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Summary. - In the yeast Saccharomyces cerevisiae, at
least ten genes are involved in excision repair of DNA
damaged by UV radiation and by other agents that distort
the DNA helix. Mutations in the RAD1, RAD2,
RAD3, RAD4 and RADIOQ genes render cells highly de-
fective in the incision of damaged DNA, whereas muta-
tions in the RAD7, RADI14, RAD16, RAD23 and
MMS19 genes reduce the level of damage excision. This
review summarizes the evidence for the involvement of
these genes in excision repair and highlights the impor-
tant features in the siructures of the proteins encoded by
the various RAD genes. The RAD3 protein has been
purified and characterized in our laboratory, and it
possesses single stranded DNA dependent ATPase and
DNA helicase activities. The RAD3 helicase moves
along the single-stranded DNA in the 5° — 3’ direction.
We suggest that this activity plays a role in strand
displacement synthesis during excision repair and in
DNA replication.

Riassunto (I geni deila riparazione del DNA per
escissione in Saccharomyces cerevisiae). - Almeno dieci
geni sono coinvolti nel processo di riparazione per
escissione del DNA danneggiato dalla radiazione UV e da
altri agenti che distorcono l'elica del DNA. Le mutazioni
rei gemi RADI1, RAD2, RAD3, RAD4 ¢ RADID
rendono le cellule altamente difettive nell'incisione del
DNA danneggiato, mentre le mutazioni nei geni RAD7,
RADI14, RAD16, RAD23 ¢ MMSI19 riducono il livello
di escissione del danno. Questa rassegna riassume le
evidenze di coinvolgimento di questi geni nella ripara-
zione per escissione e sottolinea le caratteristiche impor-
tanti nella struttura delle proteine codificate dai vari geni
RAD. La proteina RAD3, purificata e caratterizzata nel
nostro laboratorio, possiede un‘attivité ATPasica dipen-
dente da DNA a singolo filamento e un'attivita elicasica.
La elicasi RAD3 si muove lungo il DNA a singolo fila-
mento in direzione 5 — 3'. Suggeriamo che questa atti-
vitd ha un ruolo nella sintesi durante il processo di
“strand displacement” della riparazione per escissione e
durante la replicazione del DNA.

Introduction

All organisms possess mechanisms that enable them
to repair a wide variety of lesions induced in DNA by
radiation or chemical DNA damaging agents. Some
repair pathways, such as photoreactivation, which acts
only on ultraviolet light (UV)-induced pyrimidine di-
mers, show specificity for the type of lesion. Other
repair pathways, such as nucleotide excision repair,
which acts on UV-induced pyrimidine dimers as well as
bulky DNA adducts, have a broader substrate specificity.
In nucleotide excision repair, DNA is incised at or near
the damage site, followed by excision of the lesion and
DNA synthesis using the opposite intact strand as a
template. The detailed mechanism of incision has been
elucidated in bacteriophage T4 (1], Micrococcus luteus
(M. luteus) (2], and Escherichia coli (E. coli) [3, 4]. A
single polypeptide of 16 kDa in bacteriophage T4 endo-
nuclease V, a glycosylase-apyrimidinic/apurinic endonu-
clease with specificity for pyrimidine dirmers in DNA {5,
6], and of 18 kDa in M. luteus [2, 7], incise DNA con-
taining pyrimidine dimers. Both enzymes contain two
activities and mediate incision in a two-step process.
The first step involves the action of the pyrimidine
dimer DNA N-glycosylase acting between the 5'
pyrimidine of the dimer and its sugar, while the second
step occurs via the apyrimidinic/apurinic (AP) endonu-
clease activity that breaks the phosphodiester bond on
the 3' side of the AP site. Excision of nucleotides
followed by repair synthesis using the opposite intact
strand as a template and finally ligation to seal the nick
comprise the subsequent steps of excision repair.

In E. coli, excision repair occurs through the action
of a protein complex consisting of three enzymes,
UvrA: M, 103,874; UviB: M,, 76,118; and UvrC: M.,
66,038 [8]. Pyrimidine dimer-containing DNA s
cleaved by the UvrABC excision nuclease at the 8th
phosphodiester bond 5' and at the 4th or 5th phospho-
diester bond 3' to the dimer [3]. UvrD and poll are
required for turnover of the UvrABC complex [9, 10].
UvrA protein has DNA-independent ATPase activity,
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and it binds UV-irradiated DNA in the presence of ATP
with greater affinity than unirradiated DNA [11]. UwrB
protein does not bind UV damaged DNA by itself, but it
greatly enhances the ability of the UvrA protein to bind
to UV irradiated DNA [4, 12]. The UvrAB protein com-
plex, in the presence of ATP, also unwinds duplex DNA
[13]; binding of uvrC protein to the UvrA:UvrB:dam-
aged DNA complex results in the endonucleolytic
activity [3, 4, 12]. In addition to the difference in the
incision mechanism, the ATP requirement of the E. coli
UvrABC nuclease makes this enzyme different from the
T4 or M. luteus enzymes, which do not require ATP.
Also, the T4 and M. luteus enzymes are specific for UV-
induced pyrimidine dimers, whereas the UvrABC
nuclease acts on a variety of lesions causing helix
distortion.

In humans, excision repair of UV damaged DNA is
deficient in cells from xeroderma pigmentosum (XP)
patients. A total of nine complementation groups for
XP are now known {14], suggesting a greater com-
plexity in excision repair in humans than in E. coli.
Similarly, in the yeast Saccharomyces cerevisiae {S.
cerevisiae) at least 10 genes are required for excision
repair [15, 16]. Part of the complexity of excision repair
in eukaryotic organisms may result from the highly
organized nature of eukaryotic chromosomes. Although
pyrimidine dimers seem to be formed randomly through-
out the genome of irradiated human cells in culture [17],
it appears that not all pyrimidine dimers are equally
accessible to repair enzymes [18). Exogenously supplied
M. luteus UV glycosylase/endonuclease does not recog-
nize a large proportion of pyrimidine dimers in human
fibroblasts [19]. Experiments with freeze-thawed perme-
abilized V79 Chinese hamster or human cells in which
T4 UV endonuclease had been introduced, can be inter-
preted simply if protein bound to DNA makes about
50% of the pyrimidine dimers in DNA inaccessible to
repair enzymes. In Chinese hamster ovary cells, over
60% of the UV induced pyrimidine dimers are removed
from the active, amplified dihydrofolate reductase
(CHFR) gene within 26 h following UV irradiation
while in the rest of the genome as a whole, only about
15% of the pyrimidine dimers are removed in the same
time period [20]. Similar results have been obtained for
the human DHFR gene, in which more than 60% of
pyrimidine dimers are removed within 4 h after UV
irradiation whereas only 25% are removed during that
time period from the genome overall [21]. In 3T3
fibroblasts, about 85%. of the UV induced pyrimidine
dimers are removed within 24 h in the transcriptionally
active c-abl gene while only 22% are removed from the
transcriptionally inactive c-mos gene [22)]. In cultured
monkey cells, more rapid repair of pyrimidine dimers
occurs in the integrated and transcribed E. coli gpt gene
than in the genome as a whole [23), These results sug-
gest that the rate of DNA repair can vary in different
genes, depending on their state of expression, changes in
chromatin structure and conformation, or other factors.

The yeast Saccharomyces cerevisiae has played an
important role as a model system in unraveling the
various repair mechanisms in eukaryotes. S, cerevisiae,
is particularly well suited for genetic and molecular
studies on DNA repair. It has a well-characterized genet-
ic system and a small genome size, a low DNA content
of 1 x 10t daltons per haploid cell. The recombinant
DNA technology available in yeast allows for the
isolation of genes, the replacement of the wild type gene
in the genome by mutant genes, and overproduction and
purification of their products. The availability of a large
number of well-characterized repair deficient, radiation
sensitive (rad) mutants makes S. cerevisiae particularly
useful for DNA repair studies [24-28). Since several
reviews of DNA repair and mutagenesis in yeast have
been published during the past few years [15, 29-32),
this review will focus on the RAD3 group of genes re-
quired for nucleotide excision repair of UV damaged
DNA. Our goal, and that of other investigators working
on DNA nucleotide excision repair in yeast, is to define
the biochemical steps involved in this process,

Allelism tests among the rad mutants indicated that
over 30 different genetic loci exist [33], and survival
responses to UV irradiation of double mutant combina-
tions resulted in their classification into three epistasis
groups [34-36], which are referred to by a prominent
gene in the group. The rad3 epistasis group consists of
mutants which are defective in the excision of UV light
induced pyrimidine dimers [3744]. The rad6 group
contains mutants which show defective postreplication
repair of DNA damage induced by UV light [45] as well
as reduced mutagenesis following treatment with DNA
damaging agents [46-48]. The third group consists of
rad52 and other mutants. The rad52 mutants are defective
in genetic recombination [49-52] and in double strand
break repair [53, 54].

Role of RAD3 epistasis group genes in exci-
sion repair

Analyses of the survival responses to UV irradiation
of double rad mutant combinations revealed epistatic
interactions between the radl, rad2, rad3, and radd
mutations {34-36]. Subsequent studies demonstrated that
one of the characteristic features of these and other
mutants in the RAD3 epistasis group is enhanced UV
mutagenesis compared to RAD+ [29]. Since enhanced
UV mutagenesis is observed in E. coli mutants deficient
in nucleotide excision repair, it seemed likely that the
yeast RAD3 group of genes might also be required for
nucleotide excision repair. Subsequently, it was shown
that RADI [37, 39, 40], RAD2 [38], RAD3 [41],
RAD4 {41, 43], RAD7 [16, 44], RAD10 [42], RAD14
[44], RADI6 [42], RAD23 [16), and MMS19 [44] arc
involved in the removal of pyrimidine dimers from
DNA. Mutants of the RADI, RAD2, RAD3, RADM,




and RADI0 genes are highly UV sensitive, whereas
mutants of the RAD7, RADI4, RADI6, RAD23, and
MMSI9 genes are not as UV sensitive. However,
double mutant combinations in the latter group, as, for
cxample, rad7-A rad23-A or rad7-A rad14-1, show syn-
ergism or additivity for IJV sensitivity relative to each
single mutant [44, 55]. Although most of the excision
defective rad mutants are not sensitive to MMS, an
allele of radl and an allele of rad4 were obtained among
the MMS-sensitive mutants [15]. The mutants in the
RAD3 epistasis group are also gencrally not sensitive to
X-ray irradiation [15]. However, they show cross-sensi-
tivity to DNA damaging agents which produce bulky
adducts or distortions in DNA, such ag nitrogen mustard
[32], nitroquinolone oxide, and DNA - crosslinking
agents such as 4, 5', 8-trimethyl psoralen + 360 nm
light, referred in this article as psoralen + light {56, 57].

Pyrimidine dimer removal

The 1esponse of mutants in the RAD3 epistasis
group to photoreactivation following dark holding [58],
as well as the enhanced UV mutagenesis suggested that
these mutants are defective in pyrimidine dimer removal.
Early studies of excision of pyrimidine dimers from
yeast DNA utilized relatively high UV fluences that
resulted in less than 1% survival. Direct chromato-
graphic identification of pyrimidine dimers in the DNA
of cells exposed to UV irradiation revealed that normal
(RAD+) cells could excise pyrimidine dimers while the
radi-1 [37] and radI-2 [40] mutants could not. The rad2-
17 mutant was also shown to be defective in pyrimidine
dimer excision by utilizing an indirect assay which
depended on the ability of crude extracts obtained from
UV irmradiated yeast cells to compete with transforming
DNA from UV irradiated Haemophilus influenzae for
photoreactivating enzyme [38]). A more sensitive assay
for pyrimidine dimers utilized the susceptibility of
DNA, obtained from yeast cells at different times
following UV irradiation, to nicking by T4 endonu-
clease V [40]. By this method, enzyme-sensitive sites in
DNA could be detected with a UV fluence resulting in
12% survival in the highly UV sensitive radI-2 mutant
[40). It was shown that pyrimidine dimers remained in
the nuclear DNA of the rad]-2 mutant whereas they were
efficiently removed from the repair-proficient RAD+
strain. On the other hand, pyrimidine dimers induced in
mitochondrial DNA were not removed either in the
RAD+ or the radI-2 strain [40], indicating that the exci-
sion-repair mechanism operates on the nuclear but not
on the mitochondrial DNA in yeast. Lack of excision of
pyrimidine dimers from mitochondrial DNA of yeast
was also demonstrated by Waters and Moustacchi [59].
Other eukaryotes, such as mouse and human, also lack
excision repair mechanisms for mitochondrial DNA
[60]. The susceptibility of DNA containing pyrimidine
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dimers to nicking by pyrimidine dimer-specific enzyme
from T4 or M. luteus, was also used to demonstrate that
the rad3-2 [41], rad4-3 [43], rad4-4 [41], rad7-A [16, 44],
radl0-2 [42], radl4-1 [44], radi6-1 [42], rad23-A [16],
angd mmsl19-1 [44] mutants are defective in pyrimidine
dimer removal.

Incision vs excision

While the methods described above identified a defect
in the removal of pyrimidine dimers, they could not
distinguish whether the mutants had a defect in an initial
incision step or in a subsequent step, since in the ab-
sence of a postincision step, DNA ligase may close the
incision nick, resulting in retention of pyrimidine
dimers in DNA. Only a few incision breaks are observed
in DNA obtained from UV irradiated RAD+ cells, and
these breaks are absent in the radl, rad2, rad3, and rad4
mutants [61], suggesting an incision defect in these
mutants. To distinguish between a defect in the incision
step from a defect in a subsequent step(s) of excision
repair, Wilcox and Prakash [62] coupled the excision
defective rad mutations to the cdc9 mutation, which re-
sults in temperature sensitive growth and a thermolabile
DNA ligase activity [63]. In a radx cdc9 mutant, if the
radx mutant is defective in the initial incision step of
excision repair, then the radx cdc9 mutant would not
accumulate single-strand breaks in DNA at the restric-
tive temperature. On the other hand, if the radx mutation
allows the initial incision step but is defective in the
subsequent step of excision or repair synthesis, then
single-strand DNA breaks would accumulate in the radx
cdc9 mutant. Single-strand breaks in DNA after UV
irradiation of vatious rad cdc9® mutants were monitored
by alkaline sucrose sedimentation [62], and the results
revealed that the radl -1, rad2-5,rad3-2, rad4-4, and rad10-
2 mutants are defective in making incisions in UV
irradiated DNA whereas in the radl4-1 cdc9-2 and radl6-
! edc9-2 mutants, incision breaks were detected. About
30% and 60% as many incision breaks occurred in the
radld cdc9, radl6 cdc9 mutants, respectively, as in
RAD* ¢dc9, suggesting that the radl4 and rad16 mutants
possess significant residual incision capacity.

The ability to remove both crosslinks and monoad-
ducts induced by psoralen + light has also been examin-
ed in the mutants defective in pyrimidine dimer removal
[57]. Little or no nicking of crosslinked DNA occurs in
strains carrying mutations of the RADI, RAD2, RAD3,
RAD4, RADI]O0, and MMSi9 genes [57). The radld-1
[57], rad7-4, and rad23-A [16] mutants show significant
nicking of crosslinked DNA, but still much less than
that observed in the RAD+ strain. The radl6-1 mutant is
as proficient as the RAD+ strain in nicking of cross-
linked DNA [57]). The rad ¢dc9 double mutant combina-
tions were also utilized to determine the effect of these
rad genes on incision of moncadducts in DNA induced
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by psoralen plus near UV light treatment. The radi-2,
rad2-5, and rad4-4 mutants were defective in producing
incisions at monoadducts as well, whereas the rad3-2
mutant, defective in incising crosslinked DNA, was
proficient in incision of DNA containing monoadducts
[64]. Overall, these observations indicate that the
RADI, RAD2, RAD3, RAD4, RADI0, MMS$19, and
RAD7, RADI4, RADI6, and RAD23 genes are in-
volved in the removal of DNA damage that distorts the
DNA helix,

In sommary, mutations in the RADI, RAD2,
RAD3, RAD4, RADI0, and MMS19 genes result in a
high level of incision defectiveness, and most of these
genes are likely to be directly involved in incigion. The
other group consists of mutants of the RAD7, RADI4,
RADI6, and RAD23 genes which show some degree of
incision defect. Some of these genes could encode pro-
teins which affect the accessibility of chromatin to
repair enzymes.

In viro assays for nucleotide excision repair

Attempts to develop cell-free systems for measuring
nucleotide excision repair in yeast have met with
relatively little success. Lysates from RAD+ cells, as
well as from radl-19, rad2-2, rad3-1, rad4-3, rad7-1,
radl (-1, radl4-1, and radl6-1 mutants, have been shown
o remove pyrimidine dimers from UV irradiated DNA
that has been. specifically nicked with M. luteus UV
glycosylase [65]. However, specific incision of pyrimi-
dine dimer-containing DNA could not be detected.
Pyrimidine dimer-incising activity in cell-free extracts of
RAD+ straing, as well as from radl, rad2, rad3, rad4,
radl), and radl6 mutants was reported by Bekker et al.
[66, 67], but these results have not been successfully
reproduced by other investigators [32]. In human cells, a
cell-free system for demonstrating nucleotide excision
repair has been described recently [68].

Isolation and characterization of the yeast ex-
cision repair genes

Various genes involved in excision repair in yeast
have been cloned by complementation of the cor-
responding rad mutation for UV resistance, and their
nucleotide sequences determined. The RAD3 protein has
been overproduced and purified from yeast cells and
some of its biochemical properties characterized. A sum-
mary of the cloned RAD genes and their encoded
proteins is given in Table 1.

The RADI1 gene. - The RADI gene was cloned by
complementation of the UV sensitivity of a rad! mutant
by transformation with a yeast genomic library in the
2p plasmid YEp24 [69, 70]. The RAD! gene encodes a

transcript of 3.1 kb [69]. The nucleotide sequence of the
RADI gene shows an open reading frame of 3,300
nucleotides, which encodes a protein of 1,100 amino
acids, with a predicted molecular weight of 126,360
[71]. RAD]1 protein contains 15.8% acidic, 14.7%
basic, 30.9% hydrophilic, and 38.6% hydrophobic resi-
dues (Table 2). As shown in Fig. 1, both amino and
carboxyl termini of RADI protein are acidic: 27 acidic
and 8 basic residues occur in the amino terminal 110
residues while 19 acidic and 7 basic residues occur in the
carboxy! terminal 60 residues [71]. The 95 amino acids
Iocated between residues 595 and 689 consist of 32
acidic and 10 basic residues, while between residues 516
and 576, basic amino acids are concentrated, there being
18 basic and 6 acidic restdues.

Since a partial RADJ deletion resulting in Ioss of the
transcriptional and translational signals as well as the
first 12 codons of the RADJ gene shows intermediate

Table 1. - Size of proteins predicted from open reading
frames (ORF) in the cloned RAD genes

Gene Number of amino Predicted References
acids in ORF protein size

RAD1 1100 126,360 1
RAD2 1031 117,847 75
RAD3 T8 89,779 T8, 84
RAD4 754 87,173 *
RAD7 565 63,705 55
RADI0 20 24310 98

* R.D. Gietz & S. Prakash, unpublished results

Table 2. - Amino acid composition of RADI protein

Number of Percent
residues

Ala 46 42
Arg 53 48
Asn 78 7.1
Asp 78 7.1
Cys 10 0.9
Gln 45 4.1
Glu 97 88
Gly 37 3.4
His 24 2.2
Ile 73 6.6
Len 126 114
Lys 85 1.7
Met 18 1.6
Phe 40 36
Pro 40 36
Ser 88 8.0
Thr 54 49
Trp 12 11
Tyr 29 26
Val 67 6.1




level of complementation of radi-1, radl-19, and radl-A
_ gtrains {71], we examined whether translation of RADI
mRNA begins from the ATG codon at position +1 or
from another ATG codon at position +334 in the RAD!
ORF [71]. The two ATG codens were each changed to
ATC codons by site-directed oligonucleotide mutagen-
esis and the UV sensitivity of mutants eéxamined. The
UV resistance of the radl-A strain carrying a single copy
plasmid with the +334 ATG codon changed to ATC was
similar to that of the RAD+ strain. The UV resistance of
the radl-4 strain carrying a single copy plasmid contain-
ing the +1 ATG changed to ATC, or camrying a plasmid
with both the +1 and +334 ATGs changed to ATC
codons, was similar and intermediate between that of the
RAD+ and radl-A strains. Since mutation of the second
in-frame ATG has no significant effect on survival after
UV irradiation, whereas mutation of the first ATG at
position +1 does affect UV survival, translation of the
RADI gene very likely initiates from the AUG codon at
position +1 in the RADI mRNA.

The RAD?2 gene. - The RADZ gene was cloned in a
similar manner as the RADI gene [72, 73] and it
encodes a transcript of 3.3 kb [72, 74]. The RAD2
mRNAs contain heterogeneous 5' ends, mapping at
positions -5, -12, -15, -26, -28, -41, -47, and -62 [75],
where +1 refers to the first base of the translation
initiating ATG codon. The RAD2 open reading frame
encodes a protein of 1,031 amino acids with a predicted
molecular weight of 117,847 [75]. RAD2 protein con-
tains 17.8% acidic, 15.3% basic, 31.6% hydrophilic,
and 35.3% hydrophobic residues (Table 3). The carboxyl
terminus of RAD?2 protein is highly basic: 18 basic and
3 acidic residues occur in the last 44 amino acids (Fig.
2). Deletion of the 78 carboxyl terminal amino acids

Table 3. - Amino acid composition of RAD2 protein
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from RAD2 protein, which include 23 basic and 9 acidic
residues, results in complete loss of RAD2 function
[75].

The RAD2 gene is induced upon treatment of cells
with DNA damaging agents {75, 76]. A 9-fold and 5-
fold increase in RAD2Z mRNA levels was observed after
exposure of yeast cells to 25 J/m? and 50 J/m? UV
light, respectively..[75]. Yeast cells containing an
integrated RAD2-lacZ fusion exhibit a 4- to 6-fold in-
crease in B-galactosidase expression following treatment
with UV light, y-radiation, 4-nitroquinoline-1-oxide, or
natidixic acid [76]. Induction of other genes in the
RAD?3 epistasis group has not been observed [77, 78).

The RAD3 gene and protein. - The RAD3 gene was
also cloned by complementation of the UV sensitivity
of a rad3 mutant using a yeast genomic library in the 2p
vector YEp24 [79, 80]. RAD3 is the only gene that is
required for incision of damaged DNA and is also es-
sential for cell viability [80, 81], indicating that RAD3
plays an important role in other cellular processes in
addition to incision of damaged DNA. In conirast, none
of the E. coli Uvr genes involved in incision are
essential for viability. The role of RAD3 in the
maintenance of cell viability remains unknown [82, 83].

The RAD3 protein is 778 amino acids long [78, 84]
with a calculated molecular weight of £9,779, and
contains 40.7% nonpolar, 29.4% polar, 15.3% acidic,
and 14.5% basic amino acids (Table 4). The distribution
of acidic and basic residues in RAD3 protein is shown
in Fig. 3. A concentration of acidic residues occurs in
the carboxyl terminal portion of the protein; in the last
20 amino acids, there are 12 acidic residues and only 1
basic residue. Seven of the acidic residues, located
between amino acids 768 to 774, are present in tandem.

Table 4. - Amino acid composition of RAD3 protein

Number of Percent Number of Percent
residues residues
Ala 49 48 Ala k1) 49
Arg 51 50 Arg 49 6.3
Asp 83 8.1 Asn 27 ) 35
Asn . 66 6.4 Asp 48 : 62
Cys 4 0.4 Cys 13 17
Gin 44 43 Gln 27 35
Glu 100 9.7 Glu 71 9.1
Gly 51 5.0 Gly 33 42
His 10 1.0 His 14 1.8
Tle 56 54 De 57 13
Leu 84 8.1 Len 81 ‘ 104
Lys 97 9.4 Lys 50 64
Met 25 24 Met 26 3.3
Phe 49 4.7 Phe 33 42
Pro 41 4.0 Pro 32 4.1
Ser 86 83 Ser 54 69
Thr 51 5.0 Thr 42 54
Trp 10 1.0 Trp 4 0.5
Tyr 23 2.2 Tyr 33 42
Val 51 5.0 Val 46 59
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A RAD3 DNA fragment in which the carboxyl terminal
25 amino acid codons are replaced by a pBR322 encoded
sequence of 17 amino acids exhibits full repair and
viability activity [84]. The replacement of the normally
acidic carboxyl terminus of RAD3 protein with pBR322
sequences results in a slightly basic carboxyl terminal
region [84].

Between amino acids 45 and 49, the RAD3 protein
contains the conserved sequence GlyX-Gly-Lys-Thr
present in various proteins that bind and hydrolyze ATP
or other nucleotides [85). The presence of this sequence
in the RAD3 protein suggested that it may bind and
hydrolyze ATP. Dr Patrick Sung in our laboratory has
purified the RAD3 protein and characterized its biochem-
ical activities, RAD3 was purified to near homogeneity
from yeast strains carrying a RAD3 overproducing
plasmid. The RAD?3 protein catalyzes the hydrolysis of
ATP to ADP and P; in the presence of a single-strand
DNA cofactor [86]. No ATP hydrolysis is observed in
the absence of DNA, or in the presence of UV irradiated
or unirradiated double stranded DNA. Stimulation of the
ATPase activity is not observed with UV irradiated

single-stranded DNA. The ATPase activity requires

Mg+2, but Mn+2 can substitute for Mg+2, The pH
optimum for ATP hydrolysis is near 5.6, The RAD3
ATPase activity is inhibited by anti-RAD3 antiserum.
- The RAD3 protein also possesses a DNA helicase

activity that unwinds duplex regions in DNA substrates
that were constructed by annealing DNA fragments of
71-851 nucleotides to circular, single-stranded Mi3
DNA [87]. The DNA helicase activity is dependent on
ATP hydrolysis, also has a pH optimum near 5.6, and
~ is inhibited by anti-RAD3 antibodies. The RADS3
helicase translocates along single-stranded DNA in the 5'
— 3' direction. Like RAD3, the DNA helicases known
to be involved in DNA replication, such as phage T7
gene 4, phage T4 gene 41, and E. coli DnaB also move
along single-stranded DNA in the 5' — 3' direction [88-
901, whereas UvrD helicase of E. coli, involved in ex-
cision and mistmatch repair [8], moves unidirectionally
in the 3' —» § direction [91]. RAD3 helicase activity
could be required for strand displacement synthesis in
excision repair [87] and it might play a role in DNA
replication,

The RAD4 gene. - It was not possible to clone the
RAD4 gene by complementation of the UV sensitivity
of rad4 mutants with a yeast genomic library [92]. Fleer
et al. [92] have shown that due to toxic effects of RAD4
protein, plasmids carrying a wild type RAD4 gene can-
not be propagated in E. coli, and only a mutationally
inactivated rad4 gene is recovered from E. coli. The
RAD4 gene is tightly linked to the SPT2 locus on
chromosome V [93]. An ARSI, URA3 containing plas-
mid, pR140 and its integrating derivative pR169, carry
an spi2-1 allele and a mutant rad4 gene [92]. Fleer et al.
[92] cloned the wild type RAD4 gene by gap repair of

the rad4 sequence, present in plasmid carrying the spt2-1

gene, by gene conversion from information provided by
the genomic RAD4 gene. Reversible inactivation of the
wild type RAD4 gene, as by insertion of a restriction
fragment within it, permits propagation of RAD4
plasmid in E. coli [92]. The RAD4 gene is about 2.3 kb
in size, is transcribed in the same direction as the SP12
gene, and lies immediately upstream of the SPT2 gene
[92]. The RAD4 gene has also been isolated in our labo-
ratory and its nucleotide sequence determined. It encodes
a protein of 754 amino acids with a molecular weight of
87,173 (R. D. Gietz and S. Prakash, unpublished re-
sults). :

The RAD7 gene. - The RAD7 gene is tightly linked
to CYCI, on the right am of chromosome X, and is
part of the COR cluster (CYCI-OSMI-RAD7) spann-
ing about 1.5 centimorgans [94]. Another cluster of
genes, designated ARC, is located on chromosome V,
and includes the ANPI, RAD23, and CYC7 genes [95].
McKnight et al. [95] have proposed that these two gene
clusters are related by duplication and transposition. The
1.8 kb RAD7 mRNA encodes a protein of 565 amino
acids with a predicted size of 63.7 kDa [55]. Multiple
transcription  initiation sites occur in RAD7 and are
located between positions -61 and -8 relative to the +1

translation initiating ATG codon [55]. The RAD7 pro-

tein has a high leucine content, and it contains 37.3%
nonpolar, 34.0% polar, 14.9% acidic, and 13.8% basic
amino acids (Table 5). The amino-terminal end of the
protein contains the major clusters of both acidic and
basic amino acids, where the first 200 amino acids
contain 49% of the total charged residues (Fig. 4). The
first 10 amino acids contains a cluster of 5 basic
residues followed by & predominantly acidic region that
spans about 120 residues. Seven contiguous arginine

| Table 5. - Amino acid composition of RAD7 protein

© Number of ’ Percent
residues

"Ala - 4.8
Arg 33 5.8
Asn 38 6.7
Asp , 8 67
Cys 11 19
Gin 20 3.5
Gl 46 8.1
Gly 27 4.8
His 7 12
Tle 36 6.4
Leu 77 13.6
Lys 38 6.7
Met 8 14
Phe 21 " 3.7
Pro 14 2.5
Ser - 53 9.4
Thr : 32 57
Trp 3 05
Tyr 11 19
Val 25 ‘ - 44
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and lysine residues are found between amino acids 147
and 153. About the same number of acidic and basic reg-

idues are found in the central portion of RAD7 protein

while the carboxyl terminal 200 residues contain about
twice as many acidic as basic amino acids. The amino
terminus of RAD7 is -highly hydrophilic whereas the
carboxyl terminal region is very hydrophobic [55).

A RAD7 gene lacking the entire 5' upstream region
as well as the first 209 bp of the RAD7 open reading
frame and present in a multicopy plasmid, is able to
fully complement the rad7-A mutation [55]. The ‘com-
plementation could have resulted from the presence of
high quantities of a partially active RAD7 protein due to
the high copy number vector, or to complementation by
the genomic RAD23 protein, which, becanse of its
probable functional relationship with RAD7, might
provide the function absent in the partially deleted
RAD7 protein, or both, UV survival of the rad7-A strain
containing the amino-terminally deleted RAD7 gene
present on 2 single copy vector is intermediate between
that of the rad7-A mutant and the RAD+ strain, indicat-
ing that copy number is only partly responsible for the
effect. In contrast to full complementation of the rad7-4
mutation, the multicopy plasmid carrying the amino
terminally deleted RAD7 gene did not show any com-
plementing ability in a rad7-A rad23-A double mutant.
These results suggest that the RAD23 protein can
compensate for the function which is absent in the
amino terminal deletion of RAD7. However, since the
rad7-A and rad23-A single mutations are not comple-
mented by multicopy plasmids carrying the RAD23 and
RAD7 genes, respectively, the RAD7 and RAD23 pro-
teins must be functionally distinct [55].

The RADI10 gene. - The RAD10 gene was cloned by
complementation [96, 97]. The RAD10 protein predict-
ed from the the nucleotide sequence contains 210 amino
acids with a calculated molecnlar weight of 24,310 [98].
The RADI10 protein contains 35.2% nen-polar, 40.5%
polar, 11% acidic and 13.3% basic residues, and is thus
somewhat basic (Table 6). The middle portion of
RADIO is very basic (Fig. S): the 82 residues from
amino acids 78 to 159 contain 17 basic and only 3
acidic residues [98]. In addition to containing over half
of the total basic residues, these 82 amino acids contain
8 of the 10 tyrosine residues of RAD10. This region
might be involved in DNA binding through ionic inter-
actions and by intercalation of tyrosine residues between
the DNA bases. Intercalation by tyrosine residnes has
been implicated in the binding of bacteriophage fd gene
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Table 6. - Amino acid composition of RADIO protein

Number of Percent
residues

Ala 9 43
Arg i3 62
Asm 21 : 10.0
Asp 12 57
Cys 1 05
Gln 11 52
Glu 11 52
Gly 7 33
His 2 09
lle 12 517
Len 22 10.4
Lys 13 6.2
Met 4 1.9
Phe % 43
Pro 7 33
Ser 17 8.1
Thr 18 85
Trp 2 0.9
Tyr 10 47
Val 9 43

5 protein and T4 gene 32 protein to single-stranded
DNA [99-101], and it may also be involved in RAD10
binding to DNA.

Extensive homology occurs between the RADI10
protein and the protein encoded by the human excision
repair gene ERCC-I [102], suggesting an evolutionary
conservation of DNA repair genes in eukaryotes.

Future directions

The availability of the cloned RAD genes involved in
excision repair makes it feasible to overproduce and pu-
tify their encoded proteins from yeast cells, as has
already been achieved with RAD3. The purified proteins .
could then be examined for biochemical activities indi-
vidually and in various combinations, the incision ac-
tivity could be reconstituted in vitro, and the incision

- mechanism defined.
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