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Summary. - The predictive value of a test is often
wisinterpreted because it is presented as a percent. I is
(ntuitive to assume that low percentages (70 % or less) are

had" and high percentages are “good” . A positive pre-
Jictive value of 20 %, for example, was cited as proof that
1 test should not be used even though the positive likeli-
hood ratio for that same test was 50. A likelihood ratio of
1()means that the post test odds of disease for a positive test
result will be 50 times higher than the pretest odds of
disease. Now, that is a large increase in the odds. Critics
of luboratory medicine fail to recognize that sensitivity
and specificity vary with the strength of the signal. Thus,
u value well above the cutoff is far more likely to indicate
disease than does a value just above the cutoff - even
though both are reported as “positive” . Tables of likeli-
hood ratios for a wide range of specific test results, or for
multiple test results, provide more information than a
simple four-by-four predictive value table. Likelihood
ratios are also more informative than predictive values or
ROC curves. Finally, critics of laboratory medicine fail to
tuke into account the information to be derived from a
confirmatory test, a repeat test at a later time, and from

other tests.
KEY WORDS: (clinical) sensitivity and specificity, predictive va-
lue, odds (ratio), likelihood ratio.

Riassunto (L’ uso improprio del valore predittivo, ovve-
ro perché bisogna considerare il rapporto di previsione). -
il valore predittivo di un test viene spesso male interpre-
tato perché si indica come una percentuale. Intuitivamen-
te si assume che le percentuali basse (70% o meno) sono
“cattive”, mentre quelle alte sono “buone” : cosi, ad
esempio, si é riportato come prova che un test non dovreb-
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be essere usato un valore predittivo per un risultato posi-
tivo del 20%, benché fosse 50 il rapporto di verosimiglian-
za del risultato positivo per lo stesso test. Un rapporto di
verosimiglianza di 50 vuol dire che la prevedibilita di ma-
lattia “post-test” di un risultato positivo sara 50 volte piil
grande di quella “pre-test” : e questo é un bell’ aumento di
prevedibilita. Gli esperti di medicina di laboratorio han-
no difficolta a riconoscere che sensibilita e specificita
variano con l'intensita del segnale: un risultato ben al di
sopra del valore di discrimine ha una probabilita di gran
lunga maggiore di indicare uno stato di malattia che non
un risultato appena oltre il discrimine - pur essendo con-
siderati "positivi” entrambi i risultati. Tabelle di rapporti
di verosimiglianza per un vasto intervallo di valori risul-
tanti per test specifici, o per test multipli, sono assai pii in-
formative di una semplice tabelladi contingenzadei valori
predittivi. Inoltre, i rapporti di verosimiglianza danno
molte piinformazioni delle curve ROC. Infine, gli esperti
di medicina di laboratorio tendono a non prendere in
considerazione I'informazione che deriva da test di con-

ferma, da test ripetuti nel tempo e da test aggiuntivi,
PAROLE CHIAVE: sensibilita (clinica), specificita (clinica), valore
predittivo, rapporto di previsione, rapporto di verosimiglianza.

Introduction

In 1975, Dr. R. Galen and I wrote a book entitled
“Beyond normality”. Our book helped to popularize the
concepts of sensitivity, specificity and prevalence - espe-
cially prevalence [1]. We provided many examples of how
important it was to consider the prevalence of disease
when speaking of the “accuracy” or usefulness of a test.
We did not invent these concepts - they were first formu-
lated by the Reverend T. Bayes in 1763 - but we did show
how they could be used to decide which tests were better
and which tests might be abandoned. Unfortunately, as
with any concept, it can mislead if misapplied or is taken
to extremes [2]. Moreover, we did not discuss the useful-
ness of likelihood ratios, the importance of the strength of
the signal, or the value of a negative result.
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The misuse of Bayes’ theorem to damn tests for “AIDS”

A typical recent example of the misuse of Bayes’
theorem can be found in a new book entitled “Innumeracy:
mathematical illiteracy and its consequences”, by Prof.
J.A. Paulos (which by the way is a book that I recommend
very highly) [3]. Prof. Paulos, in order to illustrate the
importance of conditional probability, talks about a theo-
retical cancer test that has a sensitivity of 98% and a
specificity of 98%. He also assumes that the prevalence of
cancer is 0.5%; or 1 per 200. And he states - right up front
- that he is using this example because it has important
implications for testing for AIDS.

Prof. Paulos asks the reader to assume that he (the
reader) has taken this test for cancer and that the result is
reported as “positive”. The question Paulos now asks is:
“How depressed should you be?”. His conclusion (incor-
rect) is that you should be cautiously optimistic. Why?
Because, as Paulos stresses, the predictive value of a
positive result is only 19.8 % (Table 1). The error made by
Professor Paulos is to assume that a “low” percentage for
predictive value is bad. On an intuitive basis, of course, a
low percentage for the predictive value is “obviously” bad.
Butintuition, as Prof. Paulos points out time and again, can
be misleading.

A positive predictive value of 19.8 % is not bad if you
consider the test’s ability to increase the probability of
disease

We are so used to thinking that 100 % is best - and zero
percent the worst - that intuitively we find it hard to accept
that a percentage figure of around 20 could be “good”.
What Prof. Paulos fails to consider is the ability of this test
to increase the probability of disease.

Tomake my point I will structure Prof. Paulos’ question
in a different way. Let us say that we had a test to detect
potential winners of a horse race, and that this test had a
sensitivity of 98% and a specificity of 98 percent. Also
assume that the prevalence of “winners” among all horses
that are racing is only 1 per 200, or 0.5 %. Now the prior
probability of picking a “winner” at random from among
10,000 horses is only 0.005. A probability of 0.005 is equal
tooddsof 0.00502 to 1 - not atall favorable for abettor who
wants to win.

Table 1. - Positive predictive value of cancer test “X"

Sensitivity 0.98
Specificity 0.98
Prevalence of cancer 0.005
10,000 subjects tested

Number of true cancers: 0.005 x 10,000 = 50
Number of true positives: 50 x 0.98 = 49
Number without cancer: 0.995 x 10,000 = 9,950
Number of false positives: 0.02 x 9,950 = 199
Total number of positives: 49 + 199 = 248

% of positives that are true positives: 49/248 = 19.8%

So, in order to improve our chances of picking a winner,
we apply our test to the entire field of 10,000 horses and
come up with anew field of 248 potential winners tochose
from. But Paulos says this is not very good because only 49
of these 248 horses are going to true winners! He has a
negative opinion of the test because the “success” rate is
less than 20 %. Now who among you wouldn’t pay a tout
for this secret test - a test that increases the prevalence of
winners from a prior figure of 1/200 to a posterior (after the
test) figure of 1/5! What the test has done is to increase the
prevalence of “winners” by a factor of 40. Morcover, as
you will see below, the test increases the ODDS of having
a winner by a factor of 50 - from only 0.00502 to 1 before
the test, to 0.25 to 1 after the test. Now that isn’t bad at all
if you are a betting person.

Calculate the likelihood ratio - not the predictive value

Calculation of the likelihood ratio (LR) provides better
insight into what a test can and cannot do for you. The LR
for a positive result is obtained by dividing the sensitivity
of the test by 1 minus the specificity (the true positive
fraction by the false positive fraction):

Sensitivity
+LR =
(1 - specificity)
or
True positive fraction
+LR =

False positive fraction

In the case of Prof. Paulos’ cancer test - or our horserace
test - the LR for a positive result is obtained by dividing
0.98 by 0.02 yielding a ratio of 50. Once you know the
positive likelihood ratio you can easily convert pre-test
odds into post-test odds by simple multiplication. In our
example, the pre-test odds of winning are only 0.005 to 1,
but the post-test odds are 0.25 to 1 - a 50 fold increase.

Odds and probability are related, but the numbers are
not identical. Odds are expressed as fractions, with the
number one as the denominator. Probability is usually
expressed as a decimal fraction ranging from zero to one,
but probability alsocan be expressed as a percentage. Odds
are uscful because only odds - not probability - can be
multiplied by the likelihood ratio to obtain the new odds of
disease after a test is performed [4-6] (Tables 2 and 3).

Finally, the natural logarithm of the likelihood ratio is
a measure of the “weight of evidence” [7].

The likelihood of disease varies with the strength of the
signal

The next error Prof. Paulos makes is to fail to consider
the strength of the signal. Most problems arise when
results arc in the “overlap” zone - where the distribution of



alts for subjects without the condition overlaps the
uibution of those with the condition. He assumes that
A1 positive results are equal. That simply is not correct.
sativity and specificity vary with the strength of the
ional. A result near the cutoff between “positive” and
newative” has poorer sensitivity or specificity than a
ult that is far above or below the cutoff. In fact, once a
cwult is outside the overlap zone it has either 100 %
naitivity or 100 % specificity (Fig. 1).
I'o improve the diagnostic utility of test results that are
n the overlap zone, it is possible and desiderable to
tevelop a whole family of likelihood ratios for different
ported values. Such tables have been published for
ieatine kinase isoenzyme MB (CK-2) by Dr. Bernstein
il ussociates at the Bridgeport Hospital in Bridgeport,
¢ ‘onnecticut; and earlier by Drs. van der Helm and Hische
or plucose [8, 9].
1)r. Bernstein and his associated calculated what they
iled “Bayes factors™ for a large number of specific CK-
', 1lucs obtained on admission and at 12 hafter admission.,
t'or any combination of CK-2 values at zero time and 12 h
ey calculated a “Bayes factor”. Their “Bayes factor” is in
«huality the likelihood ratio. It would have been better if
they had simply provided the reader with the likelihood
atto.
Drs. van der Helm and Hische calculated likelihood
~atos for diabetes based on 2 h post prandial glucose
~alues reported in a study by Reiman and Wilkerson. Drs.

Non-disease
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van der Helm and Hische point out that it is too simplistic
to simply derive likelihood ratios from raw sensitivity and
specificity data [9]. You must also consider the shape of
the distribution curves for the diseased and non-diseased
populations - specifically in the overlap zone - and recal-
culate likelihood ratios based on the ratio of the heights of
the overlapping distributions at the specific test values in
question (Table 4).

Table 2. - Conversion formulae for odds and probability

Probability (as decimal fraction)

Odds =
1 - probability
Odds
Probability = —————
1 + Odds

Table 3. - Relationship of odds to probability

Odds Probability
0.251 0.20
0.50/1 033
1.00/1 0.50
2.00/1 0.66
4.00/1 0.80

X axis

CUTOFF

Disease

I'iys. 1. - Likelihood ratios for overlapping distributions, The figure shows two overlapping distributions placed one on top of the otherin a flip-flop fashion
.+ order 1o make it easier 10 analyze. In the left upper quadrant is a theoretical distribution for a non-diseased population. In the right lower quadrant is
 theoretical distribution for a diseased population. The X axis represents increasing values for a test result. Test results that are less than the lowest value

[ narked x°) for the diseased population have 100% sensitivily because disease is always present. Test results that are greater than the highest value

jarked x™) for the non-diseased population are 100% specific because non-disease is always absent.
i he ligure shows the lwo ways to caleulate a likehihood ratio in the overlap zone for a specific cutoff - in this case indicated by the Y axis. The less correct
1y is 1o define the likelihood ratio for cutoff Y as the ratio of area B (the total number of true positive above the cutoff, including positive results above
werlap zone) to that of area A (the total number of false positive above the cutoff). In the example shown, the likelihood ratio for disease - given
Cesultat Vo is approximately 15 since area B is approximately 15 limes greater than area A.
hie mor. correct way to define the likelihood ratio for a specific cutoff value in the overlap zone is 1o compare the heights of the frequency distributions
& cutoff. In the example shown, this would be the ratio of “b” (the number of true positive cases at that value) to “a” (the number of false posiive
vies at that value). This ratio is approximately 1.5, a value that is far less than that ohtained when areas are used. For this test and study population the
Lelihood of disease for a value at ¥ is not oo greal - as you can see by looking at the distributions.
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Table 4. - Example of the change in the likelihood ratio (simplistic and correct) with a change in the reported result for

glucose [8]

Glucose level 2 h post prandial
mmol/l (mg/dl)

Simplistic likelihood based on ratio
of area of frequency curves

Correct likelihood based on ratio of heights
of frequency curves at specific test values

3.89 (70) 1.08
4.44 (80) 1.30
5.00 (90) 1.80
5.55 (100) 2.93
6.11 (110) 5.39
6.66 (120) 9.52
7.22 (130) 20.74
7.77 (140) 95.17
8.33 (150) 125.00
8.88 (160) 235.00
9.44 (170) > 1000
9.99 (180) > 1000
10.55 (190) > 1000
11.10 (200) > 1000

0.09
0.13
0.26
0.20
1.70
1.61
2.88
35.50
14.50
21.00
> 1000
> 1000
> 1000
> 1000

It is interesting to note that either method of calculating
the likelihood ratio yields a striking increase in the ratio at
the usual discriminant value (7.77 mmol/l) for a post
prandial glucose test. But the likelihood ratio obtained by
the more accurate method - which is derived from the exact
ratio of the heights of the frequency curves at the specific
test value - is one-third of that of the less accurate method
- which is derived from the gross ratio of the areas of the
frequency distribution curves above and below the cut
point. It is also interesting to note that the more accurate
method correctly provides negative odds for diabetes
when post prandial glucose levels are less than 5.55 mmol/
1 (100 mg/dl).

And what about ROC curves?

As defined by J.A. Swets, who has written the most on
the subject, ROC can stand for “Receiver Operating Cha-
racteristic” when used in the field of signal detection, or for
“Relative Operating Characteristic” when used in genera-
lized applications [10]. The ROC curve is a plot of sensi-
tivity on the Y axis, and 1 minus the specificity on the X
axis (or in other words, the true positive fractionon the Y
axis and the false positive fraction on the X axis) for
selected reported values of a test. The shape of the curve
provides a gestalt as to the usefulness of a test. Tests that
plot in the upper left hand corner are better than tests that
plot closer to the center. That’s because the upper left
corner defines high sensitivity and high specificity. The
ROC curve can also be plotted as sensitivity versus speci-
ficity, and in that case the best tests plot in the upper right
hand corner (Fig. 2) [11].

The area under the ROC curve is a measure of accuracy.
The preferred measure of overall accuracy is the propor-
tion of the area of the entire graph that lies beneath the

True positive fraction

False positive fraction

Fig. 2. - Theoretical ROC curves. The figure shows three theoretical
ROC curves. The Y axis is the true positive fraction (sensitivity) of the
test, ranging from zero at the bottomn to 1.0 at the top. The X axis is the
false positive fraction (1 minus specificity), ranging from zero on the left
to 1.0 on the right. ROC curves are generated by calculating the
sensitivity and specificity of a test for varying cutoff values in the
overlap zone and then plotting the true positive and false positive
fractions obtained. The information content of the ROC curve is increas-
ed if the specific test value - used to obtain a particular TP/FP point - is
written beside the plotted point.

The diagonal line running from the lower left hand comer to the right
upper comner at a 45 degree angle represents the results you would obtain
by chance alone, i.e. by a flip of an unbiased coin. The curve that runs
straight up the Y axis on the left and then along the very top to the right
is the curve for a perfect test - one with 100 % sensitivity and specificity.
The final curve (the one in the middle) represents a less than ideal but
typical laboratory test. In this case serum amylase for pancreatitis. Note
that for an amylase value of 100, the true positive fraction is nearly 1.0,
but the false positive fraction is high at 0.6 (high sensitivity but low
specificity). For a value of 500, on the other hand, the true positive
fraction is now only 0.3, but the false positive fraction is less than 0.1
(low sensitivity but high specificity).



{ ible S. - Some typical test combinations with higher
information value than that provided by a single test

I'hyroxine or free thyroxine with TSH

JUN with creatinine

(ilucose with fructosamine or glycohemoglobin
{ron and iron-binding capacity followed by ferritin
Cholesterol with HDL cholesterol

Apolipoprotein B with apolipoprotein A-I

curve. Specifically, if the area beneath the curve is 0.5 or
less of the area of the entire graph, then no discrimination
cxists because such a result can be achieved by chance
\lone; butif the proportion of the area under the curve is 1.0
of the entire graph, then perfect discrimination exists. In
he case of perfect discrimination, the curve lies along the
upper Y axis and along the top of the graph (Fig. 2).

[ find ROC curves most useful for comparing one or
more tests with another. ROC curves are also helpful in
making an estimate of optimum cutoff values for ““positi-
ve” and “negative” results. But ROC curves are not as
useful as likelihood ratios for actually defining what a test
is going to do for you - given aspecific result - independent
of the reference range for the test. Nor do ROC curves
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provide a direct measure of likelihood. Finally, a ROC
curve is not the best way to demonstrate how well a test
discriminates between two diseases [12]. A plotor table of
likelihood ratios provides more quantitative information
than a simple plot of sensitivity and specificity.

A test should never be interpreted in isolation

Still another error made by Prof. Paulos is to fail to
discuss the utility of a confirmatory test and arepeattestat
a later date. A test for antibody to HIV, for example, never
stands by itself. Any result considered positive i confirm-
ed by anindependent test. Confirmationisa general testing
principle that is used widely in science and in medicine -
but the value and need for confirmation is too frequently
forgotten when a writer, such as ER. Pinckney, a former
associated editor of JAMA, wants to damn the routine use
of laboratory tests [13]. Confirmation is also obtained by
performing one or more different tests (Table 5). An
analysis of multiple test results almost always provides
more information than does an analysis of a single test. For
example, the combination of thyroxine and TSH is far
more informative than either test alone. Finally, and most
important, confirmation is obtained by what actually
happens to patients.
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