Alcune caratteristiche spettrofotometriche nell' I. R. di corticosteroidi florurati di interesse farmaceutico

GUIDO BELLOMONTE

Laboratori di Biologia

Riassunto. — Vengono riportati i risultati dello studio di spettri I.R. (1600-600 cm⁻¹) di tredici corticosteroidi florurati di interesse farmaceutico, allo scopo di caratterizzarli più agevolmente e di evidenziare la presenza dell'alogeno nella molecola.

Summary (Some I.R. spectra of florinated corticoids of pharmaceutical interest). — The infrared spectra (1600-600 cm⁻¹) of thirteen florinated corticoids having pharmaceutical interest are discussed giving particular emphasis to the specific influence of the florin atom.

Sono note le difficoltà che si incontrano nel riconoscimento analitico di corticosteroidi florurati. Una conoscenza dettagliata di alcune frequenze degli spettri di assorbimento I.R. di queste sostanze può fornire informazioni sperimentali utili alla soluzione di problemi particolari e pertanto si è ritenuto opportuno dedicare questa nota alla caratterizzazione delle proprietà spettrali infrarosse di alcuni corticosteroidi florurati riportati nell'elenco a pagina seguente.

Gli steroidi esaminati sono stati divisi in due gruppi, tenendo conto del loro precursore non florurato, e cioè: gruppo dell'idrocortisone e gruppo del prednisolone.

Si è tenuto conto del fenomeno del poliformismo (DICKSON, PAGE & ROGERS, 1955; SMAKULA, GORI & WOTZ, 1957; CALLOW & KENNARD, 1961; ROBERTS, 1957; BAKER, 1957; MESLEY & JOHNSON, 1965; MESLEY, 1957) e si è adottata la comune procedura che è quella di trasformare i campioni in esame nella stessa forma cristallina o amorfa solubilizzandoli con un solvente, ed evaporando la soluzione, nelle stesse condizioni di temperatura.

ESPERIENZE E RICERCHE

Corticosteroidi florurati dei quali sono state determinate le caratteristiche spettrofotometriche.

Gruppo dell'idrocortisone:

- 1) Fludrocortisone acetato (21-acetossi-9a-fluoro-11β, 17a-diidrossipregn-4-ene-3,20-dione)
- 2) Flurandrenolone acetonide (62-fluoro-113, 21-diidrossi-162, 172-isopropilidendiossipregn-4-ene-3.20-dione)

Gruppo del prednisolone:

- 3) Fluprednisolone acetato (21-acetossi-6x-fluoro-11β, 17x-diidrossipregna-1,4-diene-3,20dione)
- 4) 21-acetossi-9x-fluoro-113, 17x-diidrossipregna-1,4-diene-3,20-dione
- 5) Triamcinolone (9α-fluoro-11β, 16x, 17α, 21-tetraidrossipregna-1,4-diene-3,20-dione)
- 6) Triamcinolone acetonide (9α-fluoro-11β, 21-diidrossi-16α, 17α-isopropilidendiossi-pregna-1,4-diene-3,20-dione)
- 7) Parametazone acetato (21-acetossi-6a-fluoro-16a-metil-11B, 17a-diidrossipregna-1,4diene-3,20-dione)
- 8) Desametazone (9α-fluoro-16α-metil-11β, 17α, 21-triidrossipregna-1,4-diene-3,20-dione) 9) Desametazone acetato (21-acetossi-9a-fluoro-16a-metil-11B, 17a-diidrossipregna-1,4-
- diene-3,20-dione)
- 10) Betametazone (9x-fluoro-16 β metil-11 β , 17 α , 21-triidrossipregna-1,4-diene-3,20-dione) 11) Flocinolone acetonide (6 α , 9 α -difluoro-11 β , 21-diidrossi-16 α , 17 α -isopropilidendiossi-
- pregna-1,4-diene-3,20-dione)
- 12) Flumetazone acetato (21-acetossi-6a, 9a-difluoro-16a-metil-11B, 17a-diidrossipregna-1,4-diene-3,20-dione)
- 13) Flumetazone pivalato (21-trimetilacetossi-6a, 9a-difluoro-16a-metil-11B, 17a-diidrossipregna-1,4-diene-3,20-dione)

Discussione

La correlazione fra spettri I.R. e strutture degli steroidi è stata stabilita fin dal 1954 da Jones e Coll. (DOBRINER, KATZENELLENBOGEN & JONES, 1953; ROBERTS, GALLAGHER & JONES, 1958; JONES & HERLING 1954 e 1956; JONES, HERLING & KATZENELLENBOGEN, 1955; JONES et al., 1952; JONES & COLE, 1952; JONES et al., 1950; JONES, NOLIN & ROBERTS, 1955; JONES & ROBERTS, 1958) e da altri (MESLEY, 1957; JAYLE 1961 e 1965) i quali assegnarono molte bande a particolari raggruppamenti. Molte delle bande dei composti qui considerati sono riconoscibili secondo i dati della letteratura, anche se le tensioni nel reticolo cristallino, i differenti tipi di associazione e la presenza di altri sostituenti possono dar luogo ad un generale allargamento degli intervalli di frequenza, entro i quali è comunque compreso l'assorbimento caratteristico.

Tralasciando di rilevare le frequenze caratteristiche della regione compresa tra 4000 e 1400 cm⁻¹ e tra 600 e 250 cm⁻¹, sono state caratterizzate solo quelle che costituiscono la cosidetta finger print region e cioè tra 1400 e 600 cm $^{-1}$ (Fig. 1).

Si è pertanto cercato di evidenziare alcune bande di assorbimento comuni che derivano da analogie strutturali o da particolari raggruppamenti in alcune zone della molecola esaminata.

È da tener presente che, data la complessità molecolare, può accadere che molte delle bande si sovrappongano dando luogo, a volte, a difficoltà di attribuzione.

BELLOMONTE

Ann. Ist. Super. Sanità (1973) 9, 121-128

123

Nella Tab. 1 sono riportate le frequenze di due bande caratteristiche dovute allo streching C-F; la prima banda, di media o forte intensità, si trova compresa tra 1064 e 1088 cm⁻¹ mentre la seconda, di media intensità, sta sempre a 979 cm⁻¹ circa. Quest'ultima banda, le cui origini non

TABELLA 1

Ρροσοττι	1.0	20
1) Fludrocortisone acetato	1080 a	975 b
2) Flurandrenolone acetonide	1078	970
3) Fluprednisolone acetato	1070	980
4) 9a-fluoro prednisolone acetato	1065	980
5) Triamcinolone	1065 a	979
6) Triamcinolone acetonide	1080	972
7) Parametazone acetato	1060 a	a
8) Desametazone	1070	979
9) Desametazone acetato	1070	978
10) Betametazone	1080	979
11) Flocinolone acetonide	1072	971
12) Flumetazone acetato	1070 b	980
13) Flumetazone pivalato	1070	с

Assorbimenti caratteristici (cm⁻¹) dovuti al C-F

a) non separata dalla banda del 21-acetossi-20-chetone o dal 21-OH. — b) debale intensità. — c) oscurata dalla banda estere.

TABELLA 2

Assorbimenti caratteristici (cm⁻¹) associati ai gruppi 11 β -, 17 α , e 21-idrossi

Рворотті	11β-ОН		17 <i>a</i> -OH		21-011	
1) Fludrocortisone acetato	1119 6	1040	1130	1119 6	_	
2) Flurandrenolone acetonide .	-	1045	1129		1090	1058
3) Fluprednisolone acetato	1118	1040	1130	1118		
4) 9a-fluoroprednisolone acetato		1040	1130		-	
5) Triamcinolone		1042 b	1136	_	$\left(\begin{array}{c} 1105\\ 1090 b \end{array}\right)^{x}$	1059
6) Triamcinolone acetonide		1035 a			1100	1057
7) Parametazone acetato	1119	1032	1134	1105 b		
8) Desametazone		1040	1130		1090	1053
9) Desametazone acetato		1040	1135	1222	-	
10) Betametazone		1042	1142	1111	-	1053
11) Flocinolone acetonide	(mark)	1035	·		1095	1054
12) Flumetazone acetato		1035	1135	1106	-	
13) Flumetazone pivalato	_	1037	1139	1105 b		-

a) non separata dal 21-OH. - b) debole intensità. - x) contiene anche il 16a-OH.

BELLOMONTE

sono ancora ben note, appare di debole intensità nello spettro del fludrocortisone e si trova leggermente spostata a valori più bassi, a circa 970 cm^{-1} , per il triamcinolone acetonide e flocinolone acetonide.

La presenza del fluoro nella molecola si può anche, in alcuni casi, rilevare indirettamente come viene detto in seguito.

Nella Tab. 2 si osserva infatti come la contemporanea presenza, nella molecola steroidea, di un atomo di fluoro in posizione 9α e di un ossidrile in 11β porta alla diminuizione o anche alla scomparsa della frequenza a 1070 cm⁻¹ circa, e ciò che rimane nell'intervallo 1105-1130 cm⁻¹ è da attribuirsi alla presenza dell'ossidrile in 17 (MESLEY, 1957; JONES & ROBERTS, 1958; STUARD & SUTHERLANDT, 1956).

Questo effetto è dovuto al possibile legame idrogeno intramolecolare che si viene ad instaurare tra alogeno e ossidrile (MESLEY, 1957). Un altro esempio della influenza del fluoro si può notare nella Tab. 3, che riguarda gli assorbimenti caratteristici associati all'aggruppamento 1,4-diene-3-chetone (MESLEY, 1957; JONES, HERLING & KATZENELLENBOGEN, 1955).

La banda denominata come 2°, può variare entro un certo intervallo secondo i sostituenti dei nuclei B e C della molecola. Questo intervallo si colloca a 1290-1309 cm⁻¹ quando sono presenti contemporaneamente il 9 α e 11 β OH.

La banda 4º a 940-955 cm⁻¹ scompare nel flocinolone acetonide, probabilmente a causa del 6 α F ed infine le bande 8º e 9º, che rispettivamente si trovano a 857 - 872 e a 821 - 830 cm⁻¹, si spostano a 845 - 860 e a 827 - 835 cm⁻¹ in presenza di un 9 α fluoro nella molecola.

Nella Tab. 4, che riguarda gli assorbimenti caratteristici associati all'aggruppamento 4-ene-3-cheto, l'attribuzione specifica di ogni singola banda risulta più difficoltosa poichè si osservano assorbimenti dovuti alla influenza di bande dell'aggruppamento 21-acetossi-20-chetone. Anche in questo caso si possono rilevare le influenze del fluoro nella molecola. Infatti nella banda 2º che normalmente in presenza di sostituenti in 11 (OH o CO) si trova a 1321 - 1330 cm⁻¹ (fa eccezione il fludrocortisone acetato con 1337 cm⁻¹) si sposta a 1339 - 1350 cm⁻¹, quando è pure presente il 9 α -F (JONES, HERLING & KATZENELLENBOGEN, 1955).

La Tab. 5 riguarda l'aggruppamento 21-acetossi-20-chetone, ed anche in questo caso, come già detto in precedenza per la Tab. 4, si osserva la sovrapposizione di più bande (ad esempio il caso delle bande 1º, 2º e 3º (JONES & HERLING, 1956).

Per completare questa breve rassegna degli assorbimenti caratteristici si possono ancora aggiungere altre due osservazioni. La prima riguarda la banda di media intensità a 895 - 907 cm⁻¹, comune a tutti i C_{21} steroidi aventi un gruppo idrossi o cheto in 11, frequenza che si sposta verso i 911

Ann. Ist. Super. Sanità (1973) 9, 121-128

						-	-				
Ρκοροττι	10	50	3°	40	20	9	0	02	80	90	10°
)) Fluprednisolone acetato	1416	1309 6	1235	a 940	930	6	22	895	868	821	209
) 9a-fluoroprednisolone acetato	1404	1300	1234	a 949	932	6	117	890	846 a	1	701
) Triamcinolone	1408	1305	1242	955	1	- 6	129	890	849	835	700
) Triamcinolone acetonide	1411	1300	1248	952	940	6	128	895	857	834	700
) Parametazone acetato	1412	1	1231	a 965		- 6	131	902	855 a	1	669
) Desametazone	1411	1297	1241	952		- 6	30	891	852	830	702
) Desametazone acetato	1411	I	1240	a 952	1	- 6	29	890	845	829	705
) Betametazone	I	1295 b	1248	952		- 6	30	889	850	830	703
) Flocinolone acetonide	1406	1301	1243	1	942	6	120	168	858	820	I
) Flumetazone acetato	1410	1309	1229	a 951	740	y,c 9	119	897	848	835	710
) Flumetazone pivalato	1409	1290	1234	951	1	6	35	868	846	823	710
Assorbimen	i carat	teristici	(cm ⁻	b lel 4	-ene-3	-cheto	ne			TA	BELLA
Ρκοροττι	10	0	30	40	29	•9	8 [*	80	66	10°	110
) Fludrocortisone acetato	1410	1337	1272 a	1242 a	- p	1020	957	930	879	775	680
	1 400	1001	0101	0001	1000	OOOL	LLC	010	000		

a) non separata dalla banda del 21-acetossi-20-chetore. -- b) debole intensità. -- c) anomalia rispetto alla colonna 5 in cui le bande sono assenti o molto deboli in presenza di un metile in C 16. — y) valori più bassi rispetto alla generalità.

TABELLA 3

-4 • -171 11-/ :

126

ESPERIENZE E RICERCHE

- 0	~	۰.
~		
- 44	. 8	

TABELLA 5

Рворсти	1°	2*	30	4°	5*	6°	70
1) Fludrocortisone ace- tato	1272 a	1241 a	1190 b	1090 c	1055 b,d	988	847
3) Fluprednisolone ace- tato	1270	1235 e	1205 b	1085 c	104 c	993	
4) 9a-fluoroprednisolone acetato	1272	1241 e	1195 b	1081	1055	983	846
7) Parametazone acetato	1260	1231 e	1202	1091	1059 c	988	855 e
9) Desametazone acetato	1272	1240 e	1203 b	1090 b	1059	990 c	843
12) Flumetazone acetato	1285	1229 e	1196	1090 b	1061	990	848 b.

Assorbimenti caratteristici (cm⁻¹) del 21-acetossi-20-chetone

a) non separata dalla banda del 4-ene-3-chetone. — b) debole intensità. — c) non separata dalla banda del C-F. — d) non separata dalla banda del 11-OH. — e) non separata della banda del 1,4-diene-3-chetone.

cm⁻¹ quando è contemporaneamente presente un gruppo 16α metilico (MESLEY, 1957).

La seconda riguarda le vibrazioni dovute allo scheletro policiclico degli steroidi. Tale sistema dà luogo ad una serie di deboli bande, già osservate in soluzione da JONES e Coll. (ROBERTS, GALLAGHER & JONES, 1958; JONES, NOLIN & ROBERTS, 1955) e delle quali, in fase solida, solo una risulta consistente. Tale banda, presente in tutti i composti esaminati, si colloca intorno a 1160 cm⁻¹, ed è dovuta probabilmente all'associazione tra le vibrazioni scheletriche e il *rocking* del gruppo metilico angolare.

Non vengono date attribuzioni alle bande della regione compresa tra 600 e 250 cm⁻¹ poichè non sono qualificanti al fine di stabilire la struttura chimica ma potranno ugualmente essere utilizzate a scopi analitici in casi particolari (JAYLE, 1965).

In conclusione si può dire che quando due campioni, trattati allo stesso modo, hanno spettri I.R. sovrapponibili in fase solida (NEUDERT & ROPKE, 1965), sono identici e non necessitano di ulteriori prove di identificazione, come ad esempio spettri in soluzione.

Parte sperimentale

Materiali

Gli steroidi esaminati sono di diversa provenienza, forniti da Ditte produttrici, e considerati puri per uso farmaceutico. Alcuni di questi sono stati confrontati con i relativi standards USP. Sono stati usati : acetone per analisi spettrofotometriche (C. Erba), bromuro di potassio per spettrofotometria I.R. (Merck). Tutti gli spettri sono stati registrati utilizzando uno spettrofotometro I.R. a reticolo Perkin-Elmer mod. 457. Gli spettri sono stati effettuati in fase solida impiegando dischi di bromuro di potassio da 1600 a 250 cm⁻¹.

Preparazione dei dischi di bromuro di potassio

I dischi di bromuro di potassio sono stati preparati secondo quanto descritto da NEUDERT & ROPKE (1965) variando unicamente la quantità di steroide che è stata portata a 1,8 mg. Si allestisce contemporaneamente, nelle stesse condizioni, un disco di bromuro di potassio come riferimento.

Trattamento con solvente

Ciascun campione è stato sciolto nella minima quantità d'acetone; la soluzione evaporata a secchezza su bagno maria, lascia un residuo che viene essiccato per tre ore a 70° sotto vuoto.

Ricevuto il 4 settembre 1972. Accettato il 15 dicembre 1972.

BIBLIOGRAFIA

BAKER, A. W., 1957. J. Phys. Chem., 61, 450.

CALLOW, R. K. & O. KENNARD, 1961. J. Pharm. Pharmacol. 13, 950.

DICKSON, D. H. W., J. E. PAGE & D. ROGERS, 1955. J. Chem. Soc., 443.

DOBRINER, K., E. R. KATZENELLENBOGEN & R. N. JONES, 1953. Infrared Absorption Spectra of Steroids, An Atlas, 1, Interscience, New York.

JAYLE, M. F., 1961. Analyse des Steroides Hormonaux, 1., Masson Ed., Paris.

JAYLE, M. F., 1965. Analyse des Steroides Hormonaux, 3, Masson Steroides Ed., Paris.

JONES, R. N. & A. R. H. COLE, 1952. J. Am. Chem. Soc., 74, 5648.

JONES, R. N. & F. HERLING, 1954. J. Org. Chem., 19, 1252.

JONES, R. N. & F. HERLING, 1956. J. Am. Chem. Soc., 78, 1152.

JONES, R. N., F. HERLING & E. R. KATZENELLENBOGEN, 1955. J. Am. Chem. Soc., 77, 655.

JONES, R. N., P. HUMPRIES, F. HERLING & K. DOBRINER, 1952. J. Am. Chem. Soc., 74, 2820.

JONES, R. N., P. HUMPRIES, E. PACKARD & K. DOBRINER, 1950. J. Am. Chem. Soc., 72, 86.

JONES, R. N., B. NOLIN & G. ROBERTS, 1955. J. Am. Chem. Soc., 77, 6331.

JONES, R. N. & G. ROBERTS, 1958. J. Am. Chem. Soc., 80, 6121.

MESLEY, R. S., 1957. Spectrochim. Acta, 22, 889.

MESLEY, R. S. & C. A. JOHNSON, 1965. J. Pharm. Pharmacol., 17, 329.

NEUDERT, W. & H. ROPKE, 1965. Atlas of Steroid Spectra, Springer Verlag, Berlin.

ROBERTS, G., 1957. Analyt. Chem., 29, 911.

ROBERTS, G., B. S. GALLAGHER & R. N. JONES, 1958. Infrared Absorption Spectra of Steroids an Atlas, 2, Interscience, New York.

SMAKULA, E., A. GORI & H. H., WOTIZ, 1957. Spectrochim. Acta, 9, 346.

STUARD, A. V. & G. B. B. M. SUTHERLANDT, 1956. J. Chem. Phys., 24, 559.

Modificazioni dell'assorbimento ultravioletto di una soluzione fagica in funzione della temperatura

MARTA CREMONESE, STELLA GRECO (*), MIRELLA MATZEU (*) e GIUSEPPE ONORI (**) Laboratori di Fisica

Riassunto. — Viene studiato l'andamento della densità ottica a $\lambda = 2600$ Å e $\lambda = 3100$ Å di una soluzione di fago T₂, in funzione della temperatura. Viene messa in luce la presenza di una transizione, non nota in letteratura, nell'intervallo di temperatura 95–100°C.

Summary (Modifications of the ultraviolet absorption of a phagic solution, as a function of the temperature). — The optical density at $\lambda = 2600$ Å and $\lambda = 3100$ Å of a T₂ phage solution has been studied as a function of the temperature. A new transition, unknown in literature, has been found in the temperature range 95-100°C.

INTRODUZIONE

La temperatura è uno dei più importanti parametri che governano l'attività degli organismi viventi. È noto che i principali componenti di una cellula, e precisamente le proteine e gli acidi nucleici, subiscono profonde modificazioni di struttura all'aumentare della temperatura, con conseguente variazione delle loro proprietà chimico-fisiche. Tale fenomeno (denaturazione) è stato studiato da molti AA. su acidi nucleici e proteine *in vitro* mentre esistono rarissimi esempi di lavori simili eseguiti direttamente su fagi o nucleoproteine (TIKCHONENKO *et al.*, 1966; DAY, 1969; CREMONESE, MATZEU & ONORI, 1971). D'altra parte, in questi ultimi anni numerose evidenze sperimentali hanno mostrato che il DNA nelle strutture biologiche si trova in uno stato qualitativamente diverso da quello in soluzione (DOBROV, TIKCHONENKO & KLIMENKO, 1967). In particolare, per quanto riguarda il DNA contenuto nel fago, alcune proprietà ottiche

^(*) Borsista dei Laboratori di Fisica.

^(**) Incaricato presso l'Università di Perugia, ospite dei laboratori di Fisica dell'I.S.S.

come un effetto ipocromico minore del normale (TIKCHONENKO & DOBROV, 1969; MINCHENKOVA et al., 1969), uno spostamento del massimo di assorbimento verso lunghezze d'onda maggiori, un valore anomalo del dicroismo circolare (MAESTRE, 1969) sembrano indicare che la struttura secondaria del DNA intrafagico non sia la classica struttura a doppia elica descritta nel modello di Watson-Crick.

Ci sembra quindi interessante studiare le modificazioni delle proprietà ottiche di una soluzione di fago in funzione della temperatura, poichè ciò potrebbe fornire informazioni sulle interazioni esistenti fra i singoli componenti di questo organismo.

RISULTATI SPERIMENTALI

L'esperienza è condotta su fago T_2 e DNA del fago T_2 . Tutte le misure di densità ottica (D.O.) sono eseguite con uno spettrofotometro Gilford 2000. Il compartimento che racchiude le celle viene riscaldato tramite la circolazione chiusa di un liquido ad alto punto di ebollizione. Le soluzioni sono racchiuse in celle di quarzo, 1 cm di cammino ottico, mentre la lettura della temperatura è registrata automaticamente da un *termistor* connesso allo spettrofotometro.

In Fig. 1 sono riportate in funzione della temperatura le densità ottiche a $\lambda = 2600$ Å e $\lambda = 3100$ Å di una stessa soluzione di fago T₂; le due lunghezze d'onda scelte rappresentano rispettivamente il massimo di assorbimento del DNA e la minima lunghezza d'onda a cui né il DNA né le proteine assorbono: a $\lambda = 3100$ Å è quindi solo presente il contributo di scattering. Si nota subito che a T $\cong 65^{\circ}$ C si ha una prima brusca variazione di D.O. ad ambedue le lunghezze d'onda: essa è dovuta alla rottura del capside fagico ed alla conseguente fuoriuscita del DNA. Dopo tale transizione la densità ottica della soluzione rimane costante fino alla temperatura di denaturazione del DNA ($\sim 81,5^{\circ}$ C). A tale temperatura si osserva una notevole variazione di densità ottica a $\lambda = 2600$ Å, ed una piccolissima variazione di scattering ($\lambda = 3100$ Å). Seguitando ad aumentare la temperatura, si ha infine un ulteriore brusco aumento di assorbimento a $\lambda = 2600$ Å, accompagnato da un notevole aumento di scattering. Questa transizione avviene abbastanza riproducibilmente fra 95°C e 100º C. Le due densità ottiche rimangono infine costanti fino al limite di temperatura raggiunto.

Le prime due transizioni sono già state osservate e poste in relazione rispettivamente con la rottura del fago e la denaturazione del DNA, mentre, per quanto ci risulta, non è stata mai notata una terza transizione.

In Fig. 2 è riportata una curva di denaturazione del solo DNA del fago T₂, anch'essa eseguita a $\lambda = 2600$ Å e a $\lambda = 3100$ Å. In questo

Ann. Ist. Super. Sanità (1973) 9, 129-132

Fig. 1. — Andamento in funzione della temperatura della densità ottica a $\lambda=2600$ Å e $\lambda=3100$ Å di una soluzione di fago T_2

Fig. 2. — Andamento in funzione della temperatura della densità ottica a $\lambda = 2600$ Å e $\lambda = 3100$ Å di una soluzione di DNA del fago T₂

Ann. Ist. Super. Sanità (1973) 9, 129-132

caso, a $\lambda = 2600$ Å è presente la sola transizione tipica del DNA mentre a 3100 Å non si ha alcuna variazione di *scattering*.

Dal confronto delle Fig. 1 e 2 si può dedurre che l'ultima transizione fagica è legata alla presenza delle proteine. Per controllarne la reversibilità, un campione portato preventivamente a 104°C è stato raffreddato lentamente: variando la temperatura da 104°C a 60°C circa il valore della densità ottica rimane invariato. Possiamo quindi dire che nell'intervallo di temperatura 104-60°C il processo da noi osservato è irreversibile.

Sono state infine eseguite alcune fotografie al microscopio elettronico di una soluzione di fago T_2 preventivamente portata a 20°C (Fig. 3), a 70°C (Fig. 4 e 5) ed a 104°C (Fig. 6-7-8).

Come si vede il fago portato a 70°C, pur essendosi completamente svuotato del suo DNA, conserva una struttura distesa, completa di coda a fibrille. Quando invece le particelle vengono portate a temperatura >100°C, assumono una forma più compatta con una notevole contrazione di volume. La coda risulta svuotata (Fig. 6 e 7) ed inoltre le particelle mostrano una notevole tendenza a formare degli agglomerati. È interessante notare che le temperature raggiunte non sono tali da provocare la completa frammentazione dei *ghosts*. Per una interpretazione più esauriente del fenomeno osservato sono in corso misure sul fago a differenti lunghezze d'onda, e su sospensioni di soli *ghosts*.

Gli AA. ringraziano il Sig. G. Arancia per le fotografie al microscopio elettronico.

Ricevuto il 13 ottobre 1972. Accettato il 3 novembre 1972.

BIBLIOGRAFIA

CREMONESE, M. M. MATZEU & G. ONORI, 1971. Proc. of the 1º European Biophysics Congress, E. Broda, A. Locker, H. Springer-Lederer, Ed.

DAY, L. A., 1969. J. Mol. Biol., 39, 265.

DOBROV, E. N., T. I. TIKCHONENKO & S. M. KLIMENKO, 1967. Biophyzika, 12, 957.

MAESTRE, M. F., 1969. Obshch. Virusologiya, 9, 25.

MINCHENKOVA, L. E., R. A. BELYCH, E. N. DOBROV & V. I. IVANOV, 1969. Molek. Biol. S.S.S.R., 3, 441.

TIKCHONENKO, T. I., E. N. DOBROV, G. A. VELIKODVORSKAYA & N. P. KISSELEVA, 1966. J. Mol. Biol., 18, 58.

TIKCHONENKO, T. L. & E. N. DOBROV, 1969. J. Mol. Biol., 42, 119.

Fig. 3. — Fotografia al microscopio elettronico di una preparazione di fago $\rm T_2$ mantenuto a 20°C (120.000 x)

Fig. 4. — Fotografia al microscopio elettronico di una preparazione di fago $\rm T_2$ portato a T = 70°C (120.000 x)

Ann. Isl. Super, Sanilà (1973) 9, 129-132

Fig. 5. — Fotografia al microscopio elettronico di una preparazione di fago T_2 portato a $T=70^{\rm o}{\rm C}~(160.000~{\rm x})$

Fig. 6. — Fotografia al microscopio elettronico di una preparazione di fago $\rm T_2$ portato a $\rm T=104^{o}C~(120.000~x)$

.Inn. Ist. Super. Sanità (1973) 9, 120-132

CREMONESE, GRECO, MATZEU E ONORI

Fig. 7. — Fotografia al microscopio elettronico di una preparazione di fago $\rm T_{a}$ portato a $\rm T=104^{o}C~(160.000~x)$

Fig. 8. — Fotografia al microscopio elettronico di un aggregato formatosi in una preparazione di fago T₂ portato a T = $104^{\circ}C$ (160.000 x)

.1nn, Ist, Super, Sanità (1973) 9, 129-132