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Genetic instability and methylation tolerance
in colon cancer
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Summary. - Microsatellite instability was firstidentified in colon cancer and later shown to be due to mutations
in genes responsible for correction of DNA mismatches. Several human mismatch correction genes that are
homologous to those of yeast and bacteria have been identified and are mutated in families affected by the
hereditary non-polyposis colorectal carcinoma (HNPCC) syndrome. Similar alterations have been also found in
some sporadic colorectal cancers. The mismatch repair pathway corrects DNA replication errors and repair-
defective colorectal carcinoma cell lines exhibit a generalized mutator phenotype. An additional consequence of
mismatch repair defects is cellular resistance, or tolerance, to certain DNA damaging agents.
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Riassunto (Instabilita geneticae tolleranza alla metilazione nel cancro del colon). - Nel cancro del colon-retto
& stata osservata l'instabilita genetica di una classe di sequenze ripetute del DNA, 1 microsatelliti; questo [enotipo
&laconseguenza di mutazioni nei geni responsabili della correzione dei "mismatch” del DNA. E' stato dimostrato
che il genoma umano contiene una serie di geni, omo[oghl a quelli dei batteri e del lievito, che hanno il compito
di correggere i "mismatch” che si formano sul DNA. 'Mutazioni in questi geni sono state osservate nelle famiglie
affette dalla sindrome ereditaria associata con una alta insorgenza di carcinomi del colon-retto di tipo non
poliposico (HNPCC). Alterazioni genetiche negli stessi geni sono state identificate in alcuni carcinomi sporadici
del colon-retto. La via di riparazione dei "mismatch corregge gli errori che avvengono durante lareplicazione del
DNA e linee cellulari difettive in questa funzione sono caratterizzate da un fenotipo mutatore esteso 4 tutto il
genoma. Le cellule difettive in questa via riparativa sono inoltre caratterizzate dalla resistenza, o tolleranza, agli
effetti citotossici di alcune classi di agenti chimici che danneggiano il DNA.

Parole chiave: RMSH2, h(MLH 1, GTBP,PMS 1, PMS2, riparazione dei mismatches, tolleranza allametilazione.

Introduction

It has long been suggested that spontaneous errors
in DNA replication play an important role in neoplastic
transformation. Replication errors have also been
invoked to explain the multiple genetic alterations seen
in cancer cells [1]. An increase in mutation rate would
lead to a higher probability of oncogene activation or of
loss of tumor suppressor gene expression, thus
conferring the selective growth advantage necessary
for tumor progression. A defect in the control of DNA
replication fidelity has long been hypothesized but,
until recently, its identification has provento be elusive.,
There is no evidence that increased mutation rates are
generally associated with neoplastic transformation.
Comparison of spontancous mutation frequencies in
normal primary cultures of rodent cells and in their
chemically-transformed counterparts did not show
significant differences [2]. Similarly the fidelity of
DNA replication by extracts of a normal fibroblast
strain was found to be similar to its Ha-ras transformed

derivative [3]. The first evidence that a defect in DNA
replication might be one of the causative factors in
humanneoplasiacame fromthe observations that subtle
alterations of the genome were present in repeated
DNA sequences in tumors of the colon and rectum and
not in DNA from normal cells of the same patient [4].
These alterations were then characterized as somatic
deletions of up to 4 bases in monotenic runs of dA [5].
Similarly, differences between tumor and normal DNA
were detected in 28% of colorectal carcinomas [6],
showing deletions or insertions in a variety of simple
repeated sequences such as di-, tri- and tetranucleotides
(microsatellite DNA) [5, 7]. This microsatellite
instability was significantly correlated with some of
the characteristic of hereditary non polyposis colorectal
carcinoma (HNPCC), such as the location of the tumor
in the right side of the colon and the near-diploid
karyotype of tumor cells. These findings suggested that
a heritable defect that allowed the accumulation of
replication errors at microsatellite sequences was
associated with HNPCC tumors. By analogy 1o bacleria



and yeast, the mechanism responsible for this genomic
instability was hypothesized to be a defect in the repair
pathway responsible for the correction of DNA
replication errors. Mutations in the E. coli mismatch
recognition genes mutS and puatL lead notonly to large
increases in both classes of transitions (GC to AT and
AT 1o GC) (8], but also to high frequencies of +2
frameshifts insequences comprising tandemly repeated
CA orGTdinucleotides [9]. Saccharomyces cerevisiae
mutants in the mismatch correction genes (slhl , pmsi
msh2) show destabilization of tracts of dinucleotide
repeats of this type [10]. These results indicated that
replication intermediates containing 1 or 2 extrahelical
bases could be recognized and corrected via the same
mismatchrepair pathway that corrected mispaired bases.
Cloning of the genes responsible for HNPCC (hMS112,
AMLHI, hPMSI and hPMS2) demonstrated that they
were indeed human homologs of the mismatch
correction genes of Escherichia coli and yeast {11-15].
Mutations in these genes were found in tumors of
patients with HNPCC as well as, in the heterozygous
state,in HNPCC kindreds [11-23]. A listof the mutations
in mismatch correction genes found in human tumors
is shown in Table 1.

Parallel to the discovery of mutations in the mismatch
correction genes of HNPCC colorectal cancers, ccll
lines established from some colorectal carcinomas were
also shown to be unable to perform mismatch correction
in an in vitro assay. This repair assay uses mismatch-
containing restriction sites that are resistant to cleavage
by restriction enzymes. When a mismaich is corrected
to a complementary base pair by the cell extracts,
subsequent cleavage with the restriction enzyme
produces fragments which are diagnostic for repair [24-
26]. Thisapproachdemonstrated thatdefective mismatch
correction was not restricted to colorectal carcinoma
cell lines [27] but also responsible for the microsatellite
instability present in some endometrial cancer cell lines
[17, 28].

The inability to correct DNA mismatches may lead
not only to instability of microsatellite sequences [29]
but also to a more generalized mutator phenotype.
Human cell lines with defects in mismatch correction
have greatly enhanced spontaneous mutation rates.
Mutation rates at hypoxanthine guanine phospho-
ribosyl-transferase (HPRT) are 10 to 1000-fold higher
than HPRT mutation rates in normal human fibroblasts
or mismatch repair-competent colorectal carcinoma
cell lines [30-32]. Some human tumors have a mutator
phenotype inexpressed genes. Accumulation of multiple
mutations (up to 6 per gene) were found in the APC and
p53, in an HNPCC patient with an inactivated hMSH2
gene [33]. Furthermore frequent inactivation of the
TGF B receptor by frameshift mutations was observed

in colorectal carcinoma cells with microsatellite
instability [34]. Inacuvation of mismatch repair genes
is thusasource of progressive accumulationof mutations
which may lead to changes in critical transforming
genes.

Biochemical analysis
of mismatch correction proteins

Restoration of mismatch correction to defective
human cell extracts by fractions of wild-type cell extracts
allowed the purification of mismaich rccognition
proteins. Recognition of mismatches involves a
heterodimer formed by hMSH2 and a proicin of 160
kDa [35, 36]. The 160 kDa protein, the product of the
GIBFP gene, has been identified as another MutS
homolog [36]. Two cell lines with mulations in the
GTBP gene (MT1 and DLD-1) accumulate alterations
in mononucleotides tracts while they are apparently
stable at microsatellites formed by dinucleotides repeats
[29, 30, 37]. A umor xenograft mutated in the kM 112
gene shows instabilility at bothmono and dinucleotides
[37]. The ovarian carcinoma cell linc 2774 multated in
hMSH?2 also displays dinuclecotide repeat instability
[38]. It seems likely therefore that the mammalian
mismatch repair pathway is branched at the recognition
step. The mismatch recognition complex ol each
subdivision recognizes a differcnt set of mismatches.
The GTBP protein, complexed with hMSH2, s
selectively responsible for the recognition of one
extrahelical base and of single base mismaltches (Fig.
1). hMSH2, or a sccond complex also containing
hMSH2, might recognize extrahelical dinucleotides
(Fig. 1) [39, 40]. It 1s interesting that a third MutS
homolog has been identified in mammalian cells, the
MRPI gene, which is located in a head-to-head
configuration with the DHFR gene and directed by a
promoter with bidirectional acuvity [41]. MRP ] is the
human homolog of the yeast MSH3 gene and yeast
mutants in this gene display dinucleotide repeat
instability with no concomitant gencral incrcase
mutation rates [40]. The product of the MRFP/ gene
might then be the missing link in the first step of
mismatch recognition. These data all seem (o indicate
that, in contrast to bacteria, muluple mismatch
recognition proteins maintain the accuracy of human
DNA replication.

A similar in virro complementation approach
allowed the identification of another protein complex
which is required for human mismatch repair, the
heterodimer hMutLe formed by hMLH1 and hPMS2
[42] (Fig. 1). This heterodimer appears o0 be the
functional analogof the £. coli Mull protein [43] or the
veast MLHI1: PMS1 complex [44] and is recruited at
the site of the mismatch. Tumor cells containing
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Fig. 1. - Distribution of mutations along the hMSHZ2 gene.

mutations in either component of the hMutLa
heterodimer show instability of both types of
microsatellite repeats as well as high mutation rates at
expressed genes. APMS1 , another yeast pms1 homolog,
which is mutated in an HNPCC kindred, has yet to be
assigned a biochemical function. The proteins involved
in strand discrimination, incision and removal of the
mismatched DNA, synthesis and ligation of the repaired
DNA tract (Fig. 1) have still to be identified.

All these mismatch correction proteins are strongly
conserved from bacteria to man. In Fig. 2 is shown the
genomic structure of the AMSH2 gene and the positions
where mutations in human tumors or HNPCC kindreds
occur. Since the mismatch correction proteins act in a
multi-protein complex, analysis of the mutational
spectrum might be informative on which domains of the
protein are important in the interaction with the other
components of the complex. It is clear from this type of
analysis that: a) no mutations were found in the first 4
exons of the gene; b) mutations seem to be randomly
scattered along the whole AMSH2 sequence from exon 4
toexon 15:¢) no clusterering of mutations is observed in
the conserved domains of the protein. These data seem to
suggest that all parts of the human protein are of
importance to exert its cellular function. However, this

information is derived from mutation analysis by the
truncated protein assay. This assay is based on the in
vitro translation of the mRNA of the putative mutant
gene followed by analysis of the protein products by gel
eletrophoresis. This method identifies truncated proteins
derived from deletions, frameshift mutations or base
substitutions producing stop codons but not missense
mutations which resultin a full length mutant protein. In
contrast, analysis of mutations by amplification of single
exons using intron-based primers [18] can identify every
possible type of base substitution. Inferences of possible
exposures 1o chemical carcinogens responsible for the
inactivation of the mismatch correction genes as well as
the identification of important regions of the protein
await the compilation of a data base of mutations by this
method.

Consequences of loss of mismatch correction

A characteristic of mismatch correction defective
cells is tolerance to methylation damage. Exposure to
methylating carcinogens introduces the potent mutagenic
and cytotoxic base O°-methylguanine (O*-megua) into
DNA. This methylated base, if not repaired by the
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Fig. 2. - Mismatch repair pathway in human cells.

specific enzyme Of-megua-DNA methyltransferase
(MGMT), is able to pair with thymine during DNA
replication and this property is responsible for the
mutations (almost exclusively GC-> AT transitions)
induced by methylating agents. However, O°-megua
either paired with C or T has thermodynamic properties
similar to a DNA mismatch [45]. Of-megua containing
basc pairs and DNA mismatches can disrupt DNA:
protein interactions such as SV40 T antigen binding
and unwinding of the viral replication origin [46,47] or
restriction endonuclease recognition and cleavage of
specific sequences [48]. The hypothesis has been made
that the proteins of the mismatch correction pathway
may recognize and attempt to correct O°-megua base
pairs [49). Attempts of correction might occur at the
strand containing the cytosine or the thymine and
repeated cycles of excision and resynthesis are produced
because no perfect match is available for O°-megua.

These DNA strand interruptions may lead then to cell
death [50] (Fig. 3). According to this hypothesis, variants
defective in mismatch correction may display resistance
to the lethal effects of DNA Of-megua. This hypothesis
has been validated and some mammalian cell lines
resistant to the methylating agents N-methyl-N-nitroso-
guanidine (MNNG) or N-methylnitrosurea (MNU) are
defeclive in mismatch recognition and/or repair [51-53].
Clone B, a methylation tolerant cell line derived from
CHO cells, has a moderate mutator phenotype, unstable
dinucleotide repeats and is unable to bind to DNA
mismatches or extrahelical dinucleotides [54]. The
mutational spectrum at the APRT gene indicates that
these cells accumulate -2 frameshifts at dinucleotide
repeat sequences [55]. A second tolerant cell line, F12
derived from human Raji cells, also displays a 3-fold
increase in mutation rate at the HPRT gene, is unable to
bindaG: T mismatchand to correctasingle base mismatch
inan in vitroassay [53]. The F12 cell line has a wild-type
hMSH?2 geneand display instability only at microsatellites
formed by mono- nucleotides repeats (R. Hampson,
G.A., M.B. and P. Karran, manuscript in preparation).
Clone B and F12 might be representative of the two
different modes of mismatch recognition (sce Fig. 1).
The tolerant phenotype is also present in colorectal
carcinoma cell lines with defined defects in mismatch
correction, SW48, a colorectal carcinoma cell line with
adeletion in the AMLHI gene is highly resistant to MNU
although devoid of MGMT activity [32]. Other examples
of MNNG-tolerant cell lines with defective mismaich
correction possibly include the AMLHI HCT116
colorectal carcinoma [56] and an endometrial cell line
with a mutation in the PMS2 gene, [28]. Furthermore
mice ES cells in which both copies of the AMSH2 gene
have been inactivated display the methylation tolerant
phenotype [57].

It is interesting to note that cells tolerant to the
lethality of methylation damage arise after multiple
exposures to methylating carcinogens [58]. Among these
variants some display the mutator phenotype
characteristic of mismalch correction variants. It 18
possible that methylating agents exertaselective pressure
such that mismatch correction variants are isolated due
to their accompanying resistance to the cytotoxicity of
these chemicals [59].

The existence of the methylation tolerant phenotype
in mismatch correction defective tumors has important
clinical implications. Several methylating agents, such
as procarbazine, dacarbazine and triazines, are used in
cancer chemotherapy. Their toxicity is based on the
formation of O°-megua in DNA and they will therefore
be ineffective in the treatment of this class of tumors.
More importantly there is increasing evidence that cells
with a tolerant phenotype or with mismatch correction
defects are sensitive to the chemotherapeutic
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Fig. 3. - Model for the contribution of mismatch correction to the cytotoxicity of DNA methylation damage. Futile T
insertion/removal cycle creates long-lived strand interruptions that are postulated to lead to cell death.

chloroethylnitrosoureas ([60] and G. Aquilina and M.
Bignami, unpublished data). This indicates that a subset
of colon cancer may be particularly responsive o this
type of chemotherapy and screening for microsatellite
instability may thus identify potentially curable tumors.
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