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STATISTICAL TOOLS IN THE CLINICAL LABORATORY
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Summary. - Method evaluation, control of data and
transformation of laboratory results into diagnoses all
involve a decision step. A survey of the statistical tools
available to organize the information and check the con-
gruity of decision making is provided is focused on: (a) the
use of classical statistical tools (including computer based
simulation and replication techniques) which enable theo-
retical distributions to be obtained and their optimal limits
to be defined for classification purposes; (b) the analysis
of multivariate distributions, which evidences the rela-
tionships among the variables involved, whatever they
might be: e.g. results obtained on the same specimens with
different methods (in test evaluation), different laboratory
data related to the same pathophysiological situations (in
making diagnoses), etc. As for the latter, the most common
techniques of statistical analysis of data (discriminant and
cluster analysis, principal components analysis) are also

illustrated by general examples.
KEY WORDS: univariate and multivariate distributions, statistical
sampling, statistical analysis.

Riassunto (La strumentazione statistica nel labora-
torio). - La valutazione dei metodi, il controllo dei datie la
loro trasformazione in diagnosi comportano senza ecce-
zioni un passaggio decisionale. L' organizzazione dell’ in-

formazione e la verifica della congruita della decisione
non sono possibili senza far ricorso ad un’ opportuna stru-
mentazione statistica. Scopo dell' articolo é presentare
unarassegnadi questastrumentazione,conparticolareri-
ferimento a: ' uso dei classici strumenti statistici (com-
prese le tecniche di simulazione e replicazione al calcola-
tore) che consentono di ottenere le distribuzioni teoriche
dei dati, definendone i limiti ottimali ai fini della classifi-
cazione; I'analisi delle distribuzioni a pin variabili, che
evidenzia le relazioni tra tutte le variabili in gioco, intese
o come i risultati ottenuti per gli stessi campioni con
metodi differenti (nellavalutazione metodologica), 0 come
i diversi dati di laboratorio riferiti alle stesse situazioni fi-
siopatologiche (nel processo diagnostico), 0 altro ancora.

Per quanto riguarda I ultimo punto, viene esemplificato
I'uso delle pitt comuni tecniche statistiche di analisi, quali
I'analisi discriminante, I' analisi dei “cluster” e I'analisi
delle componenti principali.

PAROLE CHIAVE: distribuzione univariata e multivariata, cam-
pionamento statistico, analisi statistica.

Introduction

A survey of statistical tools for diagnosis is presented.
The term “diagnosis” is intended here in a wide sense,
namely, the end-point of a decisional path associated with
the evaluation of a method, the test of the data provided by
the evaluated method and the allocation of tested data into
a diagnostic protocol. Moreover, diagnosis is the “judg-
ment” ending an analysis, e.g. a statement about patient’s
state of health, quality of an industrial or scientific product,
and related data. The guidelines followed here are: the
exhaustive utilization of the numerical information pos-
sessed by the operator, the use of statistics in terms of
computer science [1] (so that the operator can find answers
not only in probability tables but also at a computer
terminal) and the reduction to a common cultural and
technical denominator of topics similar with regard to
language, approach and method.

This is applied to two problems: firstly, statistics of
univariate distributions and, secondly, statistics of multi-
variate distributions.

Statistics of univariate distributions
Definition

In decisional problems, where proper classification
(i.e. adiagnosis with a low level of uncertainty) is needed,

the knowledge of the characteristics of the data distribu-
tion is critical.
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Two descriptions of distributions can be provided,
namely: (a) a mathematical description, when the know-
ledge of the distribution is related to the knowledge of the
probability density function and (b) a statistical descrip-
tion, when the distribution is known if a “sufficiently”
large number of outcomes of the random variable under
study is possesed [2]. Fig. 1 shows two distributions with
known mathematical shape. These distributions might be
associated with two different pathologies or with the
replicates of measurements of a single sample as obtamed
by two different methods.

Materials

The working material consists of the numerical data
related to a single variable (supposed as continuous for
sake of simplicity).

Only one characteristic of the data, i.e. their number,
will be taken into account, while their properties will be the
basis of knowledge concerning the situation under study
[3]. “Knowledge” is intended as the process of acquiring
information with a degree of uncertainty, which depends
on each particular situation. Fig. 1 shows the histograms of
data of two samples extracted from the theoretical distribu-
tions in the same illustration.

Theoretical and empirical models

The simplest answer to the demand for knowledge
aboutdistributions is the hypothesis of amodel. Very often
the gaussian model is assumed, since it actually fits most
statistical variables [4] and good tests exist to check the
hypothesis underlying this model [2]. Nevertheless, when
this hypothesis is rejected, other more appropriate models

are not always taken into account, even when they do not
require any theoretical assumptions (i.e. empirical models
(2,3D).

Empirical models are based on transformations reduc-
ing the values of the original variable to percentiles of a
standard gaussian variate, i.e. gaussian with zero mean and
unitary standard deviation (SD). (Note: the ath percentile
is the value that as a proportion o percent of sample
distribution below it). The histograms of Fig. 1, fitted
according to two models, are shown in Fig. 2.

The gaussian sum

Letevery sample value be the most probable among the
possible results of the measurement, and let these possible
results be distributed around this value in a gaussian way,
with the same SD as for the whole sample. The distribution
of sample [5] can be considered as the sum of the distribu-
tions around the single data, mathematically smoothed to
reduce roughness without the likelihood of lack of fitting.
The theoretical model and the best fitting gaussian sum
superimposed to sample data are shown in Fig. 3.

Descriptive statistics

Every analysis of data is aimed to characterize the
distributions by means of some experimental statistics
(descriptives) [2]. Mean (moment of first order) and median
(50th percentile) provide information about the values
around which the numerical data tend to cluster. Variance
(second-order moment of data centered around the mean)
and SD describe the data spread. Skewness (third-order
moment of data centered around the mean, free from data
variability) quantifies the asymmetry of a distribution,
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Fig. 1. - Theoretical distributions and histograms (H) of 400 data points, derived from the same distributions. (a) Symmetrical distribution (S), (b) asym-
metrical, skewed to the right (A).
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I'ig. 2. - Density probability functions computed from (a) symmetrical and (b) asymmetrical histogram (H) of Fig. 1, under the hypothesis of a symmetrical
empirical model (G) and a asymmetrical one (L).
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Fig. 3. - Fit of density probability function by means of the method of gaussian sum computed from the histograms (H) of Fig. 1, as compared to the
theoretical distributions, for (a) symmetrical (G) and (b) asymmetrical (L) distribution.

while kurtosis (fourth-moment of data centered around the
mean, free from data variability) relates to the “peaked-
ness” of a distribution. Table 1 reports some descriptives
of the data shown in Fig. 2, together with their associated
errors (computed from the original data by the resampling
techniques hereafter described [6]) and the corresponding
theoretical values.

Descriptives report the macroscopic properties of di-
stributions, so that only these quantities can be referred o
for the characterization of the distributions themselves.

This approximation, while simplifying the statistical treat-
ment of data, neglects the microscopic aspects. Good
results are provided for the center of distribution, but not
for its tails. As a matter of fact, tails are the regions that
clinical chemists have to analyze in evaluating methods or
that physicians take into account for making diagnoses [3].

When more precise descriptions of data are sought,
either a greater number of statistical moments can be taken
into account or the local characteristics of data must be
evaluated via percentiles.
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Table 1. - Expected values (m) and errors (s) of some descriptive statistics, in a symmetrical (A) and asymmetrical (B)

Sample Parameter m
A Mean 9.995
Median 9.969
SD 0.960
Skewness -0.014
Kurtosis 2975
B Mean 14.07
Median 13.47
SD 1.81
Skewness 3.00
Kurtosis 13.88
Variability

Unfortunately, the last statement is essentially the ideal
and fully reliable information can be obtained only in the
absence of errors. In fact, all data arc affected by errors and,
when several series of experimental data referring to the
same population are obtained, the single value of statistics
results in a cluster distributed around a central value.

An estimate of the cluster dispersion could be uscful,
but generally only single data setsare available, because of
time and cost involved in repeating serics of measure-
menits.

Simulation and resampling techniques

Simulation with Montecarlo techniques [2] provides
information on the statistical distribution of data by ran-
domly producing a great number (e.g. 10%) of possible
values belonging to that distribution. The generation of
these data requires knowledge of the mathematical form of
the distribution. For example, this technique was used to
simulate the samples of Fig. 1.

Resampling techniques [1, 6] (often referred to as
bootstrap) are strictly related tothe Montecarlo simulation
techniques, but differ with regard to the basis of extraction
of random values. In fact, in this case, the basis is not
infinite butis given by the distinct combinations of sample
data for the statistics of interest.

The bootstrap extends the characteristics of asampleto
the population, taking into account that the latter contains
in nuce all that is known and can be stated about the
population itself. From this point of view, the population
is nothing else but a resampling of the original data from
which a higher number of other samples can be extracted.
However, it is worth noting that resampling techniques
extract only the information content of the sample without
increasing it. In Fig. 4, examples of bootstrap resampling
are shown.

By these techniques, butonly by mecans of a computer,
the variability of distribution statistics can be analysed and
the consequences of changing either sample dimension, or
decisional thresholds, or control rules [ 7], or other produc-
tive strategies can be investigated.

sample (N = 400), together with their theoretical values for gaussian (g) and lognormal model (1)

S g model 1 model
0.061 9.995 9.995
0.055 9.995 2.885
0.161 0.960 0.960
1.94% 0 -0.014
15.96 3 3.004

0.10 14.07 14.07
0.06 14.07 13.53
0.23 1.81 1.81
1.77 0 3.00

47 3 22.40

Reference limits and tests

The description of the local characteristics of a single
distribution is not sufficient, nor necessary, in SOme cases.
More interestingly, the relationship between different
distributions can be analyzed, since different situations
can be actually confused and the same unknown value
cannot be associated unambiguously with a single situa-
tion [3]. In the process of classification of the single result,
which transforms the result itself from “datum” into
“diagnosis”, the knowledge of reference limits, and the
related uncertainty, allows the result to be accepted or
rejected according to the degree of homogeneity with the
data population.

The task assigned to statistical tests is a comparison of
statistics or a check of hypotheses. Some tests verify if the
means of two samples can be considered as the outcomes
of the same mean (e.g. Student’s test). With other tests the
variability and the random errors (imprecisions) of two
samples are compared: e.g. the chi-square test defines the
range of an error and the Fisher's test evaluates the ratio
betweeen two variances.

Statistics of multivariate distributions
The variables

A single situation gives very little information with
which to characterize a pathophysiological situation, and
the individual variability may predominate. Clinical che-
mists and physicians, therefore, try 10 collect information
from several situations in order to describe the situation on
“an average”.

In the same way, when the single value isnot sufficient
to characterize the individual case, clinical chemists and
physicians look for other data (the variables of case) to
obtain more information. Fig. 5 shows a two-dimensional
plot of two variables, which may be the results of the
measurements either of two analytes in the same analyti-
cal sample, or of the same analyte with two different
methods, or clsc of a variable and its variance, ¢.g. the
response/error relationship [8].
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Fig. 4. - Bootstrap resamples with N = 40 (top) and N = 400 (bottom) of the sample shown in the middle (same as in Fig. 1a). A beuter description of
the distribution is apparent for greater sample size.

In any case, the relationship among data must be
investigated. In the first case, the independence of the
variables indicates a high information content of both; in
the second, the correlation of results demonstrates a be-
tween-method commutability and, in the third, quantifies
a quality function to control the assay.

Regrescion

Multiple regression evaluates the dependence of the
variables according to a given fitting (usuvally linear)

model, using the information contained in the correlation
matrix of data and a decisional criterion (e.g. the analysis
of residual variance), through least-squares or maximum-
likelihood methods [9]. The regression curve for the two
variables of Fig. 5 is shown in Fig. 6.

Classification
Once a set of useful variables has been selected, a

classification of the cases could be required, exactly as
previously discussed for univariate analysis.
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Fig. 5. - Bidimensional plot of two variables (N = 113). Every triangle
represents a single case, while the plane is the space of variables.

The aim of classification is the determination of the
domain of influence of different states or classes (errors,
pathologies, etc.), the correct classification of the known
cases (learning sample) and the allocations, according to
some criterion, of the unknown cases.

Classification can be performed according to two main
categories of method of different complexity, exemplified
by: (a) discriminant analysis, where the objects are classi-
fied into known prototype classes [10] and (b) cluster
analysis, where the unknown classes are also identilied by
the method through an iterative processof refinement [11].

Fig. 6. - Regression curve between the variable of Fig. 5. The error range
around the mean curve refers to a confidence level of 95%.

Fig. 7. - Results of discriminant analysis applied to the data of Fig. &

considered as being related to two distinct situations. In this two-

dimensional case, the “hyperplane” of separation is the shown straigth
line.

Discriminant analysis allows the determination of a
discriminant function, depending on the original vari-
ables, that assigns to each point (case) in the space of
variables a value as to its degree of membership to a given
class. All the cases are then allocated in the given classes
by means of optimal cutoffs (from the decisional point of
view), that graphically draw separating surfaces (hyper-
planes). In Fig. 7, discriminant analysis is applied to the
data plotted in Fig. 5, considered as two learning samples
extracted from two different states (classes). In this two-
dimensional case, the hyperplane of separation is a straight
line.

The essential feature of clustering is that objects are
sorted into subsets containing data points as alike as
possible. Allocation into the subsets is made according to
some decisional function, following logical paths optimi-
zed as far as costs (iteration number) is concerned. Fig. 8
exemplifies a cluster analysis (same data as Fig. 7), as
obtained through stopping the process at two different
steps (“thresholds™) of clustering.

Principal components analysis

When a case is delined by several variables, it is useful
1o reduce the redundancy of information by selecting those
uncorrelated variables holding the richest information
content.

The analysis of principal components consists in chan-
ging the reference system from the space of the original
variables into a new space, where the compression of
information is optimal [ 12]. In this new space, the operator
selects the number of variables (linear combinations of the
original variables) which can be rejected with a given loss
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i+ % Results of cluster analysis, when the automatic classification of data of Fig. 5, is stopped at (a) minimal threshold or (b) optimal threshold. The
clusters have been superimposed on the data of Fig. 7, to point out the efficacy and residual misclassifications.

ol information. When many variables exist, principal
omponents analysis associated with correlation or multi-
ple regression allows the compression of information, as
Jescribed above, to be transferred to some of the original
variables.
As a simple (two dimensional) example, easy to repre-
cnt, the principal components analysis is applied in Fig. 9
to the data of Fig. 7. The example demonstrates the great

A

Iig. 9. - Results of the application of principal component analysis to the

Jutaof Fig. 7. Thetwo inclined X and Y axes represent the new reference

system. The data are sufficiently aligned with the X axis, whose
associated variable has high information content (81%).

information content (81%) of one of the new variables.
This single variable could be sufficient to characterize the
samples and to allow a first classification.

Conclusion

Making decisions is unavoidable. Decision must be
made even when elements for decision are unavailable
(“undecidability™) but alternatives are not allowed by
external constraints, In fact, decision is acomplex problem
based on a hierarchic organization of possible choices and
checks for congruity of any decision step. But neither the
organization nor the check are possible without statistical
tools related to “statistics of decision”, which save deci-
sions from acritical automatisms.

Statistics of decision [13, 14] will be not treated here,
as several topics involved are authoritatively dealt with in
this issue [15-17]. It is suggested, as a conclusion, that
there is a possible analogy between epidemiology of
discase and epidemiology of error, and a desirable unifica-
tion of tools and approaches in discriminating between
normal and pathological values or correct and uncorrect
resulls.

Review submitted on invitation by the Editorial Board of the Annali.
Accepted for publication: 5 February, 1991.
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