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Summary. - Pharmacokinetic non-linearities occur
letween different doses and between different species.
I"hysiologically based pharmacokinetic models are accu-
rute tools for taking these non-linearities into account.
Dichloromethane and perchlorethylene are two examples
[liscussedinthis paper. For dichloromethane the pharma-
cokinetic non-linearity factor results in a greater delive-
red dose than would be predicted from linear rela-
lionships as the dose increases. For perchloroethylene the
Lpposite holds true. In addition a brief illustration of the
use of pharmacokinetic models as tools for interpreting

hiomarker data is provided.
KEY WORDS: physiologically based pharmacokinetic models,
dichloromethane, perchloroethylene, biomarkers of exposure.

Riassunto (Modelli farmacocinetici a base fisiologica
per lastima del rischio e dell’esposizione). - Non-linearita
i tipo farmacocinetico possono presentarsi tra dosi dif-
[erenti e specie biologiche differenti. I modelli farmacoci-
netici a base fisiologica sono degli strumenti accurati per
lu considerazione di queste non-linearitd. In questo lavo-
ro sono discussi i due esempi del diclorometano e del
percloroetilene. Nel caso del diclorometano, la dose
somministratarisultamaggiore di quella stima sulla base
i una relazione lineare in rapporto all’ incremento della

lose: questo é il fattore di non-linearita. Per il percloroe-
‘ilene accade I'opposto. E' anche fornita una breve illu-
sirazione dell’ uso dei modelli farmacocinetici quali stru-

nenti per l'intrerpretazione dei dati dei biomarker.
PAROLE CHIAVE: modelli farmacocinetici a base fisiologica,
Jiclorometano, percloetilene, biomarker dell'esposizione.

Introduction

Pharmacokinetics is the study and description of the
processing of chemical compounds by living organisms.
'he movement of compounds throughout the body is a
tinetic rather than static process. Foreign molecules and

endogenous biomolecules exhibit, like all other molecules
in the universe, continuous motion. Thus, the representa-
tion of the interaction of xenobiotics and biologic tissues
as a static process is an inaccurate over simplification.
Within the eye of our imaginationitiseasy to “‘see” foreign
invaders cross membranes, floating in the blood, attaching
themselves as free riding passengers onto the surfaces of
cells, organelles, and receptors. They may readily embra-
ce and interact with the very enzymes and molecules that
maintain life itself.

Pharmacokinetics is description of the time course
disposition of a xenobiotic, its biotransformed products,
and its interactive products within the body. It includes a
description of the compounds’s absorption across the
portals of entry, transport and distribution throughout the
body, biotransformation by metabolic processes, interac-
tion with biomolecules, and eventual elimination from the
body.

Pharmacokinetic (PK) analyses or assessments can be
used in two very general ways. First, they can be applied
for forward analysis. Such PK analyses use exposure data
to calculate biologically meaningful measures of dose.
Second, they can be applied for reconstructive dose asses-
sment. In this case data on measured biomarkers or tissue
concentrations of a compound and/or its metabolites are
used to calculate total dose of a xenobiotic received by an
organism.

There are several ways to perform such analyses but
physiologically based pharmacokinetic (PBPK)} models
are the emerging technique of choice. These models
include a series of mass balance equations which describe
the total disposition of the xenobiotic within the body.
These models can be formulated as complexly or simply
as the data allow or necessitate. For example, models have
been written [1] that describe the incorporation of pro-
ducts of xenobiotic metabolism within the sub-cellular
organelles of brain cells. Typically, much simpler models
are implemented. Regardless of the level of complexity,
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the fundamental characteristic of PBPK models is their
dependence upon parameters with physiologic meaning
and their description of actual anatomic compartments. In
contrast, the more traditionally used classical models,
while also useful, depend on rate constants describing the
transfer of xenobiotics between a few arbitrary compart-
ments. Although simple mathematical manipulation shows
the two types of models to be meaningfully related, the
utility of the classical models tends to be for descriptive
rather than predictive purposes. In particular, they do not
lend themselves easily for interspecies extrapolations of
dose. Physiologic models, because of their more direct
and accurate description of the actual anatomy and phy-
siology, lend themselves to being better predictors of
target level dose within and between species.

Modeling and interpretation

Fig. 1 shows a diagramatic representation of one such
PBPK model. It should be remembered that the parame-
ters regulating transport into each compartment are actual
physiologic parameters. The arterial blood flow to each
organ and real organ volumes make up important parame-
ters in this particular model. Under different circumstan-
ces these parameters would be replaced, as necessary, by
others such as permeability coefficients. Of course, any
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Fig. 1. - Schematic of a sample physiologically based pharmacokinetic

model. QA: arterial blood flow to an organ. V: volume of an organ. K:

kidney. F: fat. M: muscle. O: various intemal organs “lumped together”.
GI: gastro-intestinal organs. L: liver. QvR: flow of venous retum.

metabolism would also be described in detail. Such phy-
siologic and biochemical parameters are determined from
knowledge gained in experiments performed as needed.
There is a wide body of reference values for many parame-
ters such as organ sizes and blood flows, for example. The
determination of metabolic rate constants may require
case specific experimentation.

In the simplest risk assessment a dose-response func-
tion is calculated using the applied dose. Human exposure
levels are then compared to the animal dose and some
prediction of risk to the human is estimated from the
previously calculated animal dose-response function (Fig.
2).

A slightly more complicated and perhaps realistic
approach (depicted in Fig. 3) takes into account the absor-
bed dose by incorporating absorption fractionin the calcu-
lation. In this case the animal dose used for the dose-
response function is the absorbed dose rather than just the
applied dose. For example, in Fig. 4 it can be seen how
ventilation rate, absorption fraction, and duration of expo-
sure can be used to determine the dose actually entering
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Fig. 2. - Risk prediction based on only animal dose and human exposurc
data.
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Fig. 3. - Risk prediction based on animal and human absorbed do:




REVIEW EXAMPLE TO ILLUSTRATE
GOAL OF PK ANALYSIS

Concentration in air: 0.686 mg/CuM
Ventilation rate: 20 CuM/day
Duration of exposure: 5 hours
Absorption fraction: 0.6

) CuM/day x 1 day/24 h x 5 h x 0.6 x 0.686 mg/CuM =

ABSORBED DOSE: 1.175 mg

IDEA: ABSORBED DOSE MAY BE A BETTER
'1-ASURE FOR HEALTH EFFECTS THAN EITHER
CONCENTRATION x TIME OR INHALED DOSE

« 4. - Example of use of minimal pharmacokinetic (PK) data. CuM:
cubic meter. h: hours. mg: milligram.

(e body. When data regarding absorption fraction are
liking it has been assumed that the absorption fraction in
the exposed animal is equal to that in the test animal.
Absorbed dose may be thus calculated for both the test
species and the species at potential risk. The absorbed dose
15 then used in dose-response functions for calculating
predicted risks. Still, the fundamental problem with this
approach is that none of the inter-route, inter-dose, and
inter-species pharmacokinetic non-linearities are taken
into account. Further, the surrogate for the critical dose is
l.iken to be the total absorbed amount by the body with no
consideration for how much is delivered, or in cases of
Iiotransformation, formed and delivered, to the actual
target sites within the body. In sum then, non-linear
jrocesses are not accurately taken into account and target
iissue doses are not estimated and then not used as a
urrogate for critical dose. Thus considerable uncertainty
1ill resides with the risk calculated from these “doses”.
Fig. 5 illustrates the concept of using greater and more
dc1ailed knowledge of pharmacokinetics to improve the
Jose assessment component of the risk assessment pro-
vss. In this case the actual delivered dose to specific
organs and cells is calculated. The total pharmacokinetic
process, including biotransformation for activation and
(lcactivation is considered and quantitatively taken into
ccount. PBPK models, developed from extensive data,
e often the method of choice for this purpose. This
srocess can demonstrate inter-species non-linearities in
‘he pharmacokinetics. Likewise, with this thorough un-
Jrstanding, the PK differences between doses and expo-
ure routes can be explicitly demonstrated and quantified.
Although a thorough understanding of the PK and the
i sultant PBPK model greatly improves the risk asses-
ment process by more accurately estimating dose, several

/ncertainties and limitations remain. For example, often
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multiple measures of internal dose, such as parent com-
pound,metabolitcs,adductedcompound,orreccptorbound
product, are available. Without considerable knowledge
regarding the mechanism of action it is not clear what
measure tocall the effective dose. Also, the estimation and
interspecies comparison of metabolic rate constants is
difficult and sometimes relies heavily on untested as-
sumptions.

Even with such knowledge on the mechanism of action
and an understanding of the governing processes of the
particular metabolism involved, pharmacodynamic diffe-
rences between species are not easily understood. That is,
it is yet to be clarified if pharmacokinetically equivalent
doses result in equivalent risk between different species,
or for that matter, between different individuals of the
same species. As a result, various empirical and someti-
mes arbitrary scaling factors are used and must be compa-
red. This uncertainty with pharmacodynamics is the next
area of research on the horizon which must be vigorously
pursued.

Such analyses have been applied in an effort 1o get
better delivered dose estimates. Two slightly different
applications can be illustrated using the chlorinated hy-
drocarbons dichloromethane (DCM) and tetrachloroethy-
lene or perchloroethylene (PERC). Both chemicals cause
tumors in animals and both are believed to depend on
metabolic biotransformation to be tumorigenic.

The evidence for dichloromethane shows that it indu-
ces mouse lung and liver tumors and benign mammary
gland and malignant salivary gland tumors in rats. It
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Fig. 5. - Risk prediction based on animal and human pharmacokinetic
(PK) information.
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appeared to not induce tumors in hamsters. Two metabolic
pathways are operational. One, mediated by the mixed
function oxidase (MFO) system produces carbon monoxi-
de and carbon dioxide. The second, a glutathione-S-
transferase (GST) mediated path produces carbon dioxide
and no carbon monoxide. The GST mediated path appears
{0 be primarily responsible for the lung and liver tumors
through a reactive intermediate. Although some tumori-
genic potential of the intermediates produced by the MFO
pathway cannot be ruled out the weight of evidence
suggests a far more dominant role for the GST mediated
pathway. Thus the amount of metabolite produced by this
pathway was used as the surrogate for effective dose. The
MFO pathway was shown to saturate at typical exposure
levels while the GST mediated pathway was considered to
be lincar at the same exposure levels. It showed, however,
much less affinity for the substrate. Hence toxic activation
by the GST mediated path appeared quantitatively most
significant at higher doses. There may be some inaccura-
cies in this model, as more recent data may reveal, but the
purpose here is an illustrative one only.

At the time the assessment was performed for PERC,
considerably less was known about the details of its
mechanism of action and metabolism. It was fairly well
documented that metabolic biotransformation was also
necessary for tumorigenesis in this case. Although other
tumor sites were demonstrated, liver tumors were consi-
dered as the endpoint. As such, total metabolite produced,
predominantly by P-450 oxidation, was used as the surro-
gate for effective dose.

The actual details of both models and their develop-
ment, and resultant impact upon unit risk estimates are
presented elsewhere [2-5]. Here some illustrations of their
practical uses are presented.

Fig. 6 shows the impact of pharmacokinetic non-
linearities as exposure concentration increases. A PK
factor of 1 would indicate that the surrogate for effective
dose at 500 ppm exposure concentration is simply 5 times
the amount at 100 ppm. Inspection of Fig. 6 quickly
reveals that while neither chemical exhibits linear PK their
respective deviations are quite different from one another.
In the case of DCM the amount of surrogate formed with
increasing dose is greater than would be predicted by a
linear assumption. For PERC on the other hand the amount
of surrogate formed is somewhat less with increasing dose
than would be expected from the simple linear assump-
tion.

Fig. 7 illustrates this impact upon risk. This is a plotof
exposure concentration versus arbitrary risk. The arbitra-
ry risk is taken as the risk determined at some low exposure
concentration (i.e. the “unit” risk) and multiplied by
exposure concentration and the PK factor. The PK factor
is equal to 1 for the linear assumption. The PK factors for
the DCM and PERC cases were calculated from PBPK
model output. It can easily be observed that, based on the
particular model output used here, the linear assumption
would under estimate the DCM risk by 2.4 fold (11.6 risk

at 500 ppm for the DCM modeled case divided by 4.8 risk
at 500 ppm for the linear casc). Similarly the linear
assumption would over estimate the PERC risk by 0.64
fold.

Next 1 will illustrate the use of PBPK models to
compare the possible risk resulting from different exposu-
re scenarios. Again, for demonstration purposes only the
PBPK model developed from human exposure L0 PERCis
used. Fig. 8 compares exposures of 400 ppm for2 hversus
800 ppm for 1 h, versus 100 ppm for 8 h. Thisexercise asks
the question if equivalent time X exposure concentration
products (800 ppm-h) result in equivalent internal doses.
Fig. 8 shows the liver concentration of parent compound
resulting from the three different exposure regimens.
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Fig. 6. - PK non-linearity factors. (For PERC and DCM as predicted by
PBPK maodels). PK factor: the degree of non-linearity with increasin;
exposure concentration as calculated by the PK model.
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I'ig. 8. - PK model predictions for liver concentrations at three exposure
regimens.

Differences in both peak levels and profiles are observed.
["cak heights are proportional to exposure concentrations
[or these three scenarios. The peak is maintained for the
cxposure duration, hence the observed difference in pro-
files.

Fig. 9 provides a similar comparison for the adipose
tissue. For this tissue the differences are less striking. The
actual peak levels reached are virtually the same for all
three cases as are the elimination profiles after the expsou-
re period has ceased. Thus, if the concentration in this
tissue were to be used as a surrogate for effective dose all
three scenarios are nearly identical.

Fig. 10 shows the comparison for the area under the
concentration curve (AUC) of PERC in the liver. In this
case it can be observed that the 800 ppm/1 h exposure
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Fig. 9. - PK model predictions for fat concentrations at three exposure
regimens.
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regimen delivers the greatestamount of surrogate. Fig. 11,
on the other hand, shows a similar comparison for the
totatl amount of metabolite formed. In this case the 100
ppm/8 h exposure delivers the greatest amount of surroga-
te. Remember from Fig. 8 that the level of PERC in the
liver was lowest for that exposure scenario. This level is
below the saturation point of the bioconverting enzymes,
thus a larger percentage of the total PERC present is
converted than for the other two scenarios. Given this and
the longer exposure period a greater conversion to meta-
bolite is realized.

This next exercise has been formulated solely for
illustrative purposes to show how PK data and models can
be used in conjunction with biomarker information to help
assess exposure. As such, the biomarker and dose data
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Fig. 10. - PK model predictions for area under the concentration curve at
three exposure regimens.
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Fig. 11. - PK model predictions for the amount of metabolite formed at
three exposure regimens.
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were essentially manufactured from past experiences and
knowledge. Under actual exposure conditions the formu-
lation and validation of the PBPK model could be quite
involved and complex. Usually such models are quite data
intense. 1f models and appropriate data are lacking they
must be generated simultaneously with, or even in antici-
pation of, the biomarker development. As will be illustra-
ted, more than one biomarkerand associated analysis tools
may be necessary to get accurate estimates for large
exposure ranges. If estimates of the exposure ranges are
known a priori it may be possible to reduce the number of
necessary biomarkers required.

Discussions of actual model formulation procedures
will vary according to the specific case and are far beyond
the scope of this paper. The same can be said for the
mathematical procedures for solving the mass balance
equations of the PBPK model. Sufficeittosay that,todate,
complicated models are solved numerically rather than
analytically. The expanding capacity and speed of compu-
ters has enabled the solution of models by what were
previously considered to be tedious numerical methods to
become common place.

Model simulated output is then used with biomonito-
ring data from subjects to estimate dose. Again, a variely
of methods can be used. The most complicated, but
perhaps the method affording the most accuracy and
resolution between doses, uses the PBPK model itself.
Biomonitoring data are taken and the model is then run
against these data. Numerical techniques are thus used to
estimate the dose that could have resulted in the monitored
biomarker data. Given proper numerical methods and
appropriate software, confidence values around the esti-
mated dose can be calculated. In this manner the more
reliable and accurate monitoring data will result in dose
estimates that are associated with greater confidence.

A contrasting and less computationally intense method
involves using the PBPK model to give outputs at several
arbitrary dose ranges. The model outputs are then graphed
and the resultant graphs can be used as reference graphs
from which to estimate dose ranges after biomarker
monitoring is performed.

A third approach is a compromise between the first
two. For this case model outputs at several dose ranges are
put into a computer data bank. An expert system, with
access to that data bank, is then employed to compare the
monitored data to model simulated outputs and thus give
estimates of dose. Such a computer based expert system
could be formulated to perform appropriate statistical
analyses of multiple data points of the monitored marker.

Each is advantageous under specific conditions. Follo-
wing is a simple illustration of the second, or graphical
approach.

Figures 12 through 14 illustrate the use of pharmaco-
kinetic information to determine dose in one particular
exposure scenario. Eight possible dose levels (1-8) are
included in thisillustration. Two things are assumed (with

a priori knowledge) about the scenario. Firstitis assumed
or known that exposure is still ongoing and second that the
plateau or steady state has been reached.

Three different biomarkers have been monitored. Fig.
12 shows the profile of marker 1 for the 8 dose levels. The
left panel shows the marker’s concentration with time
profile as determined from the pharmacokinetic analyses
for the various doses. The panel on the right shows the
steady-state concentrations (Css) with increasing dose
levels (1-8). If the monitored marker level is less than 5.0
a dose range can be established. For example, from the left
panel it can be observed that if the concentration level (y-
axis) of marker 1is 4 9, then the dose must thenbe between
level 2 and level 3 (as dose 2 hasa biomarker concentration
of 3.0 and dose 3 has a biomarker concentration of 5.0).
The resolution could then be increased by increasing the
number of simulated model outputs within that range.

If the marker level were greater than 5 it would not be
possible to discern between dose levels 3 through 8,as due
to some saturating effects all of these higher dose levels
should correspond to the same concentration of this bio-
marker. Fig. 13 is the analogous graph for marker 2.
Inspection reveals that this marker can discern between
the first four dose levels rather than just the first three.

One might wonder why to use marker 1 at all when
marker 2 is adequate for a wider dose range. It may be that
marker 1is more accurate at lower doses or that it is casier
and cheaper to obtain and analyze. Thus it may be the
preferred marker for screening or for determining the
lower dose levels.

Fig. 14 repeats the process but for marker 3 instead.
Inspection here revealed that this marker can discern
between dose levels 5 through 8. It also demonstrates that
this marker, due to its kinetic profile, is incapable of being
used to estimate the lower dose levels.

Conclusions

These illustrations teach us several things. First, we
must remember that risk assessment is part art, part scien-
ce and engineering, and part intuition. Thus, we must look
to use all of the available information with all of the
available tools for analysis of that information. We lear-
ned from many of these cases, particularly the DCM case,
that the whole is indeed greater than the sum of its parts.
No one piece of information alone can shed light on the
puzzle, but taken together much can be concluded about
potential risk. For example, the exactmechanism of DCM’s
tumorigenesis remains unelucidated; however, taken with
the pharmacokinetic information, at least the pathway
primarily responsible was identified. Still uncertainty
remains. Could the other metabolic path contribute to this
tumorigenicity in some quantitatively small way, so thal
our conclusion cannot be totally verified? The solution t0
this quandary lies in remembering that all of our previous
risk assessments contained considerable uncertainty. The
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Fig. 12. - Hypothetical biomarker concentration after exposure o a chemnical at 8 possible exposure levels.
MARKER 2
6.0 6.0
5. 5.0
; Dose 5 - 8 "o
s 40 Dose 4 M
3.0
@ 2 ©20
: Dose 2 ’
1.0 Dose 1 10
0.0 0.0
1 2 345 6 7 8 9101112 1 2 3 45 6 78
TIME—™ DOSE —»
Fig. 13. - Hypothetical biomarker concentration of a 2nd marker after exposure to the same chemical as in Fig. 12 a1 8 possible exposure levels.
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Fig. 14. - Hypothetical biomarker concentration of a 3rd marker after exposure to the same chemical as in Fig. 12 a1 8 possible exposure levels.

difference here is that with biologically based procedures
the source of the uncertainty can be more easily identified
and quantified. Statisticians were able to tell us for exam-
ple, what the highest possible contribution that could be
made to the tumorigenesis process by the MFO pathway,
given the data and the pharmacokinetic information. From

that estimate and the PK information, a value for the upper
bound risk containing that possibilty could be made. One
no longer needs to blindly assume that this MFO pathway
could possibly contribute as much as 100%. In fact even
with simple illustrations, as provided by the model based
dose assessment for DCM, areasonable level of contribu-
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tion could be assigned to a “shadow” pathway consistent
with available, toxicological and pharmacokinetic evi-
dence.

Another lesson learned by these real world examples is
that none of us can afford to work in isolation and in secret
from one another. The DCM case, in particular, was an
example of a large cooperative effort between experimen-
tors, modelers, and risk assessors. In addition, the effort
was accomplished by continous interaction between indu-
stry and government scientists. As data were gathered they
were discussed by groups from both industry and regula-
tory agencies. Interpretations were exchanged and further
necessary experiments were identified and then perfor-
med. The process continued over more than two years and
the more rational biologically based dose assessments
were the result. I would venture to say that without such a
concerted effort on the part of Imperial Chemical Indu-
stries, the Dow Chemical Company, the US Consumer
Product Safety Commission, the US Food and Drug
Administration, and the US Environmental Protection
Agency the process would not have occured. The universe
of technical knowledge expands too rapidly and the costs
of experimentation and analysis increase (0o greatly for
any of us to work in a vacuum. Time is precious. Much
valuable time would be consumed before one person or
even group could come to rational answers while working
alone.

Likewise, we must quickly realize that different disci-
plines each can contribute valuable parts to the whole
process. Again, the whole is greater than the sum of its
parts. When molecular biologists see the basic cellular and

sub-cellular process they see adduct formation, receptor
binding, and oncogene activation. Kinetists see reaction
rates, Minot models, allosteric binding sites altering kine-
tic rates, Michaelis-Menten and higher order kinetics
describing fundamental reactions. Are we looking at dif-
ferent things or are we looking at the same things differen-
tly? I suggest the latter and further I suggest that together
we must look at the same things from all the different
perspectives. Let us not be afraid to reach out to the ncw.
Yes, new techniques frequently bring on new questions. 1
expect that the Hubble telescope now orbiting our globe
will answer some of the queries that astronomers have
pondered for years but it will also raise new and more
perplexing questions. But our hope for itand for all of our
scientific queries is that in addition to answering some
questions and raising others these queries identify and
help us measure the uncertainty. Remember that the old
way of doing things sometimes seems more certain only
because we lack the knowledge to see what we truly donot
understand. Let us not either curse the darkness nor accept
it, but rather, let us light the candle and move it forward as
we travel.
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