VI Congresso Nazionale: Micotossine e Tossine Vegetali

10-12 June 2019

EFSA's recent assessments of fusarium toxins and their modified forms

Katleen Baert

Scientific Officer BIOCONTAM Unit

Trusted science for safe food

Recent assessments fusarium toxins

HBGV: health-based guidance value (e.g. TDI, ARfD)

Metabolites formed in plant or fungus by phase I and phase II metabolism or as a consequence of food processing or transfer from feed to livestock

ZEARALENONE & modified forms

- Found in maize, wheat, barley, sorghum, rye
- Few occurrence data on modified zearalenone (ZEN) (cereal-based products)
- Modified forms may add up to 100% relative to ZEN.

ZEN and its Phase I metabolites

Zearalenone (ZEN) a-Zearalenol (a-ZEL)

β-Zearalenol (β-ZEL)

Zearalanone (ZAN) α-Zearalanol (α-ZAL) β-Zearalanol (β-ZAL)

ZEN and its Phase II metabolites

ZEN14BDGlcp

ZEN16BDGlcp

aZEL14BDGlcp

BZEL14BDGlcp

ZEN14Sulf

aZEL14Sulf

Toxicity

- Low acute toxicity no acute reference dose (ARfD) needed.
- Critical chronic toxic effect: Oestrogenic activity. NOEL: 10.4 $\mu g/kg$ bw per day in pigs.
- TDI: 0.25 µg/kg bw per day (UF of 40).
- Modified ZEN:
 - No data to identify NOAEL/LOAELs
 - Likely same mode of action
 - Modified ZEN can be included in a group TDI with ZEN adding relative potency factors (RPFs) and assuming dose addition
 - RPFs for phase I metabolites derived from *in <u>vivo</u>* <u>uterotrophic assays in mice and rats</u>
 - RPFs to be applied for phase II metabolites complete cleavage of ZEN/metabolites assumed

RPFs for Modified ZEN to be included in a Group TDI

Compound	Proposed RPF
ZEN, ZENGIcs, ZENSulfs	1.0
a-ZEL, a-ZELGIcs, a-ZELSulfs	60
β -ZEL, β -ZELGIcs, β -ZELSulfs	0.2
ZAN, ZANGIcs, ZANSulfs	1.5
a-ZAL, a -ZALGIcs, a -ZALSulfs	4.0
β-ZAL, β-ZALGIcs, β-ZALSulfs	2.0
cis-ZEN, cis-ZENGIcs, cis-ZENSulfs	1.0
cis-a-ZEL, cis-a-ZELGlcs, cis-a-ZELSulfs	8.0
cis- β -ZEL, cis- β -ZELGIcs, cis- β -ZELSulfs	1.0

T2/HT2 and their modified forms

- Found in oats, barley, wheat and maize
- Modified forms may add up to 40% relative to T2/HT2.

Phase I metabolites of T2/HT2

NEO: neosolaniol

Toxicity of T2/HT2

Chronic toxicity

- ✓T2 induces haemato- and myelotoxicity
- T2 is rapidly metabolised to HT2 => toxicity of T2 might partly be attributed to HT2
- ✓ BMDL₁₀ of 3.3 µg/kg bw per day for T2 for ↓ leukocytes in rats
- ✓ Group TDI for T2/HT2: 0.02 μ g/kg bw; UF of 200.

Acute toxicity

- ✓ T2/HT2 induces anorectic effects upon short-term exposure
- ✓ $BMDL_{10}$ of 2.97 µg/kg bw for emetic events seen in mink
- ✓ Group ARfD for T2/HT2: 0.3 μ g/kg bw; UF of 10.

Toxicity of modified T2/HT2

- ✓ No data for setting NOAELs/LOAELs available
- ✓ In vitro/in vivo data show that phase I metabolites have same MoA for critical chronic effect (haematotoxicity)
- ✓ RPFs for phase I metabolites derived from comparative in vitro/in vivo assays
- ✓ RPFs for T2/HT2 and its phase I metabolites to be applied for their phase II metabolites, as complete cleavage can be assumed
- Acute toxicity: NEO showed equal emetic potency

Chronic toxicity (group TDI)

Compound	RPF
T2, T2-3-Glc, T2-3-diGlc, T2-3-Sulf, T2-3-GlcA,	1.0
3-Ac-T2, 3-Fer-T2, 19-HO-T2	
HT2, HT2-3-Glc, HT2-diGlc, HT2-GlcA, HT2-MalGlc	1.0
19-HO-HT2	0.3
NEO, NEO-GIC	0.3
T2-triol, T2-triol-Glc	0.1
T2-tetraol, T2-tetraol-Glc	0.1

Acute toxicity (group ARfD)

Compound	RPF
T2, HT2, NEO, NEO-GIC	1.0

NIVALENOL (NIV) & modified forms

Found in cereal crops (e.g. wheat, maize, barley, oats)

- Few occurrence data on modified NIV (wheat, barley and oats)
- Modified forms may add up to 50% relative to NIV.

Nivaleno

De-epoxy-nivalenol

Phase II: NIV-3-glucoside

Chronic toxicity

- ✓ Immuno/haematotoxic (similar MoA as T2)
- ✓ BMDL₁₀ 0.35 mg/kg bw per day for \downarrow leukocyte counts in rats
- ✓TDI: 1.2 µg/kg bw; UF of 300

Acute toxicity

- ✓ NIV causes anorectic effects upon short term exposure (likely same MoA as T2/HT2)
- ✓ BMDL₁₀ of 0.14 μ g/kg bw for emetic events in mink
- ✓ ARfD: 14 µg/kg bw., UF of 10

NIV-3-ß-Glc to be included in group TDI and ARfD with NIV with the same potency (cleavage to NIV assumed) De-epoxy-NIV: lack of significant toxicity 15

Fumonisins

Common contaminants of maize, and to a lesser extent of wheat and other cereals

	R1	R2	Polar surface	logP
FB1	OH	OH	288.51	-0.044
FB2	Н	OH	268.27	1.3169
FB3	OH	Н	268.27	1.3169
FB4	Н	Н	248.04	2.5538

FBs 1-4 and modified FBs 1-4

Fumonisins B ₁₋₄	FB ₁₋₄
Hydrolysed fumonisin B ₁₋₄	HFB ₁₋₄
Partially hydrolysed fumonisin B ₁₋₂	pHFB ₁₋₂ a,b
N-(carboxymethyl) fumonisin B ₁	NCM-FB ₁
N-(1-deoxy-D-fructos-1-yl)-fumonisin B ₁₋₃	NDF-FB ₁₋₃
O-fatty acyl fumonisin B ₁	O-fatty acyl FB ₁
N-fatty acyl fumonisin B ₁	N-fatty acyl FB ₁
N-fatty acyl hydrolysed fumonisin B ₁₋₂	N-fatty acyl HFB ₁₋₂
N-palmitoyl hydrolysed fumonisin B ₁	N-palmitoyl HFB ₁
N-acetyl fumonisin B ₁	FA1

Hidden Fumonisins

Non-covalent binding products with food/feed matrix (e.g. starch, proteins, lipids)

No change in chemical structure

Not considered for HBGV opinion

Included in animal exposure assessment

□FB1 causes liver and kidney toxicity

■BMDL₁₀ of 0.1 mg/kg bw per day for an increase in megalocytic hepatocytes in mice (Bondy et al., 2015)

TDI for FB₁: 1.0 μ g/kg bw; UF of 100

- □FB₂₋₄ should be included in **group TDI** based on structural similarity, and data indicating similar toxic profile and toxic potencies
- Data on modified FBs suggest that they also block ceramide synthases and have a similar or rather lower toxicological potency but data are too limited to include also modified forms in a group TDI with FB1-4

■ More data on occurrence of modified forms of ZEN, T2/HT2 and FB₂₋₆ in food and feed

■Standards/calibrants for modified form of ZEN, T2/HT2, NIV and FB₂₋₆

More data on toxicokinetics and toxicity of modified mycotoxins

- Comparative oestrogenicity studies with a-ZEL in pigs
- o TK studies on NIV3Glc
- $_{\odot}$ Toxicity studies with FB_{2-6} /any modified FBs using pure compounds

■Verification of dose addition assumption for ZEN and T2/HT2 and their modified forms

Acknowledgements

- Members of the WG on HBGV for mycotoxins and their modified forms
- Members of the WG fumonisins in feed
- Members of the WG on zearalenone in feed
- Members of the WG on fusarium toxins
- Members of the CONTAM Panel
- **EFSA staff** from the DATA and BIOCONTAM Units
- Member States European countries
- Stakeholders
- ✓ occurrence data
- ✓ consumption data

Thank you for your attention

MINIMUM

efsa

Stay connected!

Subscribe to

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers

Follow us on Twitter

@efsa_eu
@plants_efsa
@methods_efsa