloro per formare un composto rosso magenta che viene letto ad una lunghezza d'onda di 520 nm/540nm:

I Nitriti, da soli, vengono determinati rimuovendo la colonnina di Cadmio. I Nitrati, invece, per semplice differenza: Nitrati + nitriti meno i Nitriti.

Determinazione dell'Azoto Ammoniacale

Metodo: QuickChem n° 11-107-06-1-A; Easy Ammonia 349-01

Range: 0.1-20 mg N-NH3 /L; 0.06-0.3 mg N-NH3

Principio: La procedura automatizzata per la determinazione dell'azoto ammoniacale in acqua di mare è basata sulla reazione di Berthelot. In soluzione alcalina l'ammoniaca reagisce con ipoclorito di sodio per formare monocloroammina che, in presenza di fenolo, di un opportuno catalizzatore (Sodio Nitroprussiato) e di un eccesso di Ipoclorito, forma un complesso colorato noto come Blu di Indofenolo. L'assorbanza del prodotto di reazione, misurata a 630 nm/ 660 nm, è direttamente proporzionale alla concentrazione originale di ammoniaca del campione.

Raccolta di macroinvertebrati bentonici e calcolo dell'IBE (Indice Biotico Esteso)

La raccolta di macroinvertebrati bentonici è stata effettuata al fine di calcolare l'Indice Biotico Esteso (IBE), strumento essenziale per valutare la qualità biologica delle acque superficiali.

Per il campionamento di macroinvertebrati è stata usata una draga a mano di dimensioni standard (25 x 40 cm e 20 maglie per centimetro) per un tempo di tre minuti. Il fosso è stato dragato, avendo cura di coprire tutti i microhabitat presenti nell'area in esame, da una sponda all'altra, utilizzando la tecnica del *kick sampling*, consistente nell'appoggiare la draga sul fondo, con l'imboccatura rivolta controcorrente, e nello smuovere il substrato con i piedi in modo da permettere agli organismi rimossi di essere convogliati in rete. Il materiale raccolto in ogni stazione è stato di volta in volta posto in una vaschetta di plastica a fondo bianco ed esaminato in vivo per poter dare un primo giudizio sulla composizione faunistica della stazione. I vari campioni sono stati poi imbustati in sacchetti di polietilene, fissati con alcool al 90%, cartellinati e trasportati in laboratorio per lo smistamento.

Il materiale, una volta portato in laboratorio, è stato sciacquato accuratamente sopra un setaccio per eliminare l'alcool e i sedimenti più sottili. Gli elementi più grossolani come foglie, ramoscelli e ciottoli sono stati eliminati dopo essere stati accuratamente osservati per

raccogliere eventuali organismi rimasti attaccati ad essi. Piccole frazioni di materiale venivano poi versate in una bacinella bianca assieme ad un piccolo quantitativo d'acqua avendo cura di distribuire il sedimento omogeneamente sul fondo del contenitore a formare un sottile strato nel quale fosse facile individuare e raccogliere gli organismi. La raccolta è stata effettuata manualmente utilizzando pinzette morbide e gli organismi raccolti, suddivisi nei *taxa* superiori di appartenenza, sono stati posti in provette singole contenenti alcool al 70% e cartellinate. La determinazione degli organismi è stata effettuata con l'ausilio di guide per il riconoscimento dei macroinvertebrati delle acque dolci (CNR, 1976-1984; Tachet *et al.*, 1987; Campaioli *et al.*, 1994; Sansoni, 1988).

L'IBE (Ghetti, 1995; Ghetti, 1997) è un metodo che fornisce una valutazione sintetica della qualità biologica di un corso d'acqua basandosi sulla composizione della comunità di macroinvertebrati bentonici. Esso deriva da un analogo metodo inglese proposto da Woodwiss (1978), l'EBI (*Extended Biotic Index*), del quale rappresenta l'adattamento alla realtà ambientale italiana. Il punteggio assegnato tramite l'IBE può essere tradotto in cinque classi di qualità, ognuna rappresentabile con un colore. Questa informazione, opportunamente trasferita su base cartografica, consente di ottenere una zonazione dell'asta fluviale in funzione dello stato di qualità ambientale di immediata fruibilità e di grande sintesi, utile sia alla programmazione degli interventi risanatori che ad una corretta pianificazione del sistema di monitoraggio che infine a una valutazione, nel tempo, dell'efficacia di eventuali interventi risanatori. In seguito alla determinazione del materiale raccolto viene compilata una lista faunistica generale e si procede all'applicazione dell'IBE. Questo indice richiede una determinazione sistematica dei macroinvertebrati fino al livello tassonomico, stabilito sperimentalmente, di genere o famiglia che è diverso a seconda dei gruppi e che serve a definire le "US" (US) (Tabella 1).

Tabella 1. Limiti obbligati per la definizione delle US (modif. da Ghetti, 1997)

Gruppi faunistici	Livelli di determinazione tassonomica per definire le US
PLECOTTERI	Genere
TRICOTTERI	Famiglia
EFEMEROTTERI	Genere
COLEOTTERI	Famiglia
ODONATI	Genere
DITTERI	Famiglia
ETEROTTERI	Famiglia
CROSTACEI	Famiglia
GASTEROPODI	Famiglia
BIVALVI	Famiglia
TRICLADI	Genere
IRUDINEI	Genere
OLIGOCHETI	Famiglia
MEGALOTTERI	Presenza
PLANIPENNI	Presenza
NEMATOMORFI	Presenza
NEMERTINI	Presenza

Si fa poi riferimento ad una Tabella (Tabella 2) costruita considerando verticalmente il numero totale delle US raccolte ed orizzontalmente il grado decrescente di sensibilità all'inquinamento dei vari *taxa*. Gli ingressi orizzontale e verticale vengono quindi scelti rispettivamente in corrispondenza del *taxon* più sensibile raccolto in un determinato sito e del numero totale delle Unità sistematiche presenti e determinano nel loro punto di congiunzione il

valore dell'indice. Da questo valore si risale, mediante la Tabella 3, alla classe di qualità che va da I (acque non inquinate) a V (acque fortemente inquinate) e che può essere rappresentata cartograficamente mediante diversi colori o tratteggi convenzionali.

Tabella 2. Tabella per il calcolo del valore di IBE (modificato da Ghetti, 1997)

determinano c	Gruppi faunistici che determinano con la loro presenza l'ingresso orizzontale in tabella			· · · · · · · · · · · · · · · · · · ·						
	ingresso)	0-1	2-5	6-10	11-15	16-20	21-25	26-30	31-35	36-
Plecotteri (Leuctra °)	Più di una US Una sola US			8 7	9 8	10 9	11 10	12 11	13* 12	14* 13*
Efemerotteri (Baetidae Caenidae °°)	Più di una US Una sola US		 	7 6	8 7	9 8	10 9	11 10	12 11	
Tricotteri	Più di una US Una sola US		5 4	6 5	7 6	8 7	9 8	10 9	11 10	
Gammaridi, Atiidae e Palemonidae	Tutte le US sopra assenti		4	5	6	7	8	9	10	
Asellidi	Tutte le US sopra assenti		3	4	5	6	7	8	9	
Oligocheti o Chironomidi	Tutte le US sopra assenti	1	2	3	4	5				
Tutti i <i>taxa</i> precedenti assenti	Tutte le US sopra assenti	0	1							

⁻⁻ giudizio dubbio, per errore di campionamento, per presenza di organismi di *drift* non scartati dal computo, per ambiente non colonizzato adeguatamente, per tipologia non valutabile con l'indice (es. sorgenti, acque di scioglimento di nevai, acque ferme, zone deltizie, salmastre).

Tabella 3. Conversione dei valori di IBE in classi di qualità, con relativo giudizio e colore standard per la rappresentazione cartografica (modificato da Ghetti, 1997)

Classi di qualità	Valore dell'IBE	Giudizio	Colore
Classe I	10-11-12	Ambiente non inquinato o non alterato in modo sensibile	Azzurro
Classe II	8-9	Ambiente in cui sono evidenti alcuni effetti dell'inquinamento	Verde
Classe III	6-7	Ambiente inquinato o comunque alterato	Giallo
Classe IV	4-5	Ambiente molto inquinato o comunque molto alterato	Arancio
Classe V	1-2-3	Ambiente fortemente inquinato o fortemente alterato	Rosso

^{*} questi valore di indice vengono raggiunti raramente nelle acque correnti italiane per cui occorre prestare attenzione, sia nell'evitare la somma di biotipologie (incremento artificioso della ricchezza in *taxa*), che nel valutare eventuali effetti prodotti dall'inquinamento, trattandosi di ambienti con una naturale elevata ricchezza in *taxa*.

[°] nelle comunità in cui Leuctra è presente come unico taxon di Plecotteri e sono contemporaneamente assenti gli Efemerotteri (o presenti solo Baetidae e Caenidae), Leuctra deve essere considerata al livello dei Tricotteri per definire l'entrata orizzontale in Tabella.

ººº per la definizione dell'ingresso orizzontale in Tabella le famiglie Baetidae e Caenidae vengono considerate a livello dei Tricotteri.

Approccio ecosistemico: l'IFF (Indice di Funzionalità Fluviale)

Gli indici biotici, pur considerando la complessità biologica delle comunità delle specie indicatrici, tengono in considerazione, per la valutazione della qualità ambientale, un ristretto numero di variabili. Sono state quindi sviluppate metodologie di valutazione che prendessero in esame il maggior numero possibile di variabili e che fossero quindi in grado di descrivere la situazione ecologica considerando le relazioni tra il sistema reico e l'intero bacino idrografico circostante, con un approccio quindi sempre più ecosistemico.

In questa nuova ottica vengono ad assumere importanza, per una valutazione della qualità ambientale, tutta una serie di fattori, quali ad esempio l'uso del territorio circostante, gli input energetici alloctoni, la strutture delle rive, che non vengono presi in considerazione dagli indici biotici.

Alcuni indici, che prendono in considerazione quanto sopra detto sono stati messi a punto dall'Agenzia Nazionale per la Protezione dell'Ambiente: tra questi l'IFF (ANPA, 2000) sembra essere maggiormente adattabile alla situazione dei corsi d'acqua italiani. La scheda dell'IFF è stata elaborata per una maggiore aderenza con la realtà dei corsi d'acqua italiani ed è composta da 14 domande (riassunte nella Tabella 4) che trattano argomenti relativi allo stato naturale del corso d'acqua e legati tra loro in modo tale da rendere bilanciata la scheda.

Le prime quattro domande riguardano le condizioni vegetali delle rive e del territorio, in cui si valutano le diverse tipologie strutturali degli elementi che condizionano l'ambiente fluviale. Le due successive trattano la struttura fisica e morfologica delle rive poiché direttamente correlate alle caratteristiche di tipo idraulico. Le domande che vanno dalla sette alla undici si riferiscono alla struttura dell'alveo bagnata, attraverso l'individuazione delle tipologie collegate con la capacità autodepurativa di un corso d'acqua. Le ultime tre domande si riferiscono alle caratteristiche biologiche come la struttura delle popolazioni di piante acquatiche e macrobenthos e la conformazione del detrito, in quanto considerato input energetico che può condizionare la struttura dei viventi, agendo sulla catena trofica dell'ecosistema. La compilazione della scheda termina con il calcolo della somma dei pesi corrispondenti alle risposte individuate con un punteggio o "score" che va da 14 (valore minimo) a 300 (valore massimo). Il punteggio finale è stato tradotto in cinque classi di funzionalità (da I a V), con possibili situazioni intermedie che garantiscono un passaggio da una classe alla successiva in modo graduale (Tabella 5). Ad ogni classe è stato poi associato un colore ai fini della redazione di mappe di funzionalità.

Tabella 4. Scheda per l'applicazione dell'IFF

Condizioni	Riva sx	Riva dx
1) Stato del territorio circostante		
a) Foreste e boschi	25	25
b) Prati, pascoli, boschi, pochi arativi e incolti	20	20
c) Colture stagionali in prevalenza e/o arativi misti e/o colture permanenti; urbanizzazione rada	5	5
d) Aree urbanizzate	1	1
2) Vegetazione presente nella fascia perifluviale primaria		
a) Formazioni arboree riparie	30	30
b) Formazioni arbustive riparie (saliceti arbustivi) e/o canneto	25	25
c) Formazioni arboree non riparie	10	10
2bis) Vegetazione presente nella fascia perifluviale secondaria		
a) Formazioni arboree riparie	20	20
b) Formazioni arbustive riparie (saliceti arbustivi) e/o canneto	15	15
c) Formazioni arboree non riparie	5	5
d) Vegetazione arbustiva non riparia o erbacea o assente	1	1
3) Ampiezza della fascia di vegetazione perifluviale arborea e arbustiva		
a) Fascia di vegetazione perifluviale > 30 m	20	20
b) Fascia di vegetazione perifluviale 5-30 m	15	15
c) Fascia di vegetazione perifluviale 1-5 m	5	5
d) Fascia di vegetazione perifluviale assente	1	1
4) Continuità della fascia di vegetazione perifluviale arborea e arbustiva	0.0	
a) Senza interruzioni	20	20
b) Con interruzioni	10	10
c) Interruzioni frequenti o solo erbacea continua e consolidata	5	5
d) Suolo nudo o vegetazione erbacea rada	1	1
5) Condizioni idriche dell'alveo		
a) Larghezza dell'alveo di morbida inferiore al triplo dell'alveo bagnato		20
b) Alveo di morbida maggiore del triplo dell'alveo bagnato		15
c) Alveo di morbida maggiore del triplo dell'alveo bagnato con fluttuazioni		5
di portata frequenti		
6) Conformazione delle rive		
a) Con vegetazione arborea e/o massi	25	25
b) Con erbe e arbusti	15	15
c) Con sottile strato erboso	5	5
d) Rive nude	1	1
7) Strutture di ritenzione degli apporti trofici		
a) Alveo con grossi massi e/o tronchi stabilmente incassati o presenza		25
di fasce di canneto o idrofite.		15
b) Massi e/o rami presenti con deposito di sedimento (o canneto o idrofite rade	;	15
e poco estese)		5
c) Strutture di ritenzione libere e mobili con le piene		1
 d) Alveo di sedimenti sabbiosi privo di alghe, o sagomature artificiali lisce a corrente uniforme 		Į.
8) Erosione		
a) Poco evidente e non rilevante	20	20
b) Solamente nelle curve e/o nelle strettoie	15	15
c) Frequente con scavo delle rive e delle radici	5	5
d) Molto evidente con rive scavate e franate o presenza di interventi artificiali	1	1
9) Sezione trasversale	•	
a) Naturale		15
b) Naturale con lievi interventi artificiali		10
c) Artificiale con qualche elemento naturale		5
		_

Condizioni	Riva sx	Riva dx
10) Fondo dell'alveo a) Diversificato e stabile b) A tratti movibile c) Facilmente movibile	2	-
 11) Raschi, pozze o meandri a) Ben distinti e ricorrenti b) Presenti a distanze diverse e con successione irregolare c) Lunghe pozze che separano corti raschi o viceversa, pochi meandri d) Meandri raschi e pozze ssenti, percorso raddrizato 		_
 12) Componente vegetale in alveo bagnato in acque a flusso turbolento a) Periphyton rilevabile solo al tatto e scarsa copertura di macrofite b) Periphyton scarsamente sviluppato e copertura macrofitica limitata c) Periphyton discreto o scarsamente sviluppato con elevata copertura di macrofite d) Periphyton spesso, o discreto con elevata copertura di macrofite 		
 12 bis) Componente vegetale in alveo bagnato in acque a flusso laminare a) Periphyton poco sviluppato e scarsa copertura di macrofite tolleranti b) Periphyton discreto con scarsa copertura di macrofite tolleranti, o scarsamente sviluppato con limitata copertura di macrofite tolleranti c) Periphyton discreto o poco sviluppato con significativa copertura di macrofite tolleranti d) Periphyton spesso e/o elevata copertura di macrofite tolleranti 		-
 13) Detrito a) Frammenti vegetali riconoscibili e fibrosi b) Frammenti vegetali fibrosi e polposi c) Frammenti polposi d) Detrito anaerobico 		-
14) Comunità macrobentonica a) Ben strutturata e diversificata, adeguata alla tipologia fluviale b) Sufficientemente diversificata ma con struttura alterata rispetto a quanto atteso a) Page aquilibrata e diversificata con prevelenza di tova tellerenti	2 1	0
 c) Poco equilibrata e diversificata con prevalenza di taxa tolleranti all'inquinamento d) Assenza di una comunità strutturata; presenza di pochi taxa tutti piuttosto tolleranti all'inquinamento 		5 1

Tabella 5. Conversione dei valori di IFF in classi di funzionalità, con relativo giudizio e colore standard per la rappresentazione cartografica

Valore dell'IFF	Classe di funzionalità	Giudizio di funzionalità	Colore	
261-300	I	ottimo	Blu	
251-260	I-II	ottimo-buono	blu-verde	
201-250	II	buono	Verde	
181-200	11-111	buono-mediocre	verde-giallo	
121-180	III	mediocre	Giallo	
101-120	III-IV	mediocre-scadente	giallo-arancio	
61-100	IV	scadente	Arancio	
51-60	IV-V	scadente-pessimo	arancio-rosso	
14-50	V	pessimo .	Rosso	

Ecotossicologia: valutazione della tossicità dei sedimenti

Negli ambienti acquatici i sedimenti costituiscono il maggiore deposito per le sostanze inquinanti che dall'ambiente circostante vengono immesse nelle acque sia in modo diffuso che puntiforme e, nel contempo, costituiscono anche l'habitat per numerosi organismi acquatici. Gli inquinanti, ripartiti tra la fase solida e l'acqua dei pori interstiziali dei sedimenti, si possono rendere biodisponibili e, quindi, potenzialmente in grado di causare effetti tossici alla componente biotica degli ecosistemi acquatici. Tali effetti sono difficilmente valutabili mediante le analisi chimiche dei sedimenti che, nonostante forniscano informazioni dettagliate sulla presenza e concentrazione di sostanze tossiche, non sono sufficienti alla definizione della loro tossicità.

I saggi ecotossicologici forniscono una metodologia che consente una misura diretta e quantificabile della tossicità dei sedimenti: essi prevedono l'esposizione di alcune specie indicatrici a campioni ambientali contenenti miscele di inquinanti in quantità non note in condizioni sperimentali controllate, allo scopo di verificare se si manifestano effetti dannosi. I saggi ecotossicologici, seppure non in grado di individuare le sostanze tossiche presenti nel campione in esame, consentono di valutare gli effetti combinati di sinergismo e/o antagonismo che possono manifestarsi tra sostanze diverse.

Per la valutazione della tossicità dei sedimenti del Fosso della Casaccia sono stati utilizzati due saggi ecotossicologici: il test con il batterio bioluminescente *Vibrio fischeri* (Microtox®) che determina la tossicità acuta, ovvero la tossicità espressa dagli organismi in seguito ad una breve esposizione ai sedimenti, e il test con il crostaceo *Heterocypris incongruens* (Ostracodtoxkit FTM) che determina la tossicità cronica, ovvero la tossicità che si manifesta in seguito ad un'esposizione prolungata nel tempo. In entrambi i casi gli organismi sono stati esposti al sedimento *in toto*, ovvero la fase solida completa dell'acqua interstiziale; tale esposizione fornisce informazioni generalizzate sull'insieme dei contaminanti presenti e quindi rappresenta la matrice più realistica nella valutazione della loro biodisponibilità nei sedimenti.

I sedimenti sono stati prelevati mediante una sessola e conservati in barattoli di polipropilene a 4° C al buio fino all'esecuzione delle prove, effettuate entro 15 giorni dal campionamento. Prima di procedere all'esecuzione dei saggi ecotossicologici, i sedimenti sono stati setacciati con maglie di 1 mm per rimuovere la componente più grossolana.

Test di tossicità acuta con Vibrio fischeri

È un test ecotossicologico che rileva la tossicità come espressione delle alterazioni indotte sul metabolismo energetico del batterio bioluminescente *Vibrio fischeri*. Le sostanze tossiche provocano in questo microrganismo una risposta che si evidenzia con una riduzione della emissione luminosa, proporzionale al danno determinato nel batterio, misurabile per mezzo di un fotometro.

La metodologia utilizzata per la misura della tossicità acuta dei sedimenti è formulata dal protocollo standard SPT (*Solid-Phase Test*) che prevede il contatto diretto dei batteri con le particelle solide determinando la tossicità delle sostanze adese ad esse (Bulich *et al.*, 1992).

Il test (Microbics Corporation, 1995) è svolto con 13 concentrazioni di ogni campione di sedimento e due controlli costituiti dalla soluzione diluente (3,5 % NaCl). Le concentrazioni di ogni campione sono preparate diluendo 1.5 ml della sospensione formata da 7 gr di sedimento risospesi in 35 ml di soluzione diluente e sottoposti ad agitazione per 10 min.; le diluizioni sono svolte in serie con un fattore 1:2. Si aggiungono poi 20 µl della sospensione batterica (2x10⁶

cellule) e si incuba a 15 °C per 15 min. Successivamente la miscela sedimento-batteri è opportunamente filtrata per eliminare l'interferenza delle particelle di sedimento sulla emissione di luce; la diminuzione di luminescenza è misurata sulla fase liquida per le diverse concentrazioni e per il controllo con il fotometro Microtox. Si ottiene così una curva sigmoide concentrazione-risposta elaborata dal software dello strumento su cui, una volta linearizzata, viene calcolato il valore di EC₅₀, cioè la percentuale di sedimento (peso/volume) che causa una riduzione del 50% dell'intensità luminosa, i relativi limiti di confidenza 95% (EC₅₀ l.c.), l'equazione della retta di regressione con la sua pendenza (s) e il suo coefficiente di correlazione (R).

Il valore di EC_{50} così ottenuto è successivamente corretto con i valori del peso secco di ogni campione, ottenuto in seguito ad essiccamento di 5 gr a 100 °C per 24 h. (3 repliche per ogni sedimento).

Test di tossicità cronica con Heterocypris incongruens

È un test ecotossicologico standardizzato (Chial, 2002)che valuta la tossicità cronica dei sedimenti come espressione dell'inibizione della crescita e della sopravvivenza di *Heterocypris incongruens*, un crostaceo ostracode cosmopolita che vive in tutti gli ambienti di acqua dolce a diretto contatto dei sedimenti.

Il test è svolto applicando il protocollo operativo dell'Ostracodtoxkit F (Ostracodtoxkit FTM, 2002), un kit commerciale che fornisce gli organismi allo stadio quiescente di cisti. Le cisti sono reidratate in un'acqua dolce sintetica, caratterizzata da una durezza media in accordo con la ricetta EPA specifica per saggi ecotossicologici, ed incubate a 25 °C con una intensità luminosa di 4000 lux per 52 h per ottenere la loro schiusa e, quindi, gli organismi neonati di crostaceo. Prima di procedere all'allestimento delle piastre, si procede alla misura della lunghezza iniziale degli stessi organismi.

Per il test sono state utilizzate piastre multipozzetti; all'interno di ogni pozzetto sono aggiunti, nell'ordine, 1 ml (3x10⁷ cellule/ml) di una sospensione di alga verde *Raphidocelis subcapitata* per fornire nutrimento agli organismi, 10 crostacei neonati prelevati dalla piastra di schiusa delle cisti, 1 ml di alga verde *Raphidocelis subcapitata*, e, infine, 300 µl di sedimento prelevati con un'apposita siringa. Le stesse procedure sono utilizzate anche per il sedimento di controllo, costituito da un sedimento di riferimento non tossico, fornito dal kit.

Per ogni campione di sedimento e per il controllo sono allestite 6 repliche.

La piastra è incubata a 25 °C al buio, per 6 giorni. Successivamente, ogni pozzetto è setacciato per recuperare gli organismi: si contano gli organismi morti e si procede alla misura della lunghezza degli organismi vivi.

I risultati sono espressi come:

- valore medio percentuale di mortalità, tenendo in considerazione che alla mortalità ritrovata nel sedimento da analizzare è sottratta la mortalità del sedimento di controllo;
- inibizione della crescita (IC) definita dalla formula

$$IC(\%) = (L_c - L_x / L_c) \times 100$$
, in cui

L_c = incremento medio della lunghezza degli organismi esposti al sedimento di controllo

L_x = incremento medio della lunghezza degli organismi esposti al sedimento da testare.

Il test è ritenuto accettabile se risultano validi i seguenti criteri:

- la mortalità (%) degli organismi esposti al sedimento di controllo deve essere inferiore al 20%;
- l'incremento medio di crescita degli organismi esposti al sedimento di controllo deve essere almeno di 400 μm.

Criteri di valutazione della tossicità

Una valutazione qualitativa dei risultati ottenuti dal test di tossicità acuta con il batterio *Vibrio fischeri* è condotta ricorrendo ad una scala (Guzzella, 2000) (Tabella 6) ottenuta suddividendo i valori di EC50 in 5 classi di tossicità.

Tabella 6. Giudizio di tossicità con Vibrio fischeri

EC50	Tossicità
>10	Assente
>10 10-1	Bassa
1-0,1	Media
0,1-0,01	Alta
<0,01	Elevata

Analogamente, per quanto riguarda la tossicità cronica ottenuta con l'ostracode *Heterocypris incongruens* i valori percentuali di mortalità e di inibizione dell'accrescimento sono divisi in 5 classi di qualità (Tabella 7)

Tabella 7. Giudizio di tossicità con Heterocypris incongruens

Mortalità e inibizione crescita	Tossicità
<20	Assente
20-40	Bassa
40-60	Media
60-80	Alta
>80	Elevata

Diatomee bentoniche

Campionamento delle diatomee e analisi di laboratorio

Il campionamento delle diatomee è stato eseguito nel rispetto delle norme europee (CEN-EN 13946, 2003). Le diatomee che colonizzano ciottoli o substrati artificiali sono state raccolte grattando la superficie superiore di questi con uno spazzolino, e conservate in provette (falcon 50 mL) con aggiunta di formaldeide al 4%. Questo passaggio consente di eliminare eventuali predatori delle diatomee e di preservare inalterato il campione prima del processamento.

Il quale viene successivamente pulito all'interno di una provetta (falcon 50 mL) in cui sono stati trasferiti in precedenza 10 mL di acqua. Le metodologie usate per la preparazione dei campioni, dell'allestimento dei vetrini per l'identificazione e il conteggio delle diatomee sono state conformi alle norme europee (EN 14407, 2004). Al fine di ottenere dei frustuli puliti che abbiano ben visibili i caratteri indispensabili per l'identificazione delle specie di diatomee è necessario eliminare completamente la sostanza organica. Il metodo utilizzato è stato quello del trattamento dei campioni con perossido di idrogeno a 110-130 volumi, a caldo. Una piccola quantità del campione omogeneizzato (2-3 mL), è stato trasferito in un *beaker*, lavata, se necessario, in centrifuga (a 1500 giri/min per 4-5 minuti) con acqua distillata per eliminare la formaldeide ed i sali minerali, e vi sono stati aggiunti 30-40 ml circa di perossido di idrogeno

(H₂O₂). Il campione è stato lasciato ossidare a temperatura ambiente almeno una notte e poi riscaldato su piastra elettrica (a 90 °C circa per circa 3 ore) fino alla deposizione di un deposito bianco, costituito dai frustuli puliti, indicazione del fatto che tutta la sostanza organica è stata ossidata. Al composto, raffreddato, è stata aggiunta qualche goccia di HCl diluito (37%) per eliminare il carbonato di calcio, il perossido di idrogeno residuo ed eventuali ossidi di ferro. Il campione è stato di nuovo lavato in centrifuga con acqua distillata, ripetendo più volte il ciclo decantazione/diluizione per rimuovere l'HCl in eccesso. Infine sono state aggiunte alcune gocce di etanolo per la conservazione del campione di frustuli.

Per osservare i frustuli al microscopio e quindi procedere all'identificazione delle specie, sono stati allestiti due vetrini per campione utilizzando una resina ad elevato indice di rifrazione, il Naphrax (indice di rifrazione = 1,74). L'uso della resina è reso necessario dal fatto che la silice costituente i frustuli è caratterizzata da un indice di rifrazione simile a quello dell'acqua e del vetro. La sospensione di frustuli opportunamente diluita, è stata fatta aderire tramite evaporazione sulla superficie inferiore di un vetrino copri-oggetto circolare, successivamente montato su una goccia di resina posta su un vetrino porta-oggetto e poi riscaldato per l'eliminazione del solvente. Tutte le fasi sopra descritte sono state eseguite sotto cappa chimica, data la tossicità di alcuni reattivi usati.

Per l'identificazione fino a livello di specie, e quando possibile di varietà, è stato utilizzato un sistema di acquisizione delle immagini, costituito da una camera per microfotografia (Leica DC 300) connessa al microscopio e ad un computer, e da un software (Leica IM 1000), utilizzato per digitalizzare e analizzare le immagini dei frustuli delle diatomee. Per la determinazione si è fatto riferimento principalmente all'opera monografica tedesca di Krammer e Lange-Bertalot (1986, 1988, 1991a, 1991b e 2000) e all'atlante francese di Prygiel e Coste (2000).

La stima delle abbondanze relative delle specie nei campioni è stata realizzata tramite la conta di circa 400 valve, nelle quali i frustuli risultano per lo più dissociati a seguito del trattamento con perossido di idrogeno.

RISULTATI

Nelle Tabelle e nelle Figure che seguono sono riportati i dati delle analisi dei campioni di acqua e sedimento prelevati in diverse campagne nel periodo successivo al momento di immissione dei reflui industriali della Nucleco nel Fosso della Casaccia e in diversi periodi stagionali, al fine di evidenziarne eventuali variazioni. Si riporta in dettaglio l'elenco delle campagne di campionamento effettuate:

- 2002
 - 5 marzo; 25 marzo; 27 maggio; 1 ottobre; 12/17 dicembre
- -2003
 - 8 aprile; 27/28 maggio; 11/12 novembre
- 2004
 - 3 maggio; 22 giugno; 16 novembre
- 2005
 - 21 marzo; 20/24 maggio
- 2006
 - 21 marzo; 23 maggio; 2 ottobre

Microbiologia

Nelle Tabelle 8-10 sono riportati i risultati delle analisi microbiologiche effettuate mentre nelle Figure 3-8 tali dati vengono rappresentati graficamente.

Tabella 8. Risultati delle analisi microbiologiche effettuate sul fosso della Casaccia, sullo scarico ENEA acque chiare e sulle acque provenienti dal depuratore di Osteria Nuova (UFC/100 mL)

Indicatori microbiologici		Staz	ione	Scarico ENEA	Depuratore	
	2	3	4°	5	•	Osteria nuova
5 marzo 2002						
Coliformi totali	130	330x10 ²	320x10 ²	130x10 ²	588	470
E. Coli	470	280x10	187x10	100x10	200	170
Enterococchi	47	250x10	220x10	520x10	236	300
25 marzo 2002						
Coliformi totali	182x10	123x10 ³	150x10 ²	100x10 ²	300x10	*
E. Coli	134x10	125x10 ²	330x10	720	151x10 ²	*
Enterococchi	50	128x10 ²	810x10	362	120x10 ²	*
27 maggio 2002						
Coliformi totali	268x10	880x10 ²	278x10 ²	138x10 ²	540x10 ²	211x10 ²
E. Coli	154x10	104x10 ²	170x10	950	590x10	190x10
Enterococchi	350	183x10	950	610	116x10	182x10
1 ottobre 2002						
Coliformi totali	120	500x10 ²	290x10 ²	160x10	330x10	135x10
E. Coli	140x10	150x10 ²	230x10 ²	620x10	123x10 ²	260x10
Enterococchi	270x10	590x10	102x10 ²	440x10	480x10	400

Indicatori		Staz	ione		Scarico ENEA	Depuratore
microbiologici	2	3	4°	5		Osteria nuova
2 dicembre 2002						_
Coliformi totali	237x10 ²	193x10 ²	700x10	170x10 ²	-	357x10 ²
E. Coli	280	470	630	113x10	-	820x10
Enterococchi	550	200	850	167x10	-	980x10
3 aprile 2003						_
Coliformi totali	400x10	900x10	340x10 ²	230x10 ²	-	770x10 ²
E. Coli	200x10	120x10 ²	600x10	100x10	-	230x10 ²
Enterococchi	180x10 ²	800x10	700x10	300x10 ³	-	260x10 ²
28 maggio 2003						
Coliformi totali	-	290x10 ²	660x10	230 x10	-	890x10
E. Coli	_	400x10	610x10 ²	290x10 ²	-	890x10 ²
Enterococchi	-	400x10	600x10 ²	180x10 ²	-	830x10 ²
2 novembre 2003						
Coliformi totali	200x10 ²	440x10 ²	970x10 ²	138x10 ³	_	250x10 ³
E. Coli	0	150x10 ²	$300x10^{2}$	120x10 ²	_	$>300 \times 10^3$
Enterococchi	0	180x10 ²	360x10 ²	260x10 ²	_	$>300\times10^3$
	<u> </u>	100010	300X TU	200710	-	>500X10
8 maggio 2004		040,402	000,402	270,402		140x10 ³
Coliformi totali	-	210x10 ²	800x10 ²	370x10 ²	-	
E. Coli	-	140x10	700	330x10	-	330x10
Enterococchi	-	120x10	210x10	200	-	610x10
22 giugno 2004		2	2	2		2
Coliformi totali	200x10	210x10 ³	540×10^{2}	$760x10^2$	-	940x10 ²
E. Coli	200	300x10 ²	105x10 ²	820x10	-	620x10
Enterococchi	0	870x10	240x10	180x10	-	350x10
6 novembre 2004						
Coliformi totali	0	390x10 ²	690x10 ²	63x10 ³	300x10 ²	148x10 ³
E. Coli	0	980x10	114x10 ²	101x10 ²	860x10	231x10 ²
Enterococchi	0	130x10 ²	107x10 ²	920x10	850x10	133x10 ²
21 marzo 2005						
Coliformi totali	0	170x10	650x10	430x10 ²	-	580x10 ²
E. Coli	Ö	140x10	320x10	320x10	-	152x10 ²
Enterococchi	260x10	100x10	900	180x10	-	121x10 ²
24 maggio 2005						-=
Coliformi totali	200	350x10 ²	165x10 ²	150x10 ²	_	780x10
E. Coli	300	122x10 ²	220x10	300x10	<u>-</u>	210x10
Enterococchi	200	103x10 ²	200x10	220x10	- -	370x10
	200	103x10	200X10	220010	-	370010
21 marzo 2006	050 402	400. 402	500, 40 ²	000: 402		050 402
Coliformi totali	950x10 ²	460x10 ²	520x10 ²	680x10 ²	-	350x10 ²
E. Coli	390x10	500	120x10	900	-	900
Enterococchi	150x10 ²	830x10	650x10	970x10	-	960x10
4 maggio 2006	_	_	_	_		-
Coliformi totali		$>300x10^3$			-	>300x10 ³
E. Coli	430x10 ²	400x10	141x10 ³	117x10 ³	-	330x10 ²
Enterococchi	121x10 ²	0	380x10	690x10	<u>-</u>	430x10
ottobre 2006						
Coliformi totali	103x10 ²	145x10 ²	770x10 ²	147x10 ²	-	190x10 ²
E. Coli	550x10	154x10 ²	203x10 ²	930x10	_	186x10 ²
Enterococchi	600	570x10	550x10	170x10	_	800x10
LI ILGI OCOCCI II	000	37 0 1 1 0	JJUX 10	170010	=	000x10

<sup>la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle
la mancanza del dato non rappresenta la negatività del campione ma l'impossibilità di enumerazione dei 3 indicatori a causa della presenza di flora atipica.</sup>

- non campionato

Tabella 9. Risultati delle analisi microbiologiche effettuate sul Fiume Arrone (UFC/100 mL)

Indicatori microbiologici	Arrone					
	Stazione6A	Stazione7A				
3 maggio 2004						
Coliformi totali	720x102	930x102				
E. Coli	870x10	108x102				
Enterococchi	400x10	260x10				

Tabella 10. Risultati delle analisi microbiologiche effettuate sul Fosso Rosciolo (UFC/100 mL)

Indicatori microbiologici	Fosso Rosciolo	
8 aprile 2003		
Coliformi totali	200x10	
E. Coli	10	
Enterococchi	10	
28 maggio 2003		
Coliformi totali	400x102	
E. Coli	900x10	
Enterococchi	170x102	

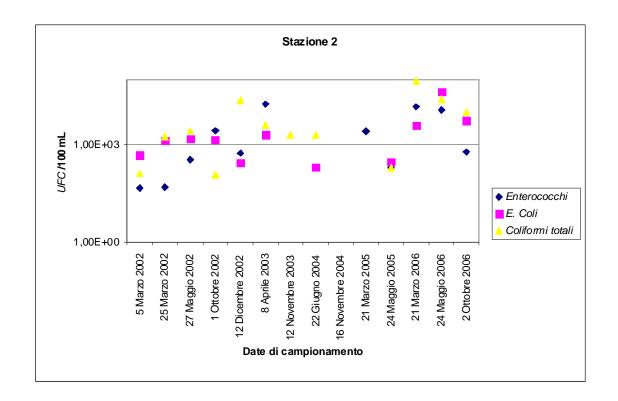


Figura 3. Andamento dei parametri microbiologici nella Stazione 2 nel periodo di studio

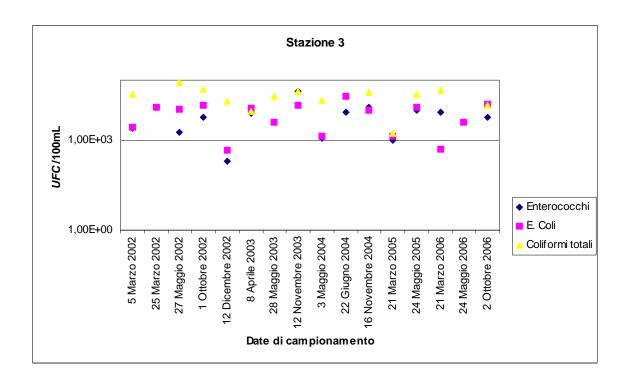


Figura 4. Andamento dei parametri microbiologici nella Stazione 3 nel periodo di studio

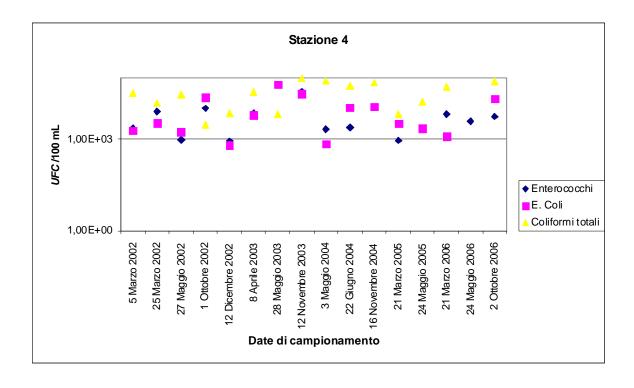


Figura 5. Andamento dei parametri microbiologici nella Stazione 4 nel periodo di studio

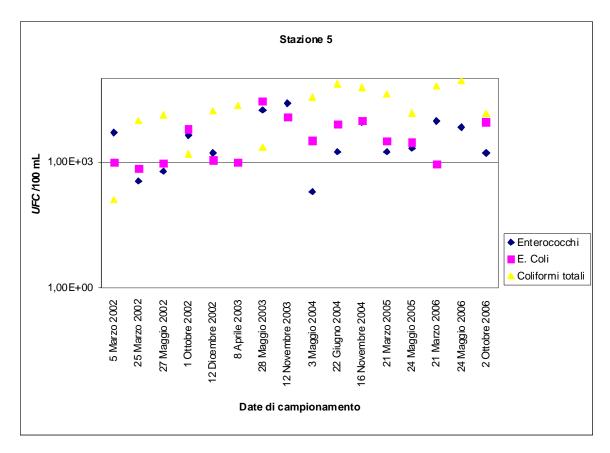


Figura 6. Andamento dei parametri microbiologici nella Stazione 5 nel periodo di studio

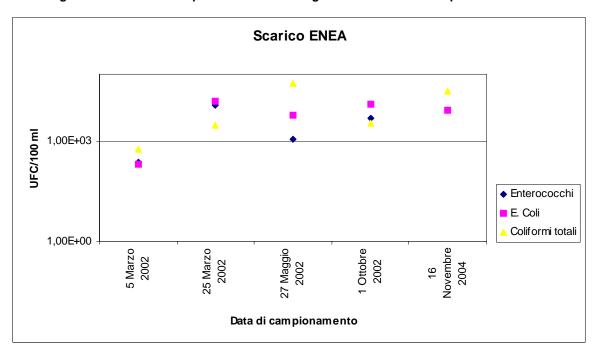


Figura 7. Andamento dei parametri microbiologici nella Stazione Scarico ENEA nel periodo di studio (il campionamento del 2004 è stato effettuato dopo il convogliamento delle acque nere al depuratore di Osteria Nuova)

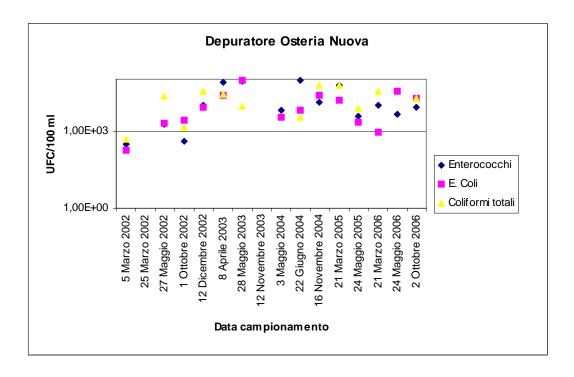


Figura 8. Andamento dei parametri microbiologici nella Stazione Depuratore Osteria Nuova nel periodo di studio

Chimica

In Tabella 11 sono riportati i risultati delle analisi chimiche e fisiche.

Tabella 11. Risultati delle analisi chimiche e fisiche

Parametri chimico-fis	ici		Sta	azione		Scarico ENEA				
	-	2	3	4°	5	acque chiare	Nuova		6A	7A
5 marzo 2002										
Temperatura acqua	°C	18,5	19,5	18,5	19,5	-	-	-	-	-
pН		8,28	7,60	7,68		-	-	-	-	-
Conducibilità	μS/cm	346	389	380	455	-	-	-	-	-
Ossigeno disciolto	mg/L	6,02	4,71	5,73	6,13	-	-	-	-	-
COD	mg/L	5,4	14	8,3	6,5	-	-	-	-	-
Azoto totale	mg/L	12	18	17	20	-	-	-	-	-
Solfati	mg/L	10	11	12	14	-	-	-	-	-
25 marzo 2002										
Temperatura acqua	°C	15,5	18	16,9	15,5	-	-	-	-	-
pH .		8,20	7,70	7,80	8,00	-	-	-	-	-
Conducibilità	μS/cm	360	378	378	455	-	-	-	-	-
Ossigeno disciolto	mg/L	7,45	6,23	6,14	6,94	-	-	-	-	-
COD	mg/L	7,9	12,5	10,2	9,1	-	-	-	-	-
Azoto totale	mg/L	187	211	205	200	-	-	-	-	-
Solfati	mg/L	14	10	10	14	-	-	-	-	-

continua

	•	Stazione						Rosciolo			
27 maggio 2002		2	3	4°	5	acque chiare	Nuova	-	6A	7A	
	°C	22	22	19	18,8	-	-	-	19,8	19,7	
pH		7,64	7,52	7,68	8,01	-	-	-	7,84	7,8	
Conducibilità	μS/cm	355	386	394	457	-	-	-	809	723	
Ossigeno disciolto	mg/L	5,55	5,20	4,70	6,05	-	-	-	5,27	5,15	
COD	mg/L	3,00	10,90	11,60	9,70	-	-	-	13,50	10,80	
Durezza totale	mg/L	37	37	39	45	-	-	-	63	56	
Durezza Ca++	mg/L	12	12	10	11	-	-	-	18	17	
	mg/L	3,0	4,5	4,7	5,8	-	-	-	9,8	8,6	
	mg/L	22	25	26	32	-	-	-	95	80	
Solfati	mg/L	12	10	10	11	-	-	-	14	12	
Tensioattivi	mg/L	0,09	0,17	0,20	0,12	-	-	-	0,16	0,10	
1 ottobre 2002											
Temperatura acqua	°C	15,9	19	17,9	16,9	19,9	18,5	-	-	-	
рН		7,97	7,48	7,14	7,82	7,92	7,86	-	-	-	
Conducibilità	μS/cm	352	397	375	401	394	788	-	-	-	
Ossigeno disciolto	mg/L	3,93	3,40	3,10	4,40	3,01	3,62	-	-	-	
COD	mg/L	6,7	14,3	18,8	10,5	13,5	12,6	-	-	-	
Durezza totale	mg/L	59	58	56	58	-	94	-	-	-	
Durezza Ca++	mg/L	29	28	28	29	-	36	-	-	-	
Azoto totale	mg/L	2,7	3,4	3,8	4,6	-	4,3	-	-	-	
	mg/L	21	28	25	28	-	64	-	-	-	
Solfati	mg/L	10	9	8	10	-	25	-	-	-	
Tensioattivi	mg/L	<0,05	<0,05	<0,05	<0,05	-	0,33	-	-	-	
17 Dicembre 2002											
Temperatura acqua	°C	12,1	16,2	13,8	13	-	-	-	-	-	
рН		7,84	7,85	7,82	8,03	-	-	-	-	-	
Conducibilità	μS/cm	385	367	469	414	-	-	-	-	-	
Ossigeno disciolto	mg/L	6,98	6,68	7,30	7,18	-	-	-	-	-	
COD	mg/L	8,6	4,4	7,2	7,2	-	12,9	-	-	-	
Durezza totale	mg/L	76	68	76	71	-	81	-	-	-	
Durezza Ca++	mg/L	38	34	38	36	-	40	-	-	-	
Azoto totale	mg/L	3,6	3,9	2,2	2,9	-	5,3	-	-	-	
Cloruri Solfati	mg/L	21 11	20 9	34 9	24 11	-	38 13	-	-	-	
	mg/L	0,00	0.04	0,02	0,01	-	0,04	-	-	-	
	mg/L	0,00	0,04	0,02	0,01		0,04				
8 aprile 2003											
	°C	18,7	19,8	18	12,7	-	-	16	-	-	
pH	0.1	8,4	8,75	7,9	8,04	-	-	8,01	-	-	
Conducibilità	μS/cm	360	365	467	471 - 4	-	-	347	-	-	
Ossigeno disciolto	mg/L	5,2	4,8	4,67	5,4	-	-	5,95	-	-	
COD	mg/L	19,7	6,13	12,5	31	-	-	29	-	-	
BOD5	mg/L	- 71/40	-	-	06/40	-	-	- 71/10	-	-	
Durezza	mg/L	71/40	69/40	80/42	86/43	-	-	71/40	-	-	
Azoto totale	mg/L	24,5	25,7	32,6	30,7	-	-	24 50	-	-	
Cloruri Solfati	mg/L	46,27	48,53	60,12	58,97	-	-	50	-	-	
Solfati Tensioattivi	mg/L mg/L	13 0,52	12 0,36	10 0,42	12 0,41	-	-	11 0,37	-	-	

continua

Parametri chimico-fis	ici		Sta	azione		Scarico ENEA		Fosso Rosciolo		zioni one
		2	3	4°	5	acque chiare	Nuova		6A	7A
28 maggio 2003										
Temperatura acqua	°C	secco	19,7	21,2	20,05	_	-	21,3	-	_
рН	-	-	7,81	7,76	8,12	-	-	7,64	-	_
Conducibilità	μS/cm	-	382	607	563	-	-	408	-	_
Ossigeno disciolto	mg/L	_	7,02	6,21	6,74	_	_	4,07	_	_
COD	mg/L	_	4,9	14,5	11	_	-	13	-	_
BOD5	mg/L	_	2	2	0	_	_	5	_	_
Durezza	mg/L	_	70/38	87/41	86/40	_	-	75/41	-	_
Azoto totale	mg/L	_	10,02	6,21	15,21	_	_	7,96	_	_
Cloruri	mg/L	_	43,6	66,4	66,1	_	_	47,4	_	_
Solfati	mg/L	_	12	10	11	_	_	12	_	_
Tensioattivi	mg/L	_	0,37	0,37	0,26	_	_	0,24	_	_
	mg/L		0,57	0,57	0,20			0,24		
12 novembre 2003	00	440	40	47.0	40					
Temperatura acqua	°C	14,2	19	17,9	16	-	-	secco	-	-
pH	0.4	7,49	7,88	7,72	8,19	-	-	secco	-	-
Conducibilità	μS/cm	360	373	477	463	-	-	secco	-	-
Ossigeno disciolto	mg/L	8,18	7,38	7,17	8,26	-	-	secco	-	-
COD	mg/L	ne	ne	ne	ne	-	-	secco	-	-
BOD5	mg/L	4	5	5	5	-	-	secco	-	-
Durezza	mg/L	98/55	91/57	102/57	101/58	-	-	secco	-	-
Azoto totale	mg/L	13,35	12,74	10	8,52	-	-	secco	-	-
Cloruri	mg/L	ne	ne	ne	ne	-	-	secco	-	-
Solfati	mg/L	36	30	38	31	-	-	secco	-	-
Tensioattivi	mg/L	0,23	0,17	0,27	0,16	-	-	secco	-	-
3 maggio 2004										
Temperatura acqua	°C	secco	21,5	22,4	18,1	-	-	secco	17,3	16,8
pH ' '		secco	8,43	7,95	8,12	-	-	secco	7,76	7,7
Conducibilità	μS/cm		414	482	461	-	-	secco	795	791
Ossigeno disciolto	mg/L	secco	6,5	9,5	10,3	_	_	secco	7,6	6,7
COD	mg/L	secco	17,1	15,5	25,2	_	_	secco	30,8	33,8
BOD5	mg/L	secco	11	9	7	_	_	secco	36	29
Durezza	mg/L	secco	85/46	82/42	98/48	_	_	secco	109/56	_
Azoto totale	mg/L	secco	8,49	12,8	13,9	_	_	secco	17	13,7
Cloruri	mg/L	secco	24,1	36,9	33,9	_	_	secco	103,5	79,8
Solfati	mg/L	secco	14	10	13	_	_	secco	16	30
Tensioattivi	mg/L	secco	0,02	0,07	0,14	_	_	secco	0,15	0,05
	mg/L	36666	0,02	0,01	0,17			36666	0,10	0,03
22 giugno 2004										
Temperatura acqua	°C	21	21,7	20,3	18,8	-	-	secco	-	-
рН		7,83	7,92	7,71	8,08	-	-	secco	-	-
Conducibilità	μS/cm	354	371	449	443	-	-	secco	-	-
Ossigeno disciolto	mg/L	7,11	7,01	5,78	6,99	-	-	secco	-	-
COD	mg/L	22,52	21,1	20,32	23,71	-	-	secco	-	-
BOD5	mg/L	-	-	-	1	-	-	secco	-	-
Durezza	mg/L	90/44	92/47	99/49	99/49	-	-	secco	-	-
Azoto totale	mg/L	6,03	5,02	8,03	9,04	-	-	secco	-	-
Cloruri	mg/L	27	26	32,6	33,3	-	-	secco	-	-
Solfati	mg/L	22	19	16	18	-	-	secco	-	-
Tensioattivi	mg/L	-	-	-	-			secco		

ne = non effettuato

continua

Parametri chimico-fis	ici		Sta	azione		Scarico ENEA		Fosso Rosciolo		zioni one
		2	3	4°	5	acque chiare	Nuova	_	6A	7A
16 novembre 2004										
Temperatura acqua	°C	13,5	16,8	14,7	12,5	-	-	secco	-	_
рН		8,05	7,95	8,06	8,01	-	-	secco	-	-
Conducibilità	μS/cm		370	535	468	-	-	secco	-	-
Ossigeno disciolto	mg/L	8,35	7,48	6,88	7,55	-	-	secco	-	-
COD	mg/L	29,77	21,05	35,76	29,2	-	-	secco	-	-
BOD5	mg/L	7	7	7	7	-	-	secco	-	-
Durezza	mg/L	94/54	92/58	100/56	103/59	-	-	secco	-	-
Azoto totale	mg/L	6,7	5,8	8,7	8,8	_	-	secco	-	-
Cloruri	mg/L	23,78	25,1	34,68	37,07	_	_	secco	_	_
Solfati	mg/L	32	27	35	28	_	_	secco	_	_
Tensioattivi	mg/L	0,15	0,11	0,3	0,1	_	_	secco	_	_
	1119/ =	0,10	0,11	0,0	0,1			00000		
21 marzo 2005	00	00.5	00.5	40.0	477					
Temperatura acqua	°C	20,5	20,5	19,2	17,7	-	-	secco	-	-
pН		9,38	9,17	8,5	8,46	-	-	secco	-	-
Conducibilità	μS/cm	298	299	387	379	-	-	secco	-	-
Ossigeno disc.	mg/L	10,3	8,37	7,73	5,5	-	-	secco	-	-
COD	mg/L	18,54	25	27,45	15,2	-	-	secco	-	-
BOD5	mg/L	2	7	12	3	-	-	secco	-	-
Durezza	mg/L	17/3,2	14/3,4	16,5/3,7		-	-	secco	-	-
Azoto tot.	mg/L	11	10,6	12,3	14,25	-	-	secco	-	-
Cloruri	mg/L	18	18,3	21,7	27,7	-	-	secco	-	-
Solfati	mg/L	29	26	33	35	-	-	secco	-	-
Tensioattivi	mg/L	0	0	0,29	0,31	-	-	secco	-	-
20 maggio 2005	_									
pH		9,1	8,8	8,5	8,5	_	_	secco	_	_
Conducibilità	μS/cm	300	270	353	313	_	_		-	_
	mg/L	5,34	5,45	5,48	5,4	-	-	secco	-	-
Ossigeno disc. COD						-		secco	-	-
	mg/L	17,54	20,25	21,67	17,95	-	-	secco	-	-
BOD5	mg/L	4	4	4	5	-	-	secco	-	-
Durezza	mg/L	ne	ne	ne	ne	-	-	secco	-	-
Azoto tot.	mg/L	64	65	9,8	61	-	-	secco	-	-
Cloruri	mg/L	32,63	27,74	29,72	27:27:00	-	-	secco	-	-
Solfati	mg/L	11,69	6,28	14,84	12,89	-	-	secco	-	-
Tensioattivi	mg/L	ne	ne	ne	ne	-	-	secco	-	-
21 marzo 2006										
Temperatura acqua	°C	14,5	16	15,1	15,2	-	-	secco	-	-
рН		7,1	7,3	7,3	7,7	_	-	secco	-	-
Conducibilità	μS/cm		324	371	365	-	-	secco	-	-
Ossigeno disc.	mg/L	4,51	4,26	4,27	4,21	_	_	secco	_	_
COD	mg/L	13,6	14,6	25,9	18	_	_	secco	_	_
BOD5	mg/L	3	3	2	3	_	_	secco	_	_
Durezza	mg/L				104 / 60	_	_	secco	_	-
Azoto tot.	mg/L	4,8	5,2	7,8	8,6	=	-		_	_
Cloruri					0,0 22	-	-	secco	-	-
	mg/L	16,95	17,6	22,84		-	-	secco	-	-
Solfati	mg/L	28	24	33	34	-	-	secco	-	-
Tensioattivi	mg/L	0	0	0	0	-	-	secco	-	-

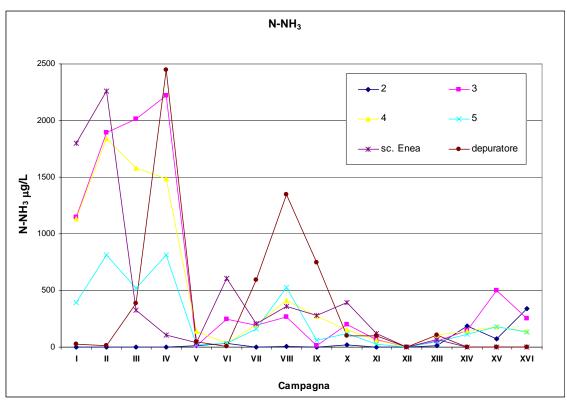
ne = non effettuato

Parametri chimico-fis	ici		Sta	zione		Scarico ENEA		Fosso Rosciolo		zioni one
		2	3	4°	5	acque chiare	Nuova	_	6A	7A
23 maggio 2006										
Temperatura acqua	°C	26	21	20	20	-	-	secco	-	-
PH		8,83	8,75	8,09	8,3	-	-	secco	-	-
Conducibilità	μS/cm	330	410	417	405	-	-	secco	-	-
Ossigeno disc.	mg/L	10,5	6,8	6,7	5,5	-	-	secco	-	-
COD	mg/L	26,68	28,86	33,82	42,7	-	-	secco	-	-
BOD5	mg/L	3	4	4	3	-	-	secco	-	-
Durezza	mg/L	88 / 43	85 / 41	92 / 45	94 / 46	-	-	secco	-	-
Azoto tot.	mg/L	13,7	13,4	11,17	11	-	-	secco	-	-
Cloruri	mg/L	15	14,9	18,5	17,34	-	-	secco	-	-
Solfati	mg/L	30	28	35	37	-	-	secco	-	-
Tensioattivi	mg/L	0,08	0,26	0,38	0,09	-	-	secco	-	-
2 ottobre 2006										
Temperatura acqua	°C	18,2	19,1	20,9	20,2	-	-	secco	-	-
рН		8,15	8,04	7,9	8,15	_	-	secco	-	-
Conducibilità	μS/cm		394	470	466	_	-	secco	-	-
Ossigeno disc.	mg/L	5,98	5,92	5,31	4,52	_	-	secco	-	-
COD	mg/L	53,25	24,63	23,41	18,3	-	-	secco	-	-
BOD5	mg/L	3	3	4	3	_	-	secco	-	-
Durezza	mg/L	92 / 53	88 / 56	96 / 58	98 / 59	-	-	secco	-	-
Azoto tot.	mg/L	7,3	6,5	9,2	9,4	-	-	secco	-	-
Cloruri	mg/L	31,88	30,64	42,86	40,27	-	-	secco	-	-
Solfati	mg/L	34	30	38	31	-	-	secco	-	-
Tensioattivi	mg/L	0,13	0,09	0,14	0,1	-	-	secco	-	-

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; - non campionato

Nutrienti nelle acque

In Tabella 12 sono riportati i valori dei nutrienti riscontrati nelle diverse stazioni durante il periodo di studio; tali dati sono rappresentati graficamente nelle Figure 9-12, mentre nelle Figure 13-26 sono riportate le classificazioni (*cluster analysis*) basate sull'insieme dei dati chimici.


Tabella 12. Risultati dell'analisi dei nutrienti (µg/L)

Nutrienti		Staz	ione		Scarico Dep. Fosso ENEA Osteria Rosciolo				zioni one
	2	3	4°	5	acque chiare	Nuova	-	6A	7A
5 marzo 2002									
NH_3	<10,0	1150,0	1131,0	393,0	1800,0	29,1	-	-	-
NO_2	6,7	94,0	211,5	200,0	54,4	25,4	-	-	-
NO_3	3992,3	2521,0	2946,5	6017,0	2352,6	25103,6	-	-	-
PO ₄	440,0	583,0	609,0	1062,0	492,0	2905,0	-	-	-
25 marzo 2002									
NH_3	<10,0	1891,0	1840,0	814,0	2261,0	14,3	-	-	-
NO_2	6,7	43,7	117,0	160,0	40,8	25,0	-	-	-
NO_3	3402,3	2372,3	2285,0	5588,0	2413,2	25763,0	-	-	-
PO ₄	461,0	678,0	659,0	1051,0	845,0	6365,0	-	-	-

Nutrienti		Staz	ione		Scarico ENEA	Dep. Osteria	Fosso Rosciolo	Staz Arre	ioni one
	2	3	4°	5	acque chiare	Nuova		6A	7A
27 maggio 2002									
NH_3	<10,0	2014,0	1579,0	520,0	1966,0	26,4	324,0	386,0	-
NO_2	2,0	70,9	134,6	260,2	59,8	18,2	468,0	415,0	-
NO ₃	1890,0	1328,0	451,0	6590,0	1138,0	28995,0	11080,0	9404,0	-
PO ₄	629,0	1242,0	1069,0	1416,0	1037,0	2986,0	1585,0	1399,0	-
1 ottobre 2002					,	,	,		
NH ₃	< 10,0	2220,0	1490,0	811,0	108,9	2445,0	_	-	_
NO_2	< 2	109,0	136,5	352,9	61,0	98,2	_	-	_
NO ₃	2910,0	816,0	725,8	1417,1	13004.0	1281,8	_	_	_
PO ₄	656,3	946,0	888,3	983,8	2927,0	1102,0	-	-	_
17 dicembre 2002						- ,-			
NH ₃	16,2	11,4	140,2	19,9	41,6	46,3	-	-	_
NO ₂	16,5	< 2	139,1	9,2	<2	22,9	_	_	_
NO ₃	5390.0	5092,5	3410,9	3149,3	1875,0	6777,1	_	_	_
PO ₄	421,8	443,0	523,7	684,4	725,0	1144,6	-	-	-
8 aprile 2003	,0	0,0	0_0,,		. 20,0				
NH ₃	30,4	245,0	35,3	30,2	604,0	6,5	<10,0	_	_
	12,9	18,9	12,1		22,9	6,2	<2	-	-
NO ₂				6,9				-	-
NO₃	4487,1	3181,1	6137,9	593,1	2677,1	8993,8	250,0	-	-
PO ₄	351,2	378,1	412,2	452,0	385,9	727,0	206,1	-	
27 maggio 2003									
NH ₃	-	194,7	197,5	160,0	208,0	592,5	19,8	-	-
NO_2	-	41,3	20,4	13,8	38,9	31,8	<2	-	-
NO_3	-	3558,7	2479,6	3236,2	4511,1	2268,2	14,0	-	-
PO ₄	-	271,4	1721,1	1702,2	293,3	2670,5	203,7	-	-
11 novembre 2003									
NH_3	7,2	265,0	411,0	530,0	358,5	1350,0	-	-	-
NO_2	11,8	19,3	6,0	41,2	21,2	4,3	-	-	-
NO_3	1988,2	3980,7		2208,8	4878,8	135,7	-	-	-
PO ₄	362,6	383,6	478,1	473,5	489,2	762,5	-	-	-
3 maggio 2004									
NH_3	<10,0	15,1	276,2	57,6	281,4	745,1	-	5265,0	4018
NO_2	13,1	33,5	47,7	30,9	42,6	63,2	-	502,7	373,
NO_3	4686,9	4666,5	6702,3	5769,1	4457,4	8936,8	-	4247,3	4376
PO ₄	251,4	323,3	1098,8	992,9	484,4	1927,4	-	2160,4	1914
22 giugno 2004									
NH ₃	20,8	202,5	153,8	120,4	391,4	99,2	-	-	-
NO_2	10,8	133,6	116,7	150,0	268,0	16,7	-	-	-
NO_3	3739,2	3616,4	7883,3	7600,0	2982,0	14233,3	-	-	-
PO_4	344,5	410,1	1196,1	1064,1	323,7	2743,6	-	-	-
16 novembre 2004									
NH ₃	<10,0	66,8	60,0	23,6	122,5	96,8	-	-	-
NO ₂	6,8	10,5	4,5	<2,0	11,7	4,7	-	_	-
NO ₃	3620,0	4075,0	7515,0	6278,0	4695,0	11050,0	_	_	-
PO ₄	335,8	409,2	771,7	565,9	435,6	1640,4	-	-	_
21 marzo 2005	555,5	,	, .			, .			
NH ₃	_	_	_	_	_	_	_	_	_
NO ₂	- 18,8	6,4	20,5	16,4	-	=	-	_	_
NO ₂ NO ₃	10,0	0,4	20,5	10,4		<u>-</u>	-	-	-
PO ₄	320,0	250,0	- 550,0	1020,0	-	-	-	-	-
F U 4	3ZU,U	∠50,0	550,0	1020,0	-	-	-	-	-

Nutrienti		Staz	ione		Scarico ENEA	Dep. Osteria	Fosso Rosciolo		zioni one
	2	3	4°	5	acque chiare	Nuova		6A	7A
20 maggio 2005									
NH_3	10,2	55,8	104,4	49,7	69,7	107,9	-	-	-
NO_2	459,6	74,6	73,6	69,6	72,8	15,6	-	-	-
NO_3	3195,6	7776,2	3043,9	3974,2	5369,6	227,5	-	-	-
PO ₄	83,1	177,9	767,8	808,0	435,4	203,4	-	-	-
21 marzo 2006									
NH_3	187,3	146,4	141,2	110,2	-	-	-	-	-
NO_2	39,5	39,7	36,5	39,3	-	-	-	-	-
NO_3	7236,9	7425,6	6872,8	7398,7	-	-	-	-	-
PO ₄	131,8	134,3	232,8	239,9	-	-	-	-	-
23 maggio 2006									
NH_3	73,2	501,7	179,4	182,7	-	-	-	-	-
NO_2	191,9	138,0	125,3	158,2	-	-	-	-	-
NO_3	6717,8	6953,7	4742,7	4412,4	-	-	-	-	-
PO ₄	161,8	235,4	844,1	762,8	-	-	-	-	-
2 ottobre 2006									
NH_3	338,3	256,6	138,4	134,1	-	-	-	-	-
NO_2	215,3	120,4	115,2	102,5	-	-	-	-	-
NO_3	4614,6	5484,2	7600,9	8706,4	-	-	-	-	-
PO_4	114,1	203,1	909,1	1100,7	-	-	-	-	-

 $^{^{\}circ}$ la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; - non campionato

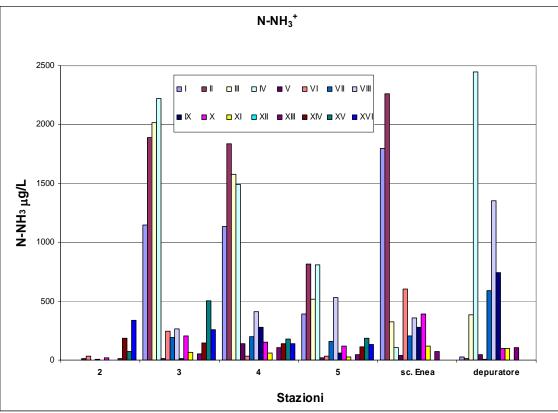
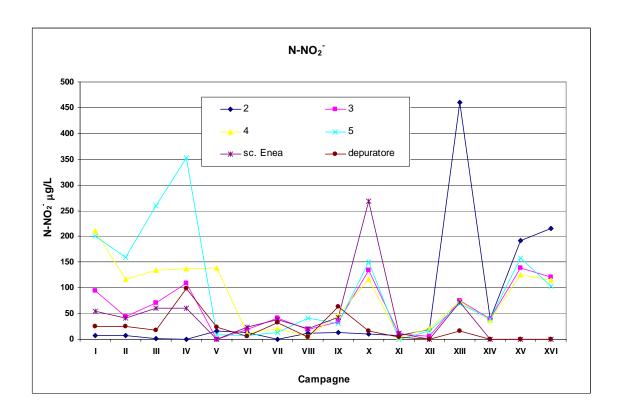



Figura 9. Rappresentazione grafica dei risultati relativi al parametro Ammoniaca

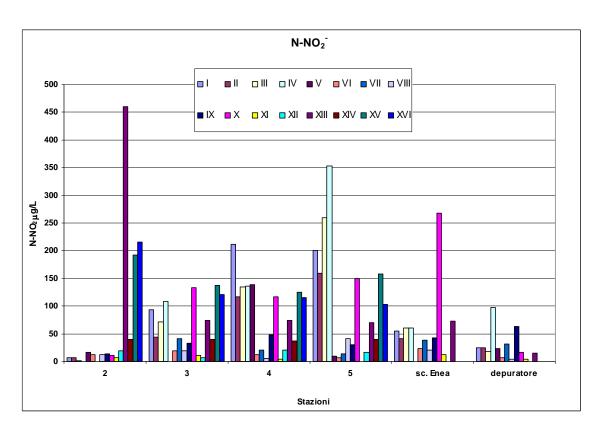
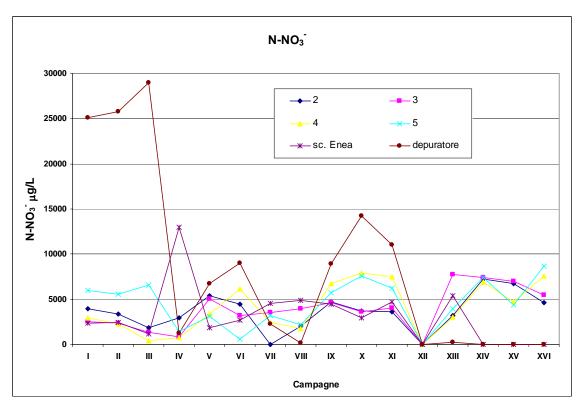



Figura 10. Rappresentazione grafica dei risultati relativi al parametro Nitriti

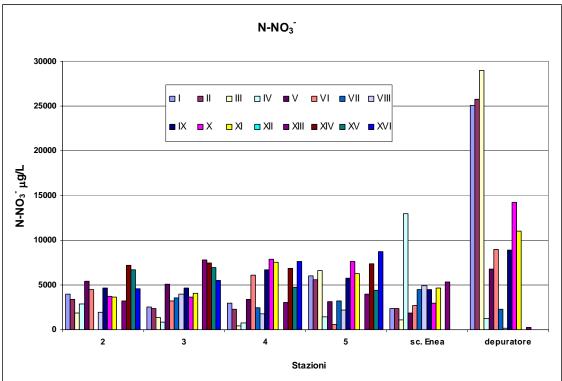
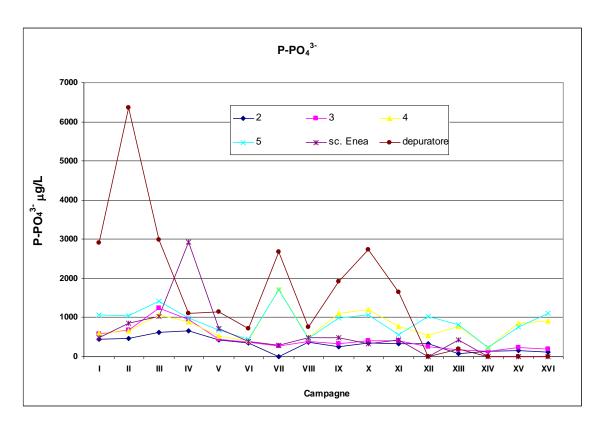



Figura 11. Rappresentazione grafica dei risultati relativi al parametro Nitrati

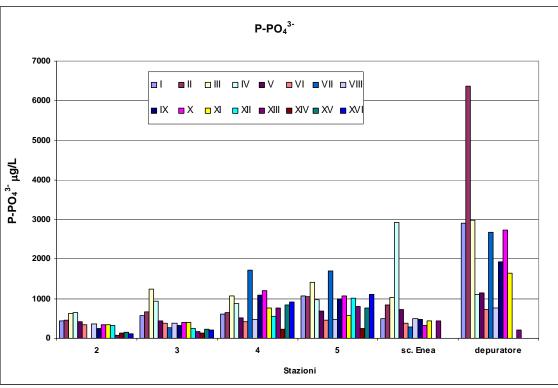


Figura 12. Rappresentazione grafica dei risultati relativi al parametro Ortofosfati

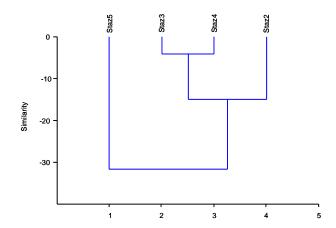


Figura 13. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 5 marzo 2002

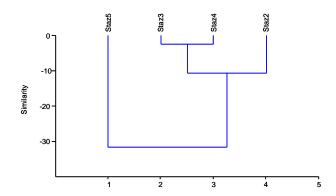


Figura 14. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 25 marzo 2002

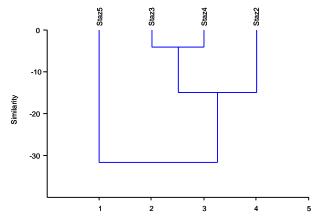


Figura 15. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 27 maggio 2002

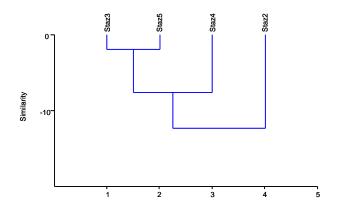


Figura 16. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 1 ottobre 2002

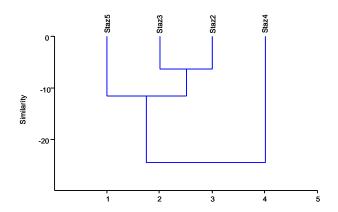


Figura 17. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 17 dicembre 2002

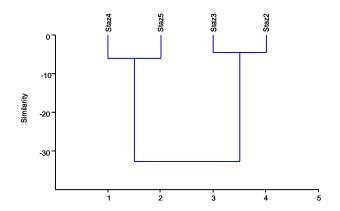


Figura 18. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 8 aprile 2003

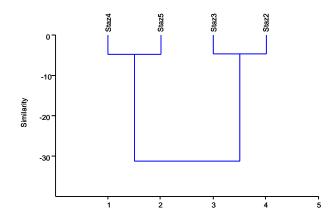


Figura 19. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 12 novembre 2003

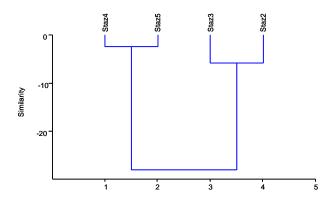


Figura 20. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 22 giugno 2004

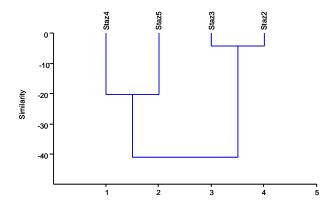


Figura 21. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 16 novembre 2004

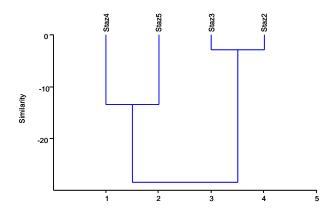


Figura 22. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 21 marzo 2005

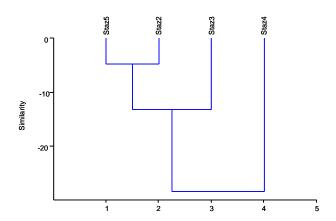


Figura 23. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 20 maggio 2005

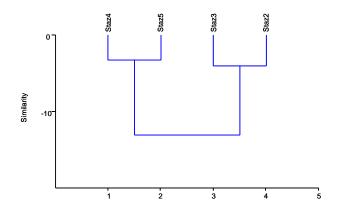


Figura 24. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 21 marzo 2006

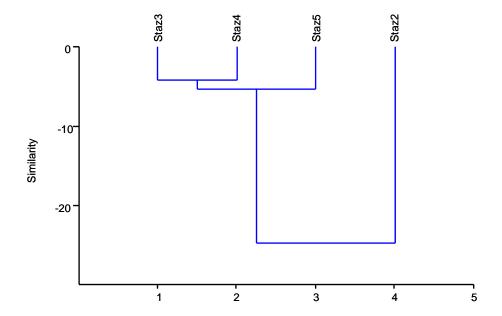


Figura 25. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 23 maggio 2006

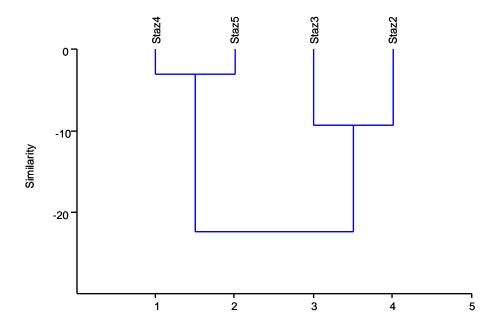


Figura 26. Classificazioni delle stazioni 2, 3, 4 e 5 in base ai parametri chimici e fisici in data 2 ottobre 2006

IBE

Nelle Tabelle seguenti (Tabelle 13-26) sono riportati i risultati dell'applicazione dell'indice biotico IBE, mentre nelle Figura 27-40 è rappresentata la classificazione delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati.

Tabella 13. IBE, campionamento 5 marzo 2002

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EFEMEROTTERI				
Baetis	-	-	-	+
Caenis	*	*	+	+
TRICOTTERI		-	-	-
Hydropsychidae	-	-	-	+
COLEOTTERI				
Hydrophilidae	*	-	-	-
ODONATI				
Calopteryx	*	+	+	-
Onychogomphus	-	-	+	-
Orthetrum	-	-	+	-
DITTERI				
Ceratopogonidae	+	-	+	-
Chironomidae	+	+	+	+
Limonidae	-	-	-	+
Sciomyzidae	-	-	-	+
Simulidae	*	-	- *	+
Tabanidae	-	-	*	-
ETEROTTERI				
Micronecta	-	-	-	+
GASTEROPODI				
Physa	-	+	-	-
BIVALVI				
Pisidium	-	-	+	+
IRUDINEI				
Dina lineata	-	+	+	-
OLIGOCHETI				
Lumbricidae	+	-	-	-
Tubificidae	-	-	+	-
Totale US	3	4	9	9
Valore IBE	2	2	5	6
Classe di Qualità	V	V	IV	III

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 14. IBE, campionamento 25 marzo 2002

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EFEMEROTTERI				
Baetis	-	-	-	+
Caenis	+	+	+	+
TRICOTTERI				
Hydropsychidae	-	-	-	+
COLEOTTERI				
Ditiscidae	-	-	+	-
ODONATI				
Calopteryx	+	+	+	+
Orthetrum	+	+	+	-
Plactynemis	-	-	+	+
DITTERI				
Ceratopogonidae	+	-	-	-
Chironomidae	+	*	-	+
GASTEROPODI				
Ancilidae	-	-	-	+
Bithinidae	-	-	-	+
Physidae	+	+	+	-
BIVALVI				
Pisidiidae	-	+	+	+
RUDINEI				
Dina lineata	+	+	+	+
Helobdella	+	+	-	-
OLIGOCHETI				
Lumbricidae	+	-	+	-
Tubificidae	-	+	-	+
Naididae	-	-	+	+
Fotale US	9	8	10	12
√alore IBE	5	5	5-6	7
Classe di Qualità	IV	IV	IV-III	III

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 15. IBE, campionamento 27 maggio 2002

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EFEMEROTTERI				
Baetis	-	-	-	+
Caenis	+	+	+	+
TRICOTTERI				
Hydropsychidae	-	-	-	+
ODONATI				
Calopteryx	-	-	-	+
Onycogomphus	+	+	-	-
Orthetrum	-	-	+	-
DITTERI				
Chironomidae	+	+	+	+
Psychodidae	-	*	-	*
Simulidae	+	-	-	+
GASTEROPODI				
Limnaea	-	+	-	-
Physidae	-	-	-	+
BIVALVI				
Pisidiidae	-	-	+	-
Sphaeriidae	-	+	-	-
IRUDINEI				
Dina lineata	-	+	-	-
Helobdella	+	-	+	-
OLIGOCHETI				
Tubificidae	+	+	_	-
	-	-		
Totale US	6	7	5	7
Valore IBE	5-4	5	4-5	6
Classe di Qualità	IV	IV	IV	III

 $^{^{\}star}$ taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 16. IBE, campionamento 1 ottobre 2002

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EFEMEROTTERI				
Baetis	-	-	-	*
Caenis	+	*	*	*
TRICOTTERI				
Hydropsychidae	-	-	*	*
Psycomidae	-	-	-	+
Polycentropodidae	-	-	-	+
ODONATI				
Calopteryx	+	+	-	-
Plactynemis	+	-	-	+
DITTERI				
Chironomidae	+	+	+	+
Simulidae	-	+	+	+
GASTEROPODI				
Ancilidae	-	-	-	+
Bithinidae	-	-	-	+
Physidae	-	+	-	-
Lymnaeidae	-	+	+	-
BIVALVI				
Sphaeriidae	+	-	-	-
IRUDINEI				
Dina lineata	-	+	+	+
Helobdella	-	+	+	+
OLIGOCHETI				
Tubificidae	+	+	+	-
	-	-	-	
Totale US	6	8	6	9
Valore IBE	5-4	3	3-2	6
Classe di Qualità	IV	V	V	III

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 17. IBE, campionamento 17 dicembre 2002

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EFEMEROTTERI				
Baetis	-	-	*	*
Caenis	+	*	+	+
TRICOTTERI	-	-	-	-
Hydropsychidae			*	+
ODONATI				
Orthetrum	+	-	-	_
Plactynemis	+	+	+	+
DITTERI				
Chironomidae	*	*	+	+
Ceratopogonidae	*	-	-	+
Tipulidae	-	-	*	+
Athericidae	-	-	-	*
Anthomidae	-	-	*	+
Simulidae	-	-	-	+
Tabanidae	-	-	*	-
GASTEROPODI				
Bithinidae	-	+	+	-
Physidae	-	+	-	+
Lymnaeidae	-	+	+	-
Planorbidae	+	-	-	-
BIVALVI				
Pisidiidae	-	+	-	-
Sphaeriidae	-	+	-	-
IRUDINEI				
Erpobdella octoculata	-	+	-	+
Dina lineata	+	+	+	+
Helobdella	-	-	+	-
OLIGOCHETI				
Lumbricidae	-	-	-	+
Naididae	-	-	+	+
Tubificidae	+	+	+	+
Totale US	6	9	9	14
Valore IBE	5-4	3	5	7
Classe di Qualità	IV	V	IV	III

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 18. IBE, campionamento 8 aprile 2003

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5	Fosso Rosciolo
EFEMEROTTERI					
Caenis	+	+	+	+	+
TRICOTTERI					
Psychomyiidae	-	-	-	+	-
ODONATI					
Onychogomphus	-	-	+	-	-
Calopteryx	+	-	-	+	-
Orthetrum	-	-	+	-	+
Plactynemis	+	-	-	+	+
DITTERI					
Chironomidae	+	+	+	+	+
Simulidae	-	*	-	-	+
CROSTACEI					
Asellidae	-	-	-	-	+
GASTEROPODI					
Planorbidae	-	+	-	-	-
Bithinidae	-	-	+	+	-
Lymnaeidae	-	+	-	+	-
Ancylidae	+	-	-	-	-
BIVALVI					
Pisidiidae	+	+	-	+	-
Sphaeriidae	-	-	+	-	-
IRUDINEI					
Dina lineata	+	+	+	+	-
OLIGOCHETI					
Lumbricidae	-	-	-	+	_
Tubificidae	-	+	+	-	+
Totale US	7	7	8	10	7
Valore IBE	5	5	5	6-7	5
Classe di Qualità	IV	IV	IV	III	IV

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 19. IBE, campionamento 27 maggio 2003

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5	Fosso Rosciolo
EFEMEROTTERI					
Baetis	-	-	-	-	-
Caenis	-	+	+	+	+
TRICOTTERI					
Hydropsichidae	-	-	-	+	-
Psychomidae	-	-	-	+	-
Polycentropodidae	-	-	+	-	-
COLEOTTERI					
Hydrophilidae	-	-	-	+	+
Dytiscidae	-	-	-	-	+
ODONATI					
Orthetrum	_	+	_	-	_
Plactynemis	-	+	+	+	_
DITTERI		-		· · · · · · · · · · · · · · · · · · ·	
Chironomidae	_	4	+	+	*
Ceratopogonidae	_	-	-	<u> </u>	_
Tipulidae	_	+	-	-	-
Athericidae	_	· -	_	_	_
Limonidae	_	-	_	+	_
Simulidae	_	-	_	+	_
Tabanidae	_	-	_	· -	_
CROSTACEI					
Asellidae		_	_	_	*
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
GASTEROPODI					
Planorbidae	-	-	-	-	-
Bithinidae	-	+	+	-	+
Physidae	-	-	-	-	+
Ancylidae	-	+	+	+	-
BIVALVI					
Pisidiidae	-	+	-	-	+
Sphaeriidae	-	+	+	-	-
IRUDINEI					
Erpobdella octoculata	-	-	-	-	-
Dina lineata	-	+	+	-	+
Helobdella	-	-	-	-	-
OLIGOCHETI					
Lumbricidae	-	-	-	-	-
Naididae	-	-	-	-	-
Tubificidae	-	+	+	-	+
Totale US	-	11	9	10	9
Valore IBE	-	6-5	5	6-7	5
Classe di Qualità	-	III-IV	IV	III	IV

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 20. IBE, campionamento 3 maggio 2004

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5	Arrone 6	Arrone 7
EFEMEROTTERI						
Caenis	+*	+	+	*	+	+
Baetis	-	-	-	*	*	+
TRICOTTERI						
Psychomyiidae	-	-	-	-	-	-
COLEOTTERI						
Dytiscidae	-	-	*	-	-	-
ODONATI						
Onychogomphus	_	-	_	-	-	_
Calopteryx	_	-	_	-	-	+
Orthetrum	_	-	+	-	-	-
Plactynemis	-	-	+	-	-	-
DITTERI						
Chironomidae	+	+	+	+	+	+
Tipuldae	+	-	*	-	-	-
Anthomyidae	-	*	-	-	-	_
Simulidae	+	*	-	+	-	+
CROSTACEI						
Asellidae	_	-	-	-	+	+
GASTEROPODI						
Physidae	_	-	+	-	-	_
Planorbidae	_	-	<u>-</u>	-	-	_
Bithinidae	-	-	-	-	-	-
Lymnaeidae	_	-	-	-	-	-
Ancylidae	-	-	-	-	-	-
BIVALVI						
Pisidiidae	_	-	+	-	-	_
Sphaeriidae	_	-	-	-	-	-
IRUDINEI						
Dina lineata	_	_	+	+	+	+
Helobdella	_	_	-	-	+	+
OLIGOCHETI						· ·
Naididae	_	_	+	_	_	+
Lumbricidae	-	- -	-	-	-	T
Tubificidae	+	+	+	+	+	+
Totale US	4	3	9	4	7	10
Valore IBE	2	4	5	2	5	6
Classe di Qualità	V	IV	IV	V	IV	III

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * *taxon* da escludere al fine del calcolo dell'IBE poiché proveniente da *drift* o avente respirazione aerea

Tabella 21. IBE, campionamento 22 giugno 2004

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	+	*	-	+
Caenis	+	+	+	+
TRICOTTERI				
Hydropsichidae	-	-	-	+
Hydroptilidae	-	-	*	-
Polycentropodidae	-	-	-	-
COLEOTTERI				
Eliminthidae	*	-	-	*
Hydraenidae	-	-	-	+
DITTERI				
Chironomidae	+	+	+	+
Ceratopogonidae	-	- -	-	-
Tipulidae	+	-	-	*
Simulidae	+	+	*	+
Tabanidae	-	-	-	-
CROSTACEI				
Asellidae	-	-	-	*
GASTEROPODI				
Planorbidae	_	_	_	_
Limneidae	+	+	-	-
Physidae	+	·	+	+
Ancylidae	-	+	-	+
TRICLADI				
Dugesia	-	-	_	-
BIVALVI				
Pisidiidae	_	_	_	_
Sphaeriidae	-	-	-	-
IRUDINEI				
Erpobdella octoculata			+	
Dina lineata	+	_	+	+
Helobdella	-	-	-	-
OLIGOCHETI				
Lumbricidae				
Naididae	+	-	-	+
Tubificidae	+	+	_	+
i ubilicidae	т	т		т
Totale US	10	5	5	12
Valore IBE	6	4	4	7
Classe di Qualità	ĬĬĬ	١٧	IV	ÍII

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * *taxon* da escludere al fine del calcolo dell'IBE poiché proveniente da *drift* o avente respirazione aerea

Tabella 22. IBE, campionamento 16 novembre 2004

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	-	+	+	+
Caenis	*	+	+	+
TRICOTTERI				
Hydropsichidae	-	-	*	-
Hydroptilidae	-	-	*	+
ODONATI				
Onychogomphus	-	-	-	-
Calopteryx	-	-	-	-
Orthetrum	-	-	-	-
Plactynemis	-	-	+	+
DITTERI				
Chironomidae	*	+	+	+
Ceratopogonidae	-	-	-	-
Tipulidae	-	-	*	-
Athericidae	-	-	*	-
Empididae	-	-	+	-
Simulidae	-	-	+	*
Tabanidae	-	-	-	-
CROSTACEI				
Asellidae	-	-	-	-
GASTEROPODI				
Physidae	-	+	-	-
Ancylidae	-	-	-	-
TRICLADI				
Dugesia	-	+	-	-
IRUDINEI				
Erpobdella octoculata				
Dina lineata		+	+	
OLIGOCHETI				
Lumbricidae	_	+	-	_
Naididae	-	-	-	-
Tubificidae	-	+	+	+
Totale US	0	8	8	6
Valore IBE	-	6	6	6
Classe di Qualità	-	III	III	III

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * *taxon* da escludere al fine del calcolo dell'IBE poiché proveniente da *drift* o avente respirazione aerea

Tabella 23. IBE, campionamento 24 maggio 2005

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	*	*	*	+
Caenis	-	*	-	-
TRICOTTERI				
Hydropsichidae	-	-	-	+
COLEOTTERI				
Hydrophilidae	-	-	*	-
DITTERI				
Chironomidae	+	+	+	+
Tipulidae	-	-	-	*
Psychodidae	*	*	-	-
Simulidae	*	+	+	+
CROSTACEI				
Asellidae	*	+	*	-
GASTEROPODI				
Lymnaea	+	-	-	-
Physa	+	+	+	-
Ancylus	-	+	-	+
OLIGOCHETI				
Tubificidae	-	+	-	+
Totale US	3	6	3	6
Valore IBE	2	4	2	6
Classe di Qualità	V	IV	V	III

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle;

Tabella 24. IBE, campionamento 21 marzo 2006

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	+	+	*	+
Caenis	+	+	*	+
DITTERI				
Chironomidae	+	+	*	+
Psychodidae	-	-	-	*
Simulidae	*	*	*	-
GASTEROPODI				
Lymnaea	-	-	-	+
Physa	-	+	-	-
Ancylus	-	+	-	+
IRUDINEI				
Erpobdella	-	+	-	+
OLIGOCHETI				
Lumbricidae	-	-	-	+
Tubificidae	+	+	+	+
Totale US	4	7	1	8
Valore IBE	5	6	1	6
Classe di Qualità	ΙV	iii	V	III

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * *taxon* da escludere al fine del calcolo dell'IBE poiché proveniente da *drift* o avente respirazione aerea

Tabella 25. IBE, campionamento 23 maggio 06

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	+	+	+	+
Caenis	*	-	*	*
TRICOTTERI				
Hydropsichidae	-	-	*	*
COLEOTTERI				
Hydrophilidae	*	*	-	-
DITTERI				
Anthomyidae	+	-	-	-
Chironomidae	+	+	+	+
Tipulidae	-	+	-	-
Simulidae	+	+	+	+
CROSTACEI				
Asellidae	-	-	-	*
GASTEROPODI				
Lymnaea	-	-	-	+
Physa	+	-	+	+
Ancylus	+	+	-	+
IRUDINEI				
Dina	+	-	+	+
OLIGOCHETI				
Tubificidae	+	+	+	+
Totale US	8	6	6	8
Valore IBE	5	5	5	5
Classe di Qualità	IV	IV	IV	IV

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle; * taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

Tabella 26. IBE, campionamento 2 ottobre 2006

	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
EFEMEROTTERI				
Baetis	+	+	+	+
Caenis	+	+	+	+
COLEOTTERI				
Elmidae	-	-	-	*
ODONATI				
Onychogomphus	+	+	+	-
Calopteryx	-	+	-	+
Orthetrum	-	+	-	-
Platycnemis	-	+	-	-
Ischnura	-	-	-	+
DITTERI				
Anthomyidae	-	-	-	+
Chironomidae	+	+	+	+
Simulidae	+	-	+	+
CROSTACEI				
Palaemonidae	-	*	-	*
GASTEROPODI				
Physa	+	+	+	+
Ancylus	+	+	+	-
BIVALVI				
Pisidium	+	+	+	-
IRUDINEI				
Erpobdella	_	+	-	+
Dina	_	<u>.</u>	-	+
OLIGOCHETI				-
Lumbricidae	_	_	_	_
Tubificidae	_	+	+	_
. asmoidae		<u>'</u>	<u>'</u>	
Totale US	8	21	9	9
Valore IBE	6	7	6	6
Classe di Qualità	III	III	III	III

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle;

^{*} taxon da escludere al fine del calcolo dell'IBE poiché proveniente da drift o avente respirazione aerea

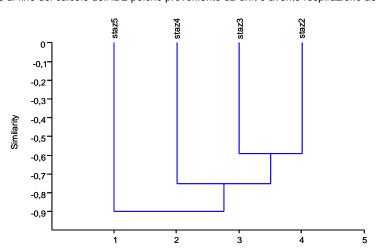


Figura 27. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 5 marzo 2002

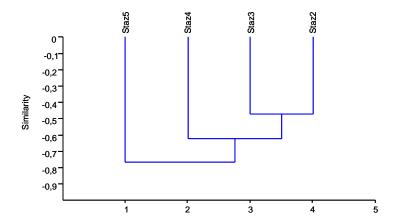


Figura 28. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 25 marzo 2002

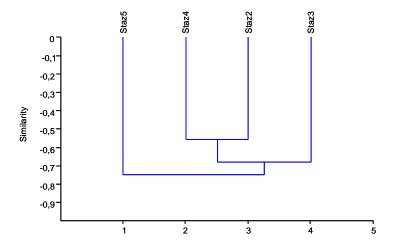


Figura 29. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 27 maggio 2002

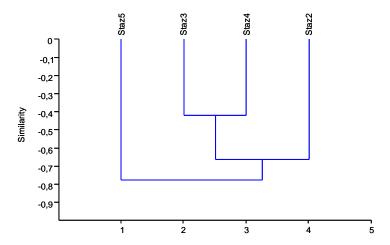


Figura 30. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data1 ottobre 2002

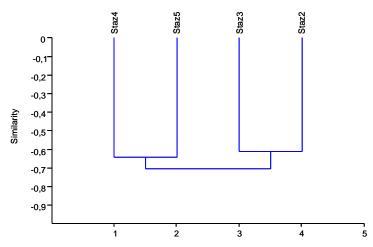


Figura 31. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 27 dicembre 2002

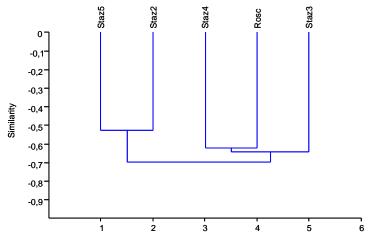


Figura 32. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 8 aprile 2003

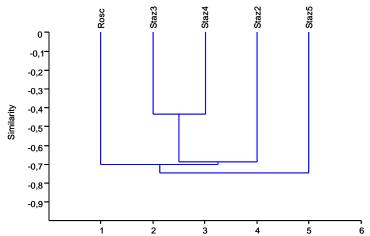


Figura 33. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 27 maggio 2003

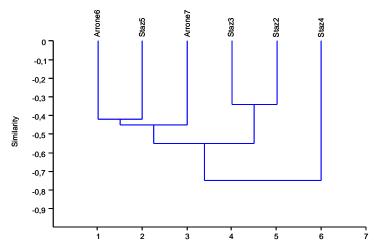


Figura 34. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 3 maggio 2004

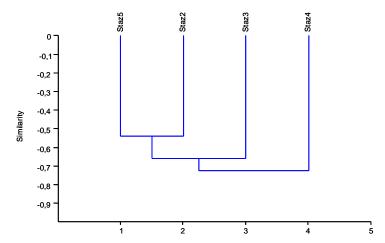


Figura 35. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 22 giugno 2004

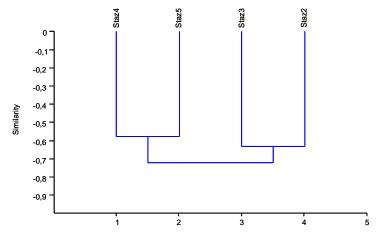


Figura 36. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 16 novembre 2004

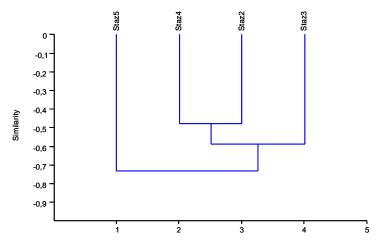


Figura 37. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 24 maggio 2005

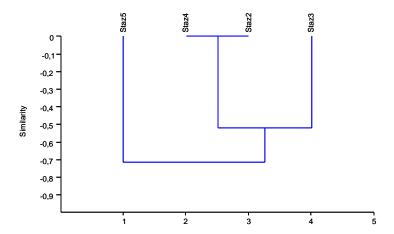


Figura 38. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 21 marzo 2006

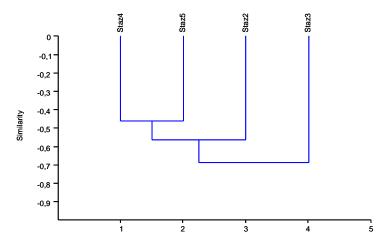


Figura 39. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 23 maggio 2006

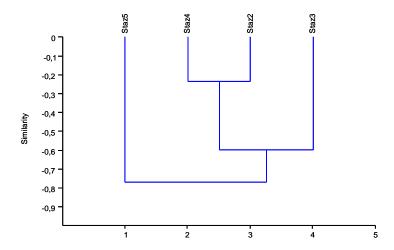


Figura 40. Classificazioni delle stazioni 2, 3, 4 e 5 (Arrone e F. Rosciolo quando presenti) in base alla composizione tassonomica delle comunità di macroinvertebrati in data 2 ottobre 2006

Descrizione delle comunità macrobentoniche tramite metriche

Secondo le richieste della Direttiva Europea sulle Acque 2000/60/CE (Unione Europea, 2000; Unione Europea, 2006) lo studio delle comunità biotiche dei corsi d'acqua deve riguardare sia la composizione tassonomica sia le abbondanze dei *taxa* che le compongono, standardizzando i valori rispetto ad una superficie di campionamento definita. Il possesso di dati quantitativi relativi a superfici note permette infatti il calcolo di "metriche" (grandezze calcolate sui dati ottenuti dalla conta dei macroinvertebrati raccolti) in grado di descrive con accuratezza e precisione le condizioni in cui versano le comunità biologiche e quindi i corsi d'acqua che le ospitano. Di conseguenza, il metodo IBE, non rispondendo efficacemente alla Direttiva 20000/60, è in fase di sostituzione con indici basati proprio su queste metriche. Alcuni esempi di metriche basate sui macroinvertebrati sono:

- EPT (Ephemeroptera-Plecoptera-Tricoptera): si calcola sommando le abbondanze relative degli ordini degli Efemerotteri, Plecotteri e Tricotteri rispetto al totale di organismi che compongono la comunità studiata. Questi tre ordini racchiudono tutti gli organismi più sensibili alle fonti di disturbo dei corsi d'acqua. La metrica ha un valore che può variare da 0 a 1.
- 1-GOLD (1- Gasteropoda, Oligochaeta, Diptera): si calcola sottraendo all'unità le abbondanze relative dei taxa appartenenti ai Gasteropodi, agli Oligocheti e ai Ditteri. Si tratta di taxa all'interno dei quali sia annoverano specie tra le più tolleranti alle fonti di disturbo dei corsi d'acqua. Anche questa metrica può avere un valore che varia da 0 a 1.
- Shannon per Famiglie: si calcola secondo la formula H_s= -Σ_(da 1 a n) h* ln h, dove h rappresenta la proporzione di organismi che appartengono a ciascuno degli n taxa che costituiscono la comunità. Il risultato è tanto più elevato tanto più diversificata e bilanciata è la comunità di organismi. Questa metrica ha un valore che va da 0 a infinito.
- Numero di Famiglie: si calcola contando il numero di famiglie che costituiscono la comunità. È anch'esso una misura della biodiversità della comunità, talvolta preferito a Shannon perché meno soggetto a distorsioni legate all'ecologia dei diversi taxa. Può assumere un valore che va da 0 a infinito.

In questo studio è possibile applicare, a titolo di esempio, la metrica "Numero di Famiglie". In Tabella 27 e in Figura 41 sono riportati i risultati.

Tabella 27. Applicazione della metrica "Numero di Famiglie"

Numero di Famiglie	Stazione 2	Stazione 3	Stazione 4°	Stazione 5
5 marzo 2002	7	5	10	9
25 marzo2002	9	9	10	12
27 maggio 2002	6	8	5	8
1 ottobre 2002	12	8	9	6
17 dicembre 2002	8	11	14	16
8 aprile 2003	7	8	8	10
3 maggio 2004	4	5	10	4
22 giugno 2004	11	5	7	15
16 novembre 2004	2	8	12	7
24 maggio 2005	7	9	6	7
21 marzo 2006	5	8	5	9
23 maggio 2006	10	7	8	11
2 ottobre 2006	8	12	9	11

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle

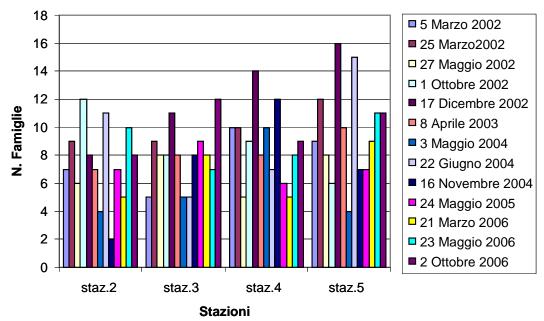


Figura 41. Applicazione della metrica "Numero di Famiglie"

IFF

Nella Tabella 28 vengono riportati i risultati dell'applicazione dell'IFF. Tali risultati sono riassunti graficamente in Figura 42.

Tabella 28. IFF Campionamento 5 marzo 2002

	Stazi	one 2	Stazi	one 3	Stazi	one 4	Stazi	one 5
	sx	dx	sx	dx	sx	dx	sx	dx
Punteggio IFF Livello di Funzionalità	128 III	136 III	128 III	136 III	146 III	146 III	260 I-II	260 I-II

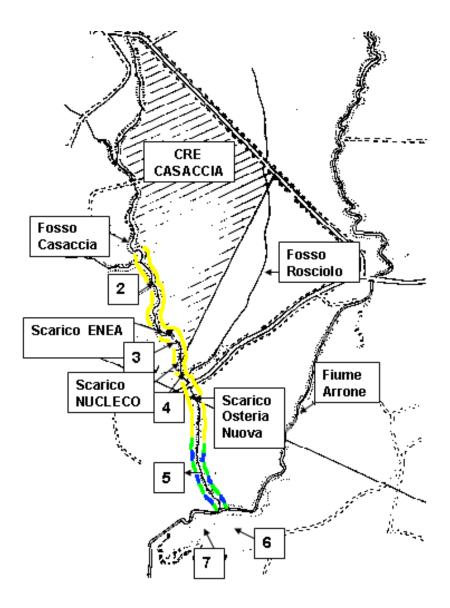


Figura 42. Rappresentazione grafica dell'applicazione dell'indice IFF nel 2002

Ecotossicologia

La tossicità acuta rilevata con il batterio Vibrio fischeri è espressa dai valori di:

- EC50: percentuale di sedimento (peso secco) che causa una riduzione del 50% dell'intensità luminosa dei batteri;
- EC50-l.c.: limiti di confidenza al 95%;
- S: la pendenza della retta di regressione;
- R: coefficiente di correlazione della retta di regressione.

Nelle Tabelle 29-33 e nella Figura 43 viene riportato il riepilogo per ogni stazione di prelievo; la tossicità è espressa come valore di Unità di Tossicità (UT) definiti dalla relazione: UT= 1/EC50 x 100, allo scopo di fornire una relazione diretta tra tossicità e valore che la esprime.

La tossicità cronica rilevata con l'ostracode *Heterocypris incongruens* è espressa dal valore medio percentuale di mortalità e di inibizione della crescita, riportati nelle Tabelle 34-37 e nelle Figure 44-45.

Tabella 29. Tossicità acuta con Vibrio fischeri

	Staz. 2	Staz. 3	Staz. 4°	Staz. 5	Fiume	Arrone	Fosso
					Staz. 6	Staz. 7	Rosciolo
5 marzo 2002							
EC50	10	1,2	19,6	8,9	-	-	-
EC50 l.c.	8,6-12,2	0,9-1,4	14,5-26,6	4,6-17,4	-	-	-
S	1.05	1,06	0,7	1,2	-	-	-
R	0,99	0,99	0,98	0,99	-	-	-
Tossicità	bassa	bassa	assente	bassa	-	-	-
25 marzo 2002							
EC50	7,8	5,1	22,2	14,9	-	-	-
EC50 l.c.	7,4-8,4	4,9-5,3	13,0-37,7	10,7-20,9	-	-	-
S	1,1	0,95	1,3	0,94	-	-	-
R	0,99	0,99	0,99	0,99	-	-	-
Tossicità	bassa	bassa	assente	assente	-	-	-
27 maggio 2002							
EC50	11,1	4,3	17,3	13,5	12,1	1,4	-
EC50 l.c.	6,3-19,3	3,6-5,1	8,3-36,2	8,0-23,0	6,0-24,1	1,3-1,5	-
S	1,0	1,1	0,77	1,4	0,97	0,85	-
R	0,99	0,99	0,98	0,99	0,99	0,99	-
Tossicità	assente	bassa	assente	assente	assente	bassa	-
1 ottobre 2002							
EC50	8,3	1,7	1,3	10	-	-	-
EC50 l.c.	4,4-15,6	1,6-1,8	1,1-1,6	8,8-12,6	-	-	-
S	0,97	1,1	1,2	1,1	-	-	-
R Tagaigità	0,99	0,99	0,99	0,99	-	-	-
Tossicità	bassa	bassa	bassa	bassa	-	-	-
17 dicembre 2002		4-4					
EC50	9,2	17,1	2,9	7,9	-	-	-
EC50 l.c.	6,9-12,3	8,3-35,1	2,6-3,2	7,3-8,6	-	-	-
S R	1,1	0,95	1,4	1,1	-	-	-
Tossicità	0,99 bassa	0,99 assente	0,99 bassa	0,99 bassa	-	-	-
	Dassa	assente	Dassa	Dassa	-		
8 aprile 2003	F.C	0	00.0	0.7			2.5
EC50 EC50 l.c.	5,6	6	28,0	9,7	-	-	2,5
S S	4,5-7,1	5,1-8,8 1,1	26,3-29,6 0,7	5,6-17,7	-	-	2,3-2,7 1,2
R	1,0 0,99	0,98	0,7	0,8 0,96	-	-	0,99
Tossicità	bassa	bassa	assente	bassa	-	_	bassa
	Daooa	Buccu	acconto	Duoca			Daooa
27 maggio 2003 EC50	*	0.4	1 1	2.0			1 2
EC50 EC50 l.c.	_	9,4 4,0-21,7	1,4 1,1-1,7	2,9 2,5-3,4	-	-	1,3 1,2-1,4
S S	-	0,9	1,1-1,7	0,86	-	-	0,9
R	_	0,92	0,99	0,99	_	_	0,99
Tossicità	-	bassa	bassa	bassa	-	-	bassa
11 novembre 2003	0.4	5 0	7.0	40.0			
EC50	2,1	5,3	7,6	10,3	-	-	-
EC50 l.c.	1,8-2,3	4,3-6,4	3,3-17,2	6,9-14,4	-	-	-
S R	1,2 0,99	1,2 0,99	1,9 0,96	1,4 0,98	-	-	-
Tossicità	0,99 bassa	0,99 bassa	0,96 bassa	assente	<u>-</u>	-	-
i ussiula	vassa	Dassa	Dassa	assente			

segue

continua

3 maggio 2004	6,0 5,0-7,2 1,2 0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98 assente	3,3 2,5-4,3 1,1 0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente	10,8 8,3-14,4 1,4 0,99 assente 15,3 10,9-21,4 1,2 0,98 assente	12,5 8,9-17,5 1,0 0,98 assente	0,9 0,75-1,1 1,1 0,99 media	
EC50 12,2 EC50 I.c. 10,1-14,6 S 1,2 R 0,99 Tossicità assente 22 giugno 2004 EC50 nc EC50 I.c S - R - Tossicità - 16 novembre 2004 EC50 I.c S - R - Tossicità - 16 novembre 2004 EC50 nc EC50 I.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 I.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	5,0-7,2 1,2 0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	2,5-4,3 1,1 0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente	8,3-14,4 1,4 0,99 assente 15,3 10,9-21,4 1,2 0,98 assente	8,9-17,5 1,0 0,98	0,75-1,1 1,1 0,99	- - - - - - - - - -
EC50 12,2 EC50 I.c. 10,1-14,6 S 1,2 R 0,99 Tossicità assente 22 giugno 2004 EC50 nc EC50 I.c S - R - Tossicità - 16 novembre 2004 EC50 I.c S - R - Tossicità - 16 novembre 2004 EC50 nc EC50 I.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 I.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	5,0-7,2 1,2 0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	2,5-4,3 1,1 0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente	8,3-14,4 1,4 0,99 assente 15,3 10,9-21,4 1,2 0,98 assente	8,9-17,5 1,0 0,98	0,75-1,1 1,1 0,99	- - - - - - - - - -
EC50 l.c. 10,1-14,6 S 1,2 R 0,99 Tossicità assente 22 giugno 2004	5,0-7,2 1,2 0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	2,5-4,3 1,1 0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente	8,3-14,4 1,4 0,99 assente 15,3 10,9-21,4 1,2 0,98 assente	8,9-17,5 1,0 0,98	0,75-1,1 1,1 0,99	- - - - - - - - -
S 1,2 R 0,99 Tossicità assente 22 giugno 2004 EC50 nc EC50 l.c S - R - Tossicità - 16 novembre 2004 EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	1,2 0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	1,1 0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente 5,3 4,4-6,5	1,4 0,99 assente 15,3 10,9-21,4 1,2 0,98 assente	1,0 0,98	1,1 0,99	- - - - - - - -
R 0,99 Tossicità assente 22 giugno 2004 EC50 nc EC50 l.c S - R - Tossicità - 16 novembre 2004 EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	0,99 bassa 10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	0,99 bassa 11,7 8,3-16,3 1,3 0,97 assente 5,3 4,4-6,5	0,99 assente 15,3 10,9-21,4 1,2 0,98 assente 6,1	0,98	0,99	- - - - - -
Tossicità assente 22 giugno 2004	10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	11,7 8,3-16,3 1,3 0,97 assente	15,3 10,9-21,4 1,2 0,98 assente			- - - - - -
22 giugno 2004	10,5 7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	11,7 8,3-16,3 1,3 0,97 assente 5,3 4,4-6,5	15,3 10,9-21,4 1,2 0,98 assente	- - - - -	- - - - -	- - - -
EC50 nc EC50 l.c S - R - Tossicità - 16 novembre 2004 EC50 nc EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	8,3-16,3 1,3 0,97 assente 5,3 4,4-6,5	10,9-21,4 1,2 0,98 assente	- - - -	- - - -	- - - -
EC50 l.c S - R - Tossicità - 16 novembre 2004 EC50 nc EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	7,5-15,7 1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	8,3-16,3 1,3 0,97 assente 5,3 4,4-6,5	10,9-21,4 1,2 0,98 assente	- - - -	- - - -	- - - -
S - R - Tossicità	1,3 0,98 assente 11,4 7,7-16,9 1,1 0,98	1,3 0,97 assente 5,3 4,4-6,5	1,2 0,98 assente 6,1	- - -	- - -	- - -
R - Tossicità - 16 novembre 2004 EC50 nc EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	0,98 assente 11,4 7,7-16,9 1,1 0,98	0,97 assente 5,3 4,4-6,5	0,98 assente 6,1	- - -	- - -	- - -
Tossicità - 16 novembre 2004	11,4 7,7-16,9 1,1 0,98	5,3 4,4-6,5	assente 6,1	-	-	-
16 novembre 2004	11,4 7,7-16,9 1,1 0,98	5,3 4,4-6,5	6,1	-	-	-
EC50 nc EC50 l.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	7,7-16,9 1,1 0,98	4,4-6,5				
EC50 I.c S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 I.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	7,7-16,9 1,1 0,98	4,4-6,5				
S - R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	1,1 0,98	, ,		-	-	-
R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	0,98	12	4,6-8,1	-	-	-
R - Tossicità - 21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	0,98		1,1	-	-	-
Tossicità - 21 marzo 2005		0,99	0,98	-	-	-
21 marzo 2005 EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa		bassa	bassa	-	-	-
EC50 6,7 EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa						
EC50 l.c. 2,0-13,8 S 0,92 R 0,89 Tossicità bassa	5,3	11,9	10,6	_	_	_
S 0,92 R 0,89 Tossicità bassa	4,5-9,7	8,4-27,2	6,6-29,8	_	_	_
R 0,89 Tossicità bassa		, ,	, ,	-	-	-
Tossicità bassa	0,97	1,2	1,6	-	-	-
	0,97	0,98	0,97	-	-	-
24 maggio 2005	bassa	assente	assente	-	-	-
EC50 12,0	11,4	8,2	12,6	-	-	-
EC50 l.c. 6,9-36,8	7,7-16,9	6,3-8,1	9,0-17,6	-	-	-
S 0,7	1,1	1,3	1,2	-	-	-
R 0,95	0,98	0,99	0,98	-	-	-
Tossicità assente	assente	bassa	assente	-	-	-
24 marzo 2006						
EC50 3,4	nc	9,22	18,1	-	-	-
EC50 l.c. 0.5-34.1	_	8,9-9,5	7,21-42,2	_	-	_
S 0,5	_	0,9	0,7	_	-	_
R 0,85	_	0,99	0,80	_	_	_
Tossicità bassa	assente	bassa	assente	_	_	_
	docorno	bacca	acconta			
23 maggio 2006		5 0	0.4			
EC50 11,0	nc	5,3	6,1	-	-	-
EC50 l.c. 10,0-11,1	-	4,4-6,5	4,6-8,1	-	-	-
S 0,98	-	1,2	1,1	-	-	-
R 0,99	-	0,99	0,98	-	-	-
Tossicità assente	assente	bassa	bassa	-	-	-
2 ottobre 2006						
EC50 0,38	nc	18,0	11,6	-	-	-
EC50 l.c. 0,25-1,13	-	8,2-39,6	6,1-39,0	-	-	-
S 0,67	-	1,24	0,53	-	-	-
R 0,89	-	0,89	0,95	_	-	-
Tossicità media	assente	assente	assente	_	-	-

[°] la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle
nc il valore di EC50 non è calcolabile in quanto si rilevano effetti tossici soltanto alla massima concentrazione analizzata
* non campionato

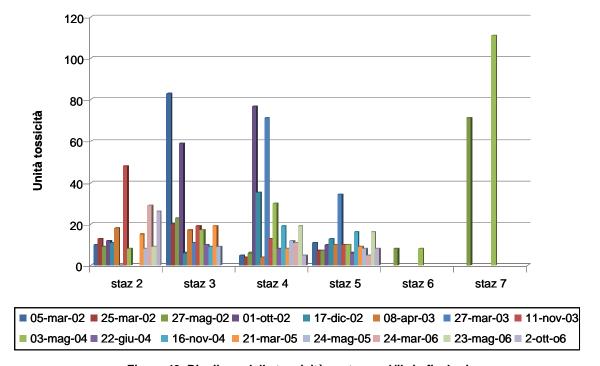


Figura 43. Riepilogo della tossicità acuta con Vibrio fischeri

Tabella 30. Tossicità cronica con Heterocypris incongruens

	Staz. 2	Staz. 3	Staz. 4°	Staz. 5	Arr	one	Fosso
					Staz. 6	Staz. 7	Rosciolo
5 marzo 2002							
% mortalità	13	18	0	*	-	-	-
Tossicità	assente	assente	assente	*	-	-	-
% inibizione crescita	49	32	29	*	-	-	-
Tossicità	media	bassa	bassa	*	-	-	-
25 marzo 2002							
% mortalità	28	27	5	5	-	-	-
Tossicità	bassa	bassa	assente	assente	-	-	-
% inibizione crescita	56	25	19	30	-	-	-
Tossicità	media	bassa	assente	bassa	-	-	-
27 maggio 2002							
% mortalità	42	35	12	25	22	32	-
Tossicità	media	bassa	assente	bassa	bassa	bassa	-
% inibizione crescita	47	48	39	12	24	66	-
Tossicità	media	media	bassa	assente	bassa	alta	-
17 dicembre 2002							
% mortalità	25	22	20	12	_	_	_
Tossicità	bassa	bassa	bassa	assente	-	-	-
% inibizione crescita	40	25	41	35	-	-	-
Tossicità	media	bassa	media	bassa	-	-	-
8 aprile 2003							
% mortalità	31	23	14	18	-	-	na
Tossicità	bassa	bassa	assente	assente	-	-	-
% inibizione crescita	42	55	25	37	-	-	na
Tossicità	media	media	bassa	bassa	-	-	-

segue

			•		
C	O¥	1.11	n	11	6

	Staz. 2	Staz. 3	Staz. 4°	Staz. 5	Arr	one	Fosso
				•	Staz. 6	Staz. 7	Rosciolo
11 novembre 2003							
% mortalità	8	15	12	10	-	-	-
Tossicità	assente	assente	assente	assente	-	-	-
% inibizione crescita	25	31	18	23	-	-	-
Tossicità	bassa	bassa	assente	bassa	-	-	-
3 maggio 2004							
% mortalità	21	37	12	24	24	53	-
Tossicità	bassa	bassa	assente	bassa	bassa	media	-
% inibizione crescita	43	58	29	36	36	71	-
Tossicità	media	media	bassa	bassa	bassa	alta	-
16 novembre 2004							
% mortalità	28	31	18	18	-	_	-
Tossicità	bassa	bassa	assente	assente	-	-	-
% inibizione crescita	36	45	35	30	-	-	-
Tossicità	bassa	media	bassa	bassa	-	-	-
24 maggio 2005							
% mortalità	35	24	41	38	-	-	-
Tossicità	bassa	bassa	media	bassa	-	_	_
% inibizione crescita	36	45	42	47	-	-	-
Tossicità	bassa	media	media	media	-	-	-
2 ottobre 2006							
% mortalità	47	17	14	22	-	_	_
Tossicità	media	assente	assente	bassa	-	-	-
% inibizione crescita	58	35	28	25	-	-	-
Tossicità	media	bassa	bassa	bassa	-	_	_

la stazione 4 dal campionamento aprile 2003 è stata spostata venti metri a valle non è stato possibile effettuare la lettura del test

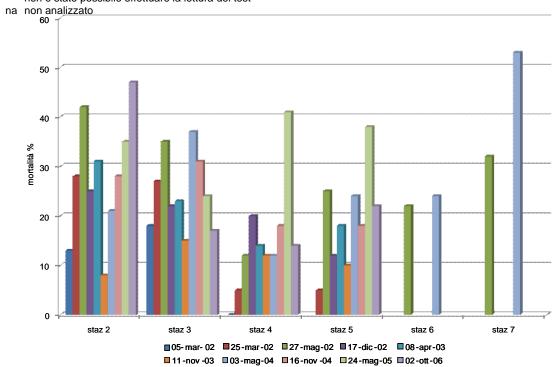


Figura 44 - Riepilogo della tossicità cronica con Heterocypris incongruens (mortalità)

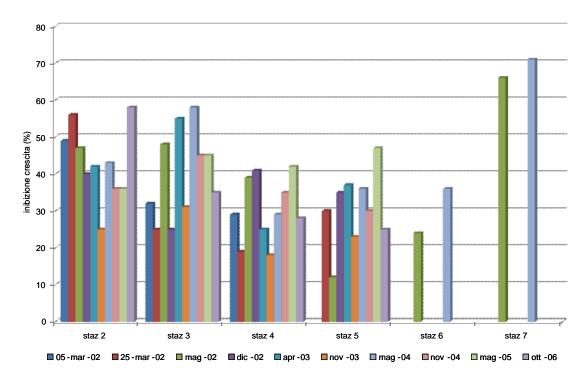


Figura 45 - Riepilogo della tossicità cronica con Heterocypris incongruens (inibizione crescita)

Diatomee bentoniche

L'analisi della comunità diatomica è stata effettuata nella campagna di campionamento di maggio 2006. Nelle quattro stazioni di campionamento sono state reperite e identificate in totale 36 specie e varietà di Diatomee bentoniche appartenenti a 19 generi (Tabella 31).

Tabella 31. Generi di Diatomee e numero di specie, campionamento del 23 maggio 2006

Genere	N. di specie
Nitzschia sp.	7
Navicula sp.	6
Amphora sp.	4
Surirella sp.	3
Cocconeis sp.	2
Achnanthidium sp	1
Caloneis sp.	1
Craticula sp.	1
Eolimna sp.	1
Fallacia sp.	1
Gomphonema sp.	1
Hantzschia sp.	1
Luticula sp.	1
Melosira sp.	1
Planothidium sp.	1
Rhoicosphenia sp.	1
Sellaphora sp.	1
<i>Tryblionella</i> sp.	1
<i>Ulnaria</i> sp.	1

I generi che hanno presentato il maggior numero di specie sono stati cinque: il genere Nitszchia A. H. Hassall (7 specie) e Navicula Bory *sensu lato* (6 specie), seguiti da Amphora C.G. Ehrenberg ex F.T. Kützing (4 specie), Surirella P. J.F. Turpin (3), Cocconeis (2). Gli altri 14 generi sono invece rappresentati nei campioni solo da una specie.

Il numero medio di specie raccolto per sito è stato di 24 con un minimo di 19 specie, reperito nella Stazione 2, ed un massimo di 26, registrato nella Stazione 5. Nella Tabella 32 vengono riportate sia la nomenclatura classica sia quella revisionata fornita dal programma OMNIDIA.

I valori dell'indice EPI-D dei siti di studio sono riportati nella Figura 46 e nella Tabella 32 mentre la lista completa delle specie è riportata in Tabella 33.

L'indice ha mostrato un andamento piuttosto simile nelle quattro stazioni, variando da una III classe ad una IV classe di qualità. La Stazione 2 ha presentato il valore più alto di 10,6 mentre la Stazione 5 quello più basso di 7,8.

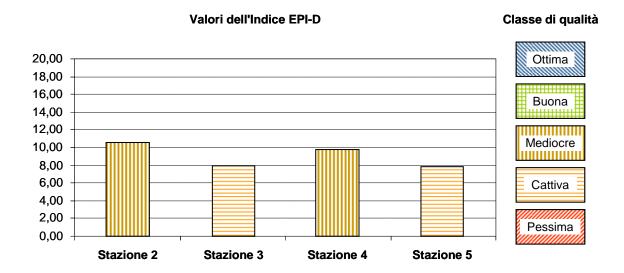


Figura 46. Diatomee, Andamento dell'Indice EPI-D del 23 maggio 2006

Tabella 32. Diatomee, indice EPI-D del 23 maggio 2006

	Stazione 2	Stazione 3	Stazione 4	Stazione 5
EPI-D scala 1-20	10,60	8,00	9,80	7,80
Classe di qualità	III	IV	III	IV
Giudizio di qualità	mediocre	cattiva	mediocre	cattiva
Colore	giallo	arancione	giallo	arancione

Tabella 33. Diatomee, campionamento del 23 maggio 2006

Codice OMNIDIA	Nomenclatura recente	Codice OMNIDIA	Nomenclatura precedente	St 2	St 3	St 4	St 5
PLFR	Planothidium frequentissimum (Lange-Bertalot) Round & Bukhtiyarova	ALFR	Achnanthes lanceolata (Breb.) Grun. ssp. frenientissima I ance-Bertalot	78	42	63	19
ADMI	Achnanthidium minutissimum (Kützing) Czarnecki	AMIN	Achnanthes minutissima Kützing	•	•	7	2
ACOP	Amphora copulata (Kützing) Schoeman & Archibald	ALIBB	Amphora libyca Ehrenberg	23	4	٠	က
AMMO	Amphora montana Krasske	AMMO	Amphora montana Krasske	•	_	4	4
APED	Amphora pediculus (Kützing) Grunow	APED	Amphora pediculus (Kützing) Grunow	1	22	7	٠
AVEN	Amphora veneta Kützing	AVEN	Amphora veneta Kützing	4	37	2	٠
CBAC	Caloneis bacillum (Grunow) Cleve	CBAC	Caloneis bacillum (Grunow) Cleve	'	2	٠	1
CPED	Cocconeis pediculus Ehrenberg	CPED	Cocconeis pediculus Ehrenberg	•	•	7	9
CPLI	Cocconeis placentula var. lineata (Ehrenberg) Van Heurck	CPLI	Cocconeis placentula var. lineata (Ehr.) Van Heurck	21	32	21	4
NNN	Ulnaria ulna (Nitzsch) Compère	FULN	Fragilaria ulna (Nitzsch) Lange-Bertalot	6	∞	∞	34
GPAR	Gomphonema parvulum (Kützing) Kützing	<u>GPAR</u>	Gomphonema parvulum (Kützing) Kützing	27	7	9/	27
HAMP	Hantzschia amphioxys (Ehrenberg) Grunow	HAMP	Hantzschia amphioxys (Ehrenberg) Grunow	_	~	•	٠
MVAR	Melosira varians Agardh	MVAR	Melosira varians Agardh	•	•	_	4
NCAR	Navicula cari Ehrenberg	NCAR	Navicula cari Ehrenberg	•	•	-	٠
NCTE	Navicula cryptotenella Lange-Bertalot	NCTE	Navicula cryptotenella Lange-Bertalot	9	•	45	42
NERI	Navicula erifuga Lange-Bertalot	NERI	Navicula erifuga Lange-Bertalot	က	•	•	•
LGOE	Luticula goeppertiana (Bleisch) Mann	NGOE	Navicula goeppertiana (Bleisch) H. L. Smith	•	•	•	2
CHAL	Craticula halophila (Grunow ex Van Heurck) Mann	NHAL	Navicula halophila (Grunow) Cleve	•	1	4	•
NMEN	Navicula menisculus Schumann	NMEN	Navicula menisculus Schumann	•	4	•	•
SPUP	Sellaphora pupula (Kützing) Mereschkowsky	NPUP	Navicula pupula Kützing	22	15	4	9
FSBM	Fallacia subhamulata (Grunow) Mann	NSBH	Navicula subhamulata Grunow	•	10	•	٠
ESBM	Eolimna subminuscula (Manguin) Moser, LB. & Metzeltin	NSBM	Navicula subminuscula Manguin	10	14	6	13
NVEN	Navicula veneta Kützing	NVEN	Navicula veneta Kützing	13	72	22	19
NVRO	Navicula viridula var. rostellata (Kützing) Cleve	NVRO	Navicula viridula var. rostellata (Kützing) Cleve	1	•	_	က
NAMP	Nitzschia amphibia Grunow	NAMP	Nitzschia amphibia Grunow	21	22	37	17
NCPL	Nitzschia capitellata Hustedt	NCPL	Nitzschia capitellata Hustedt	1	_	17	34
NCOM	Nitzschia communis Rabenhorst	NCOM	Nitzschia communis Rabenhorst	•	13	•	_
TAPI	Tryblionella apiculata Gregory	NCON	Nitzschia constricta (Kützing) Ralfs	15	17	٠	က
NEON	Nitzschia fonticola Grunow	NEON	Nitzschia fonticola Grunow	30	13	71	71
NINC	Nitzschia inconspicua Grunow	NINC	Nitzschia inconspicua Grunow	22	16	=	2
Z N N	Nitzschia linearis (Agardh) W. Smith	NLIN	Nitzschia linearis (Agardh) W. Smith	က	∞	16	32
NPAL	Nitzschia palea (Kützing) W. Smith	NPAL	Nitzschia palea (Kützing) W. Smith	24	တ	13	47
RABB	Rhoicosphenia abbreviata (Agardh) Lange-Bertalot	RABB	Rhoicosphenia abbreviata (Ag.) Lange-Bertalot	•	•	4	13
SANG	Surirella angusta Kützing	SANG	Surirella angusta Kützing	•	1	•	9
SBRE	Surirella brebissonii Krammer & Lange-Bertalot	SBRE	Surirella brebissonii Krammer & Lange-Bertalot	က	ω ·	4	7
SOVI	Surrella ovalis Brebisson	SOV	Surirella ovalis Brebisson	•	٦		ĺ
	Numero totale individui identificati Numero totale di specie identificate			400 19	408 25	401 25	424 26

DISCUSSIONE DEI RISULTATI E CONSIDERAZIONI CONCLUSIVE

I risultati delle analisi microbiologiche (Tabelle 8-10) mostrano per le quattro stazioni 2, 3, 4 e 5 valori piuttosto elevati soprattutto per quanto riguarda il parametro Coliformi totali. Il parametro è indicatore di un forte carico organico incidente sull'asta fluviale che favorisce la proliferazione della popolazione di microrganismi di origine ambientale. La presenza di Escherichia coli, indicatore di inquinamento di origine fecale, si mantiene in media piuttosto omogenea nelle quattro stazioni senza mostrare particolari picchi o tendenze. Stesso discorso può essere fatto per gli Enterococchi, microrganismi più legati alla presenza di reflui di origine animale. Un'analisi dei tre parametri microbiologici studiati stazione per stazione (Figure 3-8) evidenzia come in tutti i siti di campionamento si riscontrino valori più elevati di 10³ UFC/100 mL, eccettuata quella più a monte (stazione 2), dove le concentrazioni si attestano intorno a valori leggermente più bassi. L'apporto di acque nere riversate nel corso d'acqua sia dallo scarico Enea sia dallo scarico del depuratore di Osteria Nuova concorrono, indipendentemente dalla loro ubicazione (variata a fine 2002), a mantenere elevate le concentrazioni batteriche nel fosso della Casaccia, impedendo che abbia luogo il naturale processo autodepurativo. In due occasioni sono stati rilevati i valori di concentrazioni batteriche nel fiume Arrone (Tabella 9) e nel fosso Rosciolo (Tabella 10), con risultati sovrapponibili a quelli ottenuti per il fosso della Casaccia.

Le analisi chimiche si sono concentrate su vari parametri inorganici (Tabella 11) e sui nutrienti (composti del fosforo e dell'azoto; Tabella 12). I nitrati presentano valori medi compresi tra 1000 e 10000 μg/L nelle varie stazioni per tutta la durata dello studio; si tratta di valori che non indicano un forte inquinamento delle acque del fosso. Valori più alti sono stati riscontrati solo nelle acque reflue del depuratore di Osteria Nuova. I fosfati presentano valori prossimi ai 1000 μg/L; valori più elevati sono stati osservati nelle acque reflue del depuratore di Osteria Nuova. Solfati, Cloruri e Durezza dell'acqua non hanno mostrato nessun andamento netto, con valori che restano pressoché immutati. Questo vale sia confrontando tra loro i dati di uno stesso sito nelle diverse stagioni, sia, il che è più interessante, confrontando tra loro le diverse stazioni. I valori di ammoniaca e della COD confermano invece il ragguardevole apporto di sostanza organica e nutrienti che le acque reflue della Casaccia apportano al fosso fino alla loro delocalizzazione al Depuratore di Osteria Nuova avvenuta tra la quarta e quinta campagna. Tra questi due campionamenti si osserva infatti una netta diminuzione dei suddetti parametri indicatore di inquinamento da acque nere.

In ogni caso dalla stazione 3 in poi si osserva sempre un lento recupero del fosso con la diminuzione delle concentrazioni di ammoniaca e nitriti (Figure 9-12). Le classificazioni (*cluster analysis*, Figure 13-26) delle stazioni nelle varie stagioni di campionamento suggeriscono due modelli di raggruppamento principali. Nelle prime stagioni di campionamento (marzo-maggio 2002) si osserva la distinzione tra le tre stazioni a monte (stazioni 2, 3 e 4) e la stazione 5, ad indicare la preponderanza dell'impatto dello scarico di Osteria Nuova rispetto agli altri. Successivamente (aprile 2003 – ottobre 2006) si osserva una generale tendenza al raggruppamento delle stazioni 2 e 3 da una parte e 4 e 5 dall'altra, con l'allacciamento dello scarico della Casaccia a quello di Osteria Nuova, avvenuto proprio a fine 2002, a determinare la distinzione tra i due gruppi.

I risultati riguardanti l'analisi dei macroinvertebrati bentonici (Tabelle 13-26) hanno innanzitutto messo in evidenza uno stato di generale compromissione dell'intera asta fluviale. L'applicazione dell'indice biotico IBE non permette infatti di assegnare a nessuna delle stazioni di campionamento considerate, una classe di qualità superiore alla III (corrispondente ad un ambiente inquinato) durante tutto il periodo di studio. Analizzando le liste faunistiche si osserva infatti come le unità sistematiche più sensibili all'inquinamento siano o totalmente assenti (è il caso dei Plecotteri) o

presenti esclusivamente con *taxa* particolarmente resistenti che rappresentano l'eccezione all'interno di quel gruppo sistematico (è il caso degli Efemerotteri, presenti con i soli generi *Baetis* e *Caenis* e dei Tricotteri presenti quasi esclusivamente con la sola famiglia Hydropsychidae). Eccezioni a questo trend si osservano nei campionamenti di ottobre 2002 e maggio 2003 della stazione 5 (Tabelle 16 e 19) quando sono state raccolte due altre famiglie di Tricotteri (Psycomidae e Polycentropodidae). Questo ritrovamento non ha consentito tuttavia di attribuire una classe di qualità più alta della III in quanto compensato dal basso numero totale di unità sistematiche rinvenute.

I risultati riguardanti l'analisi della comunità di Diatomee bentoniche (Tabelle 32, 33) hanno confermato, come già evidenziato dallo studio della comunità a macroinvertebrati, lo stato di compromissione del tratto di asta fluviale indagato. I valori risultati dall'applicazione dell'indice EPI-D variano in modo alternato dalla stazione 2 alla 5, oscillando tra una classe di qualità mediocre (classe III) ad una classe di qualità cattiva (classe IV). Quindi, sebbene la stazione 2 abbia presentato il valore dell'indice EPI-D più alto e la stazione 5 quello più basso, lo scarico non sembra alterare significativamente le comunità diatomiche del fosso. La comunità di Diatomee è infatti risultata dominata nel complesso, sia per presenza che per abbondanza, da specie piuttosto tolleranti come *Sellaphora pupula, Gomphonema parvolum, Nitzschia inconspicua, N. amphibia, Navicula veneta.* Sono poche le specie un po' meno tolleranti reperite (*Nitzschia fonticola, Cocconeis placentula var. lineata e Planothidium frequentissimum*) ed è stata rilevata l'assenza completa di specie più sensibili, come alcune appartenenti ai generi *Pinnularia, Diploneis, Stauroneis, Epithemia, Cymbella* generi invece mai reperiti nella comunità delle stazioni studiate.

Lo stato di generale compromissione dell'ambiente, unito alla portata idrica estremamente ridotta ed influenzabile da fattori esterni, si riflette infine anche sull'effettiva possibilità di valutare gli effetti di eventi inquinanti acuti o cronici. Lo scarico del centro ricerche ENEA, ad esempio, riversandosi in un corso d'acqua già compromesso in partenza e caratterizzato per di più da scarsa portata nonché bassa velocità di corrente, non sembra avere un effetto sulla qualità biologica del fosso. Solamente nei campionamenti di dicembre 2002 (Tabella 17) e giugno 2004 (Tabella 21) si osserva infatti un peggioramento della qualità con un passaggio, tra la stazione 2 e la 3 dalla IV alla V classe. Altrettanto spesso tuttavia (maggio 2004 e maggio 2005; Tabelle 20 e 23) si osserva un miglioramento tra la stazione 2 e la 3, ad indicare la mancanza di un andamento univoco generalizzabile. Analoga situazione riguarda lo scarico della Nucleco i cui effetti sul Fosso della Casaccia non risultano evidenti in quanto tra la stazione 3 e la 4 si osserva o la stessa classe di qualità o addirittura un miglioramento. In questo caso, vista la particolare natura dello scarico in questione, si può ipotizzare una serie di effetti cronici e non acuti che andrebbero valutati con una serie di analisi a lungo termine. L'ultima stazione è quella che presenta i primi effetti del naturale processo di autodepurazione. Si trova infatti a qualche centinaio di metri a valle della precedente, presenta un aumento della portata ed è preceduta da una piccola cascata, che favorisce il processo di ossigenazione. Anche i risultati della classificazione (cluster analysis, Figure 27-40) dei siti in base ai dati di composizione delle comunità di macroinvertebrati mostrano come la stazione 5 presenti caratteristiche differenti rispetto alle altre, salvo raggrupparsi in occasione di alcuni campionamenti con la stazione 2 posta a monte degli scarichi. Tali stazioni presentano simile composizione delle comunità di macroinvertebrati in quanto poste l'una prima dei punti di immissione dei reflui, l'altra in un punto sufficientemente a valle degli stessi, dove i processi autodepurativi del fiume hanno mitigato l'impatto degli scarichi. Da sottolineare infine come nella stazione 5 si riscontri un substrato più variegato nonché la presenza di piccoli raschi e pozze che contribuiscono a rendere l'habitat più diversificato e più adatto quindi ad ospitare, almeno potenzialmente, una comunità macrobentonica diversificata.

Queste caratteristiche, nettamente diverse da quelle che caratterizzano le rimanenti stazioni, si riflettono anche sull'Indice di Funzionalità Fluviale, applicato come da protocollo solo all'inizio dello studio (Tabella 28). Esso assegna infatti una III classe (mediocre) di qualità all'intera asta

fluviale con un netto miglioramento solamente in corrispondenza della stazione 5 alla quale si assegna la classe I-II, in virtù delle caratteristiche sopra riportate.

I risultati delle analisi ecotossicologiche dei sedimenti svolte con il batterio *Vibrio fischeri* sono riportati nella Tabella 29 e nella Figura 43.

I valori di EC50 dei sedimenti campionati il 5 marzo 2002 allo scopo di definire una caratterizzazione di base del Fosso della Casaccia, individuano nella stazione 3, localizzata a valle dello scarico del depuratore della Casaccia, il sito con il valore più basso, indice di una tossicità acuta più elevata. I valori di EC50 della stazione 2 a monte della precedente, e della stazione 5, la più a valle, individuano una condizione di tossicità simile, mentre la stazione 4, a valle dello scarico Nucleco, si discosta decisamente da tutte le altre, come evidenziato dal valore di EC50 più elevato.

La situazione comunque alterata che si identifica nella fase iniziale del monitoraggio del Fosso della Casaccia è confermata dalle analisi delle successive campagne di prelievo dei sedimenti in cui si osservano sia incrementi che diminuzioni della tossicità iniziale, mai rilevanti e non ascrivibili a cause predominanti. Si può comunque evidenziare che, a partire dalla campagna di prelievo di giugno 2004, la tossicità dei sedimenti delle stazioni 2 e 3 risulta spesso non calcolabile, mentre la tossicità acuta dei sedimenti 4 e 5 indica una generale attenuazione.

Da un punto di vista qualitativo, in base alla scala definita nella Tabella 6, la tossicità acuta dei sedimenti si distribuisce in due classi di qualità: "assenza di tossicità" e "bassa tossicità".

In generale, comunque, procedendo lungo l'asta del Fosso della Casaccia, dalla stazione 2 alla stazione 5, non si osserva mai un gradiente nella distribuzione della tossicità dei diversi campioni e, la tossicità rilevata in una singola stazione non influisce nella stazione successiva o, analogamente, non sembra essere condizionata dalla precedente.

Tale andamento non consente di identificare una precisa fonte di inquinamento del fosso della Casaccia ma, piuttosto, sembra dipendere sia dall'immissione diffusa di inquinanti che dalle caratteristiche della portata idrica del Fosso della Casaccia generalmente ridotta ed estremamente variabile da una stazione all'altra e da una fase di campionamento all'altra, in conseguenza dell'influenza di fattori esterni come quelli climatici (piogge, elevate temperature, ecc...), o come quelli delle immissioni dei diversi scarichi (Enea, Nucleco, Osteria Nuova).

Un andamento più definito, anche se confermato da pochi dati, si può evidenziare per i sedimenti del fiume Arrone, in cui la tossicità dei sedimenti prelevati a valle dell'immissione del fosso della Casaccia, risulta decisamente più elevata di quelli a monte.

I risultati delle analisi ecotossicologiche dei sedimenti svolte con l'ostracode *Heterocypris incongruens* sono riportati nella Tabella 30 e nelle Figure 44 e 45.

L'ostracode *Heterocypris incongruens* ha mostrato una maggiore sensibilità del batterio *Vibrio fischeri* sia nel rilevare la presenza di tossicità nei sedimenti del fosso della Casaccia che nel discriminare tra i diversi campioni ma, analogamente ai dati ottenuti con il batterio, non consente di identificare un andamento definito della tossicità stessa, se non l'identificazione di un ambiente diffusamente alterato.

Gli *end-point* del test, ovvero la valutazione di effetti di inibizione sulla sopravvivenza e sull'accrescimento degli ostracodi, esprimono effetti cronici che, come tali, si manifestano con concentrazioni di inquinanti più basse rispetto a quelli acuti.

Tra i due parametri, l'inibizione sulla crescita degli organismi è risultato il più discriminante nell'evidenziare presenza di tossicità cronica nei sedimenti del Fosso della Casaccia. In generale, infatti, i sedimenti di tutte le stazioni producono effetti rilevanti di inibizione sull'accrescimento dell'ostracode *Heterocypris incongruens*.

Nel campionamento iniziale del 5 marzo (Tabella 30) tutti i sedimenti inibiscono la crescita degli ostracodi con un'intensità che diminuisce dalla stazione 2 alla stazione 4 (per problemi tecnici non è stato possibile ottenere i dati per i sedimenti della stazione 5), mentre si rilevano effetti sulla sopravvivenza soltanto per le prime due stazioni.

Successivamente, per quanto riguarda gli effetti sulla crescita, i sedimenti delle stazioni 2 e 3 confermano questo dato iniziale, mentre i sedimenti delle stazioni 4 e 5 producono effetti con intensità variabile; rispetto alla mortalità, invece, si osserva una maggiore variabilità per ogni campione nelle diverse campagne di prelievo.

Da un punto di vista qualitativo (Tabella 7) si identifica un peggioramento nel giudizio di tossicità dei sedimenti che, per entrambe i parametri, rientrano nella classe 'tossicità media'.

Le analisi svolte non mostrano, nel complesso, un impatto univoco delle acque di scarico del centro ricerche Enea-Casaccia sul Fosso della Casaccia.

Alla luce dei risultati ottenuti il fosso mostra generalmente di possedere ancora la capacità di recuperare le condizioni che presenta a monte del punto di immissione degli scarichi. Gli aumenti nei valori dei nutrienti e di altri parametri d'inquinamento chimico non sono stati confermati in tutti i campionamenti e l'andamento generale sembra essere quello di un limitato carico di nutrienti apportato sia al fosso della Casaccia sia, quando è stato rilevato, al fiume Arrone. Più netto l'aumento delle concentrazioni microbiche, dovuto soprattutto alla concomitante immissione delle acque del depuratore di Osteria Nuova. Lungo futto il tratto studiato sono stati rilevate concentrazioni di *E. coli* superiori a 2* 10 ⁴UFC/10 mL, che nella legislazione italiana costituisce la soglia oltre la quale l'inquinamento microbiologico ricade nell'ultima classe di qualità (la peggiore). Le comunità di macroinvertebrati confermano il processo di recupero in atto lungo il corso d'acqua, con una terza classe di qualità che viene quasi sempre recuperata nella stazione 5 prima dell'immissione del fosso della Casaccia nel fiume Arrone. In ogni caso il corso d'acqua si presenta già abbastanza compromesso nel tratto a monte della stazione 2 facendo quindi supporre la presenza di impatti indipendenti dalle pressioni analizzate in questo lavoro. L'assoluta assenza nelle comunità di macroinvertebrati e di diatomee di taxa sensibili all'inquinamento nei campionamenti effettuati durante tutto il periodo di studio e in tutte le stazioni studiate sembra confermare questa possibilità, per la presenza di campi coltivati e aree urbanizzate circostanti al sistema studiato che già impoveriscono le comunità di organismi acquatici. Le analisi di tossicità, infine, hanno rilevato valori di tossicità diffusa, non direttamente imputabili alle immissioni di reflui, che non sembrerebbero essere l'unica causa perturbatrice della salute dell'ecosistema su cui insistono.

In conclusione gli ambienti studiati hanno mostrato per tutte le componenti analizzate una generale compromissione riconducibile a diversi fattori naturali e antropici. Il corso d'acqua è estremamente fragile e soggetto a variazioni stagionali di portata, quindi influenzato dagli eventi atmosferici. Tali fattori non aiutano la naturale capacità autodepurativa dei sistemi reici sommandosi così alle pressioni che incidono nell'area e particolarmente evidenti dai risultati ottenuti con i test ecotossicologici. Inoltre per esigenze di sicurezza spesso il fosso subisce interventi di manutenzione che, se non pianificati adeguatamente da un punto di vista tecnico e stagionale, influenzano negativamente la qualità dell'ecosistema. Da questo studio non sembra risultare chiaramente un'influenza diretta e quantificata delle pressioni provenienti dal centro ENEA. Sarebbe opportuno selezionare un nuovo set di indicatori volti a misurare gli effetti diretti sulla componente animale e vegetale e misurare l'eventuale effetto genetossico. Il disegno sperimentale di questo studio prevedeva infatti l'analisi degli ecosistemi attraverso il monitoraggio secondo le linee guida della Direttiva 2000/60/CE e la normativa vigente di settore che hanno individuato la generale compromissione del sistema. Oltre al proseguimento dello studio andrebbe progettato un piano di risanamento degli ambienti volti al migliorare la qualità ma anche ad esaltare la naturale capacità autodepurativa del corso d'acqua, cosa che lo renderebbe un progetto pilota nel suo genere e fiore all'occhiello del centro.

BIBLIOGRAFIA DI RIFERIMENTO

- ANPA. I.F.F. Indice di funzionalità fluviale. Manuale ANPA. Agenzia Nazionale per la Protezione dell'Ambiente. 2000.
- Bulich AA, Green MW, Underwood SR. Measurement of soil and sediment toxicity to bioluminescent bacteria when in direct contact for a fixed time period. *Water Environment Federation 65th Annual Conference and Exposition* 20-24 September 1992, New Orleans, Lousiana, USA.
- Campaioli S, Ghetti PF, Minelli A, Ruffo S. *Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane*. Vol. I. Provincia Autonoma di Trento; 1994.
- Chial B, Persoone G. Cyst-based toxicity test XII-Development of a short chronic sediment toxicity test with the ostracod crustacean *Heterocypris incongruens*: methodology and precision. *Environ Toxicol* 2002;17:520-27.
- CNR. Guide per il riconoscimento delle specie animali delle acque interne italiane. 1976-1984. Disponibili all'indirizzo: http://www.cnr.it/sitocnr/Iservizi/Pubblicazioni/Catalogopubblicazioni/Biologiabiofisicaebiochimica/Biologiabiofisicaebiochimica.html; ultima consultazione 25/7/2008.
- Ghetti PF. Manuale di Applicazione Indice Biotico Esteso (IBE). I macroinvertebrati nel controllo di qualità degli ambienti di acque correnti. Provincia Autonoma di Trento. Servizio Protezione Ambiente: 1997.
- Ostracodtoxkit FTM. Chronic "direct contact" toxicity test for freshwater sediement. Standard Operational Procedure. Deinze, Belgium. 2002.
- Sansoni G. Atlante per il riconoscimento dei macroinvertebrati dei corsi d'acqua italiani. Provincia Autonoma di Trento: Stazione Sperimentale Agraria Forestale, Servizio Protezione Ambiente; 1988.
- Tachet H, Bournaud M, Richoux P. Introduction à l'Etude des Macroinvertébrés des Eaux Douces. Thonon les Bains Cedex : Association Française de Limnologie; 1987.
- Unione Europea. Direttiva 2000/60CE del Parlamento Europeo e del Consiglio del 23 ottobre 2000 che istituisce un quadro per l'azione comunitaria in materia di acque. *Gazzetta Ufficiale* L327 del 22/12/2000.
- Unione Europea. Direttiva 2006/7/CE del Parlamento Europeo e del Consiglio del 15 febbraio 2006 relativa alla gestione della qualità delle acque di balneazione e che abroga la direttiva 76/160/CEE2006.
- Woodiwiss FS. Comparability study of biological-ecological assessement. 2nd Technical Seminar on the River Trent and tributaries, 1976. Commission of the European Communities, Bruxelles, ENV/787/80; 1978.

La riproduzione parziale o totale dei Rapporti e Congressi ISTISAN deve essere preventivamente autorizzata.

Le richieste possono essere inviate a: pubblicazioni@iss.it.

Stampato da Tipografia Facciotti srl Vicolo Pian Due Torri 74, 00146 Roma

Roma, luglio-settembre 2008 (n. 3) 3° Suppl.