PTs dell'EURL-FA: partecipazione dei laboratori italiani per il controllo ufficiale nell'anno 2019 circuito FAC 19/01

Fabrizia Forghieri ICQRF Laboratorio di Modena Roma 28/11/2019

- The proficiency test "FAC-19/01", è stato organizzato dal Laboratorio dell'Unione Europea per gli additivi nei mangimi (EURL-FA Control) ospitato dal JRC (Joint Research Centre) della Commissione Europea per verificare la capacità dei laboratori partecipanti a determinare correttamente alcuni carotenoidi autorizzati ai livelli autorizzati in mangimi composti per pesci e polli.
- Il PT era parte del programma di lavoro di EURL-FA per il periodo 2019-2020 ed era aperto ai LNR (laboratori nazionali di riferimento) e agli OCLs (Laboratori di controllo Ufficiale) e ICQRF Laboratorio di Modena ha partecipato in questa veste.
- Ai partecipanti è stato richiesto, oltre la quantificazione dei carotenoidi presenti in n.2 mangimi, anche di <u>valutare la conformità</u> dei mangimi investigati in relazione ai massimi livelli consentiti nei Regolamenti UE 721/2008 e 1486/2015.

- Misurando: AXN, CXN e ADR in mangime per pesci e CXN in mangime per polli
- Metodo da utilizzare :ogni laboratorio poteva applicare il metodo impiegato usualmente per il controllo ufficiale, determinando il contenuto degli analiti sopra riportati associando la propria incertezza estesa di misura, il fattore di copertura K e le indicazioni relative alla metodologia utilizzata.
- Risultati da esprimere in mg/Kg al 12% di umidità.

- Precedenti partecipazioni
- 20/07/2017 richiesta ai LNR e OCLs da parte di JRC-EURL di partecipare ad uno studio collaborativo per la <u>validazione di un metodo analitico HPLC-UV</u> <u>o HPLC-DAD</u> per la determinazione di carotenoidi autorizzati nei mangimi.
- Obiettivo: assicurare il «fit for purpose» del metodo analitico proposto per la determinazione simultanea dei carotenoidi ai livelli autorizzati dalla legislazione europea, effettuando un PT in cui i laboratori erano tenuti alla stretta applicazione del metodo inviato.
- Programmazione: Lo studio era programmato in due fasi: una a fine 2017 di training per l'acquisizione dei materiali/reattivi necessari, l'avvicinamento e la prima applicazione del metodo, e una seconda (fase di validazione) nell'aprile del 2018 con l'invio di n.18 campioni tra mangimi e premiscele da analizzare e rendicontare.

- N.10 Carotenoidi da separare
- Astaxantina (AXN)
- Cantaxantina (CXN)
- Adonirubina (ADR)
- Astaxantina dimetilsuccinato (AXN-DMDS)
- Capsantina (CSN)
- Estere etilico dell'acido beta apo 8 carotenoico (BACARE)
- Luteina (LUT)
- Citranaxantina (CIXN)
- zeaxantina (ZEA)
- Beta carotene (BCAR)

Preparazione del campione:

Estrazione dei carotenoidi dal campione in presenza di enzima proteolitico con acetone per tre volte, centrifugazione finale ed iniezione nel sistema HPLC. Il metodo prevede anche l'utilizzo dell'estrattore ASE.

Sistema HPLC:

Pompa a gradiente binario con Colonna Supelco Suplex pKB-100 5um 250x4.6mm e precolonna

Rivelatore UV-VIS lunghezza d'onda 410 nm

Forno per colonna a 20°C

Fase mobile:

Fase A miscela acetonitrile, metil terbutil etere, acqua 70:20:10

Fase B: miscela acetonitrile, metil terbutil etere 70:30

Gradiente

0-10 min A 100%

10-14 min A 40% B 60%

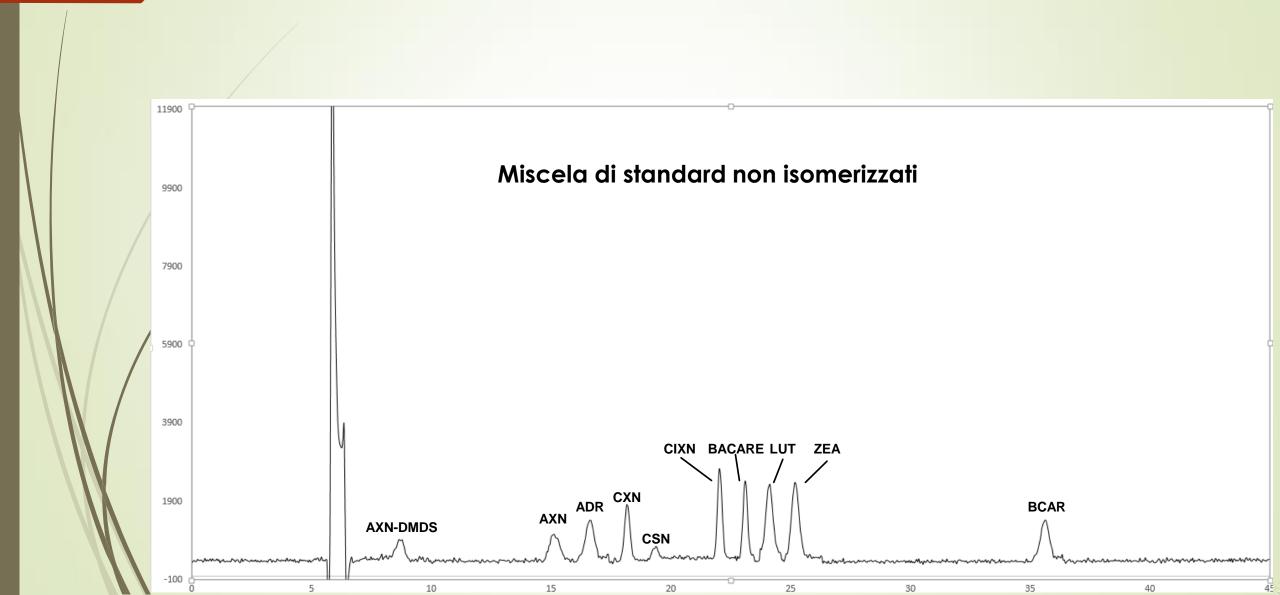
14-28 min A 40% B 60%

28-29 min A100%

29-45 min A 100%

Standardizzazione : Punto saliente nell'intero procedimento

Ogni carotenoide viene standardizzato singolarmente con la seguente procedura


Circa 1 mg di ciascun colorante viene disciolto in 5 ml di un a miscela THF/BHT (soluzione che può essere conservata in congelatore). Dopo ulteriore diluizione ad un valore nominale di circa 2 mg/l si misura l'assorbanza dello std contro il solvente in cui si è effettuata la ultima diluizione, specifico per ciascun analita, alla lunghezza d'onda tabulata.

La stessa concentrazione di colorante, ottenuta per medesima diluizione in acetone, viene contemporaneamente iniettata nel sistema HPLC e ne viene rilevata l'area.

A quest'area si associa la concentrazione effettiva calcolata dal valore di estinzione secondo la seguente formula

Carotenoide in mg/l= E tabulata x 10000/estinzione

per ogni carotenoide la concentrazione viene determinata per confronto diretto tra l'area nel campione e lo standard quantificato come sopra.

Dalla trattazione statistica delle prove di validazione del 2018, l'esito del PT è risultato soddisfacente. Una terna di coloranti che vengono eluiti in maniera sequenziale in un breve lasso di tempo (AXN ADR e CXN) è stato ritenuto da JRC-EURL meritevole di ulteriore indagini.

Organizzazione del circuito FAC 19/01 nella primavera del 2019

Preparazione dei campioni da parte di JRC-EURL

I mangimi bianchi utilizzati erano disponibili da studi precedenti e sono stati addizionati con additivi contenenti i carotenoidi di interesse per ottenere i due campioni finali, che sono stati conservati a 4°C:

Test item 1: mangime completo per pesci;

Test item 2: mangime completo per polli.

- Valori assegnati e σ PT
- Il valore assegnato X pt (al 12% di umidità) delle frazioni di massa dei 3 carotenoidi nei rispettivi mangimi sono stati calcolati dalla formulazione e corretti per la purezza della sostanza attiva nei rispettivi additivi.
- L'incertezza associata $\mathbf{u}(\mathbf{X}_{PT})$ (K=1) al valore assegnato è stata calcolata seguendo la legge della propagazione dell'incertezza tenendo conto dei contributi legati alla preparazione e formulazione (\mathbf{u}_{char}), dell'omogeneità (\mathbf{u}_{hom}) e della stabilità (\mathbf{u}_{st}) in accordo con ISO 13528:2015.
- La deviazione standard del circuito σ_{PT} è stata calcolata come il <u>25% del valore assegnato</u>; questa scelta è derivata dalla deviazione standard di riproducibilità determinata durante la precedente fase di validazione del 2018.

Table 1: valore assegnato (x_{pt}) e deviazione standard assegnata per il PT (σ_{pt}) . Tutti I valori sono espresso in mg/Kg *u(x_{pt}) = incertezza del PT espressa con fattore di copertura pari a K. *AXN*: astaxantiona; CXN: cantaxantina; ADR: adonirubuina

Campione	Misurando	Valore assegnato x _{pt} ± U(x _{pt})* k =1	$\sigma_{\sf pf}$
	AXN	50,204± 0,494	12,551
1	CXN	5,020 ± 0,174	1,255
Mangime completo per pesci	ADR	19,365 ± 0,382	4,841
2 Mangime completo per polli	CXN	10.106 ± 0,540	2.527

- Laboratori partecipanti
- N. 34 laboratori invitati a partecipare
- N.18 laboratori partecipanti
- N. 16 laboratori che hanno inviato i risultati di cui
 - 12 NRLs
 - 4 OCLs

- Organizzazione: invio dei campioni il 25/03/2019
 - 1 bottiglia di ciascun campione contenete circa 25 g
 - Istruzioni per i partecipanti
 - Trattamento dei dati e questionario
 - Invio risultati entro il 26/04/2019
 - Istruzioni per il report online
 - I risultati riferiti al 12% di umidità
 - frazioni di massa dei singoli analiti e della loro somma in mg/Kg
 - incertezza estesa indicando il fattore di copertura in mg/Kg
 - Tecnica utilizzata
 - Cromatogrammi dei due campioni

Scopo del PT

- 1) Assicurare la capacità dei laboratori partecipanti a <u>determinare</u> <u>correttamente i contenuti di carotenoidi nei mangimi</u>, esprimendo un risultato in un definito range di tempo e con un numero limitato di ripetizioni (con 25g massimo 2 prove in doppio).
- criteri utilizzati per la valutazione della performance

z score
$$z = \frac{x_i - x_{pt}}{\sigma_{pt}}$$

Score <= 2 soddisfacente 2<score <= 3 discutibile score >3 insoddisfacente

Scopo del PT

 2) Assicurare la capacità dei laboratori ad assegnare il <u>giudizio di</u> <u>conformità o non conformità</u> ai valori riscontrati in relazione ai massimi livelli autorizzati dalla normativa.

- Risultati
- N. 16 laboratori partecipanti
 - Astaxantina n.16
 - Cantaxantina (pesce) n.15
 - Adonirubina n.14
 - Cantaxantina (pollo) n.15

Z score <= 2		7	SC	ore	<=2
--------------	--	---	----	-----	-----

Astaxantina n.16

Cantaxantina (pesce) n.14

Adonirubina n.13

Cantaxantina (pollo) n.13

 \rightarrow ζ score <=2

Astaxantina n.6

Cantaxantina (pesce) n.7

Adonirubina n.2

Cantaxantina (pollo) n.6

100% dei laboratori

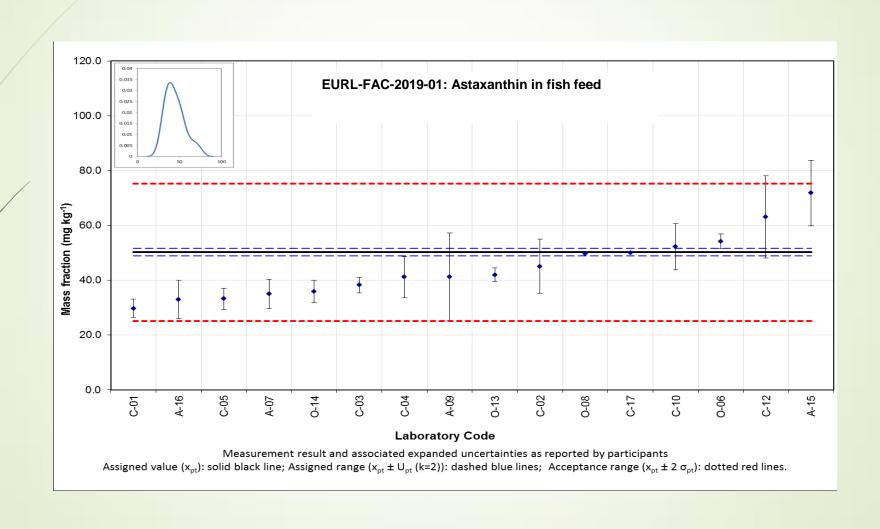
93% dei laboratori

93% dei laboratori

87% dei laboratori

38% dei laboratori

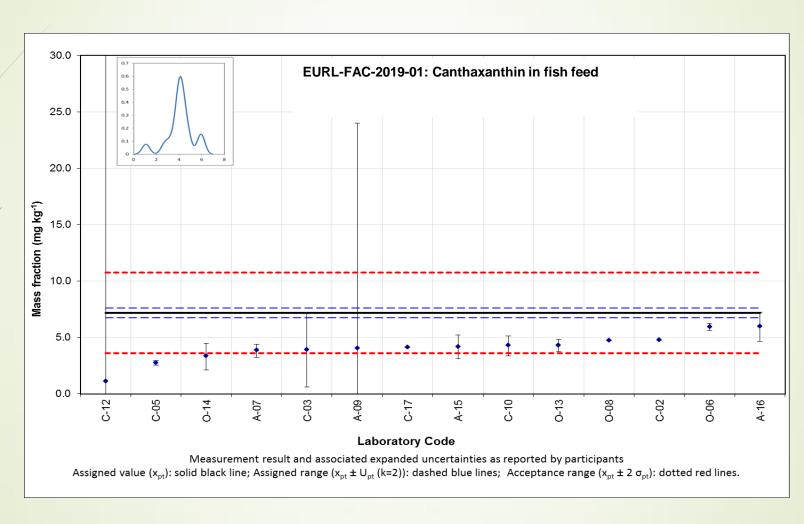
47% dei laboratori


14% dei laboratori

40% dei laboratori

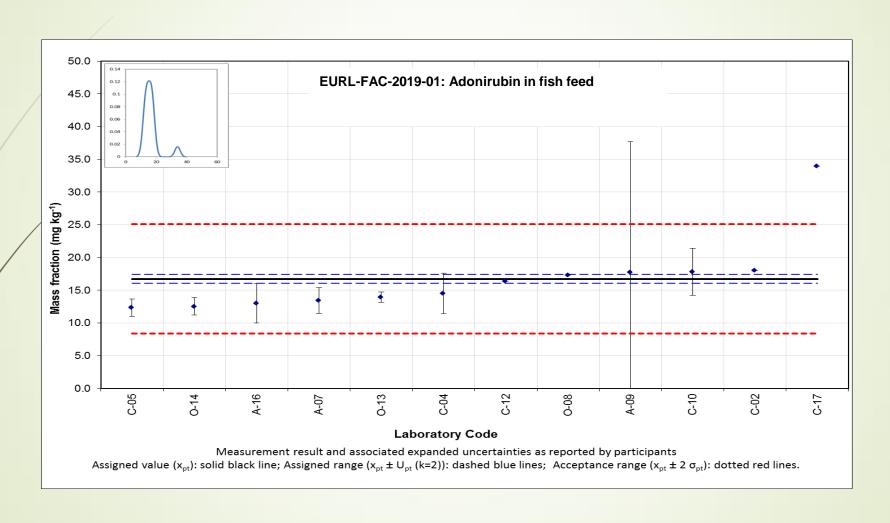
AXN

Valore assegnato: x_{pt} = 50.204 \pm 0.988 $U(x_{pt})$, (k = 2.0); σ_{pt} = 12.551 (tutti I valori in mg kg⁻¹) (*),


Lab Code	x _i	±	k	Technique	u(x _i)	z score *	z score *
A-07	35.000	5.300	2	HPLC-UV	2.650	-1.2	-5.6
A-09	41.240	16.000	2	HPLC-UV	8.000	-0.7	-1.1
A-15	71.800	12.000	2	HPLC-DAD	6.000	1.7	3.6
A-16	33.000	7.000	2	HPLC-DAD	3.500	-1.4	-4.8
C-01	29.700	3.400	2	HPLC-UV	1.700	-1.6	-11.2
C-02	45.000	9.900	2	HPLC-DAD	4.950	-0.4	-1.0
C-03	38.207	2.880	2	HPLC-UV	1.440	-1.0	-7.5
C-04	41.170	7.500	2	HPLC-UV	3.750	-0.7	-2.4
C-05	33.249	3.866	2	HPLC-DAD	1.933	-1.4	-8.3
C-10	52.200	8.400	2	HPLC-UV	4.200	0.2	0.5
C-12	63.100	15.000	2	HPLC-DAD	7.500	1.0	1.7
C-17	50.000	-	-	HPLC-DAD	0.000	0.0	-0.3
O-06	54.200	2.650	2	photometry	1.325	0.3	2.7
O-08	49.720	-	-	HPLC-DAD	0.000	0.0	-0.7
O-13	41.950	2.440	2	HPLC-DAD	1.220	-0.7	-5.9
0-14	35.840	4.110	2	HPLC-UV	2.055	-1.1	-6.6

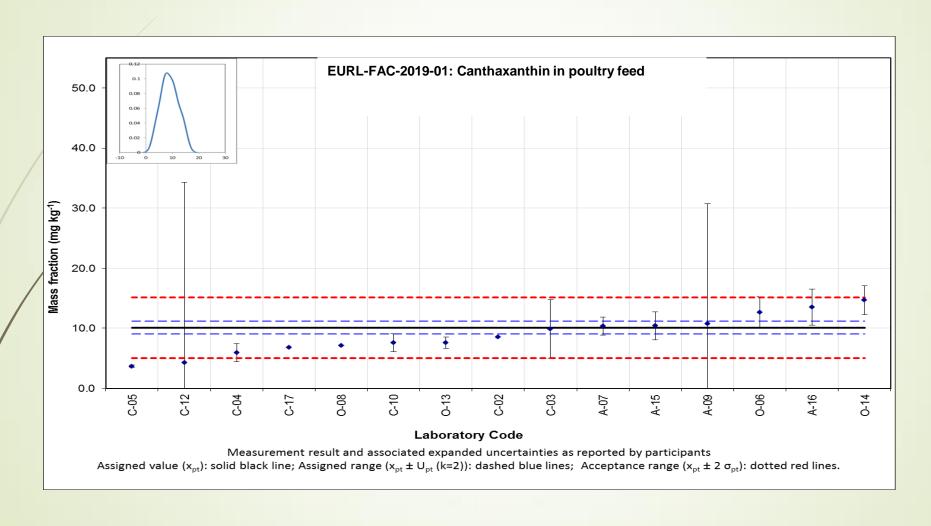
CXN

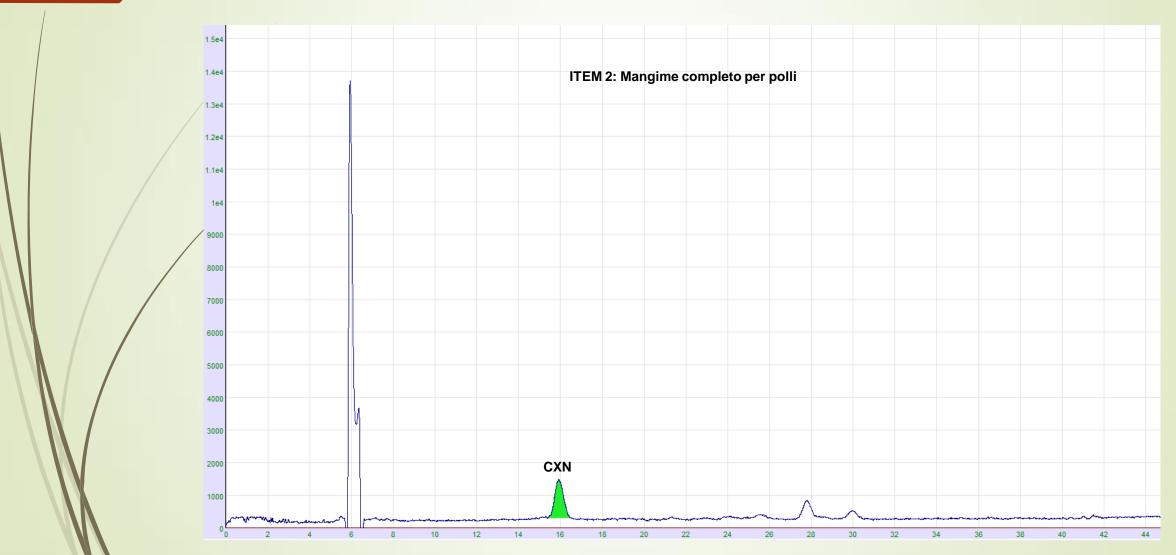
Valore assegnato: $x_{pt} = 5.020 \pm 0.348 \ U(x_{pt}), \ (k = 2.0); \ \sigma_{pt} = 1.255 \ (tutti \ l \ valori \ in \ in \ mg \ kg^{-1})$

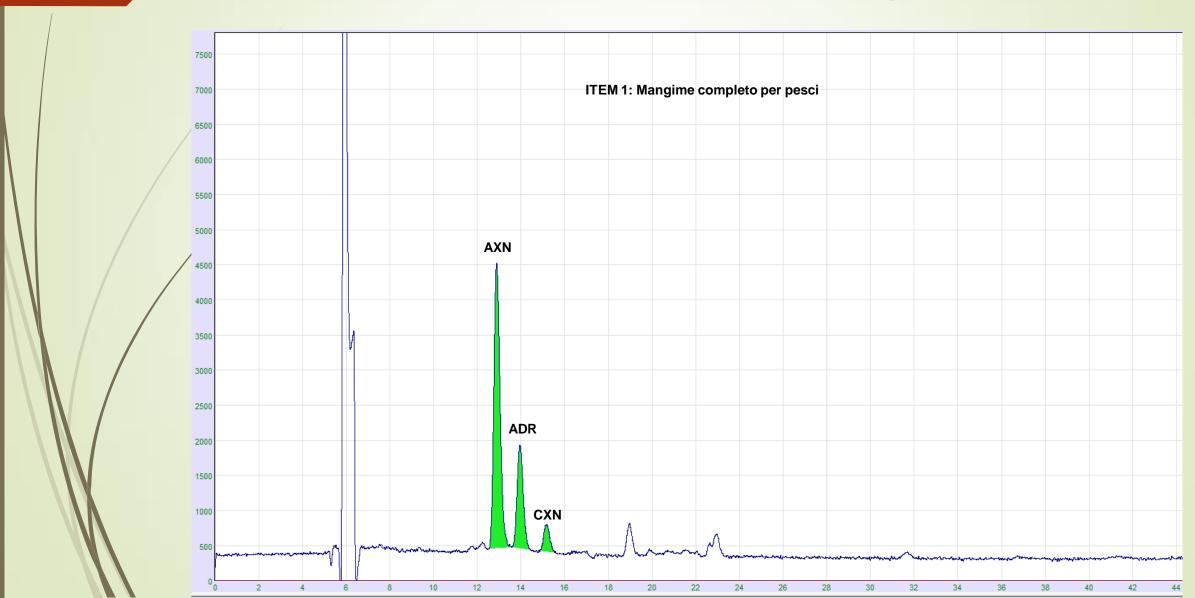

Lab Code	X _i	±	k	Technique	u(x _i)	z score *	z score *
A-07	3.820	0.570	2	HPLC-UV	0.285	-1.0	-3.6
A-09	4.010	20.000	2	HPLC-UV	10.000	-0.8	-0.1
A-15	4.160	1.070	2	HPLC-DAD	0.535	-1.7	-5.2
A-16	5.950	1.300	2	HPLC-DAD	0.650	0.7	1.4
C-02	4.750	-	-	HPLC-DAD	0.000	-0.2	-1.6
C-03	3.901	3.280	2	HPLC-UV	1.640	-0.9	-0.7
C-04	4.075	1.100	2	HPLC-UV	0.550	-0.8	-1.6
C-05	2.734	0.179	2	HPLC-DAD	0.090	-1.8	-11 <i>.7</i>
C-10	4.250	0.900	2	HPLC-UV	0.450	-0.6	-1.6
C-12	1.070	30.000	2	HPLC-DAD	15.000	-3.1	-0.3
C-17	4.100	-	-	HPLC-DAD	0.000	-0.7	-5.3
O-06	5.920	0.310	2	photometry	0.155	0.7	3.9
O-08	4.700	-	-	HPLC-DAD	0.000	-0.3	-1.8
O-13	4.290	0.530	2	HPLC-DAD	0.265	-1.6	-2.3
O-14	3.300	1.180	2	HPLC-UV	0.590	-1.4	-2.8

ADR

Valore assegnato: $x_{pt} = 19,365 \pm 0.327 \ U(X_{pt}), \ (k=1); \ \sigma_{pt} = 4.841 \text{(tutti I valori in mg kg}^{-1})$


Lab Code	X i	±	k	Technique	u(x _i)	z score *	z score *
A-07	13.400	2.000	2	HPLC-UV	1.000	-1,2	-5,6
A-09	17.710	20.000	2	HPLC-UV	10.000	-0,3	-0,2
A-16	13.000	3.000	2	HPLC-DAD	1.500	-1,3	-4,1
C-02	18.000	-	-	HPLC-DAD	0.000	-0.3	-3,6
C-03	16.022	1.350	2	HPLC-UV	0.675	-0.7	-4,3
C-04	14.510	3.100	2	HPLC-UV	1.550	-1,0	-3,0
C-05	12.342	1.325	2	HPLC-DAD	0.663	-1.5	-9,2
C-10	17.800	3.600	2	HPLC-UV	1.800	-0.3	-0,9
C-12	16.350	-	2	HPLC-DAD	0.000	-0.6	-7,9
C-17	34.000	-	-	HPLC-DAD	0.000	3,0	38,3
O-06	15.450	3.720	2	photometry	1.860	-0.8	-2,1
O-08	17.300	-	-	HPLC-DAD	0.000	-0,4	-5,4
O-13	13.950	0.810	2	HPLC-DAD	0.405	-1,1	-9,7
O-14	12.525	1,320	2	HPLC-UV	0.660	-1,4	-9,0




Risultati in mangime completo per polli CXN

Valore assegnato: x_{pt} = 10.106 \pm 1,08 \cup (x_{pt}), (k = 1); σ_{pt} = 2.527 (tutti i valori in mg kg⁻¹)

Lab Code	x _i	±	k	Technique	υ(x _i)	z score *	z score *
A-07	10.385	1.500	2	HPLC-UV	0.750	0.1	0.3
A-09	10.715	20.000	2	HPLC-UV	10.000	0.2	0.1
A-15	10.400	2.300	2	HPLC-DAD	1.150	0.1	0.2
A-16	13.500	3.000	2	HPLC-DAD	1.500	1.3	2.1
C-02	8.500	-	-	HPLC-DAD	0.000	-0.6	-3.0
C-03	9.885	4.890	2	HPLC-UV	2.445	-0.1	-0.1
C-04	5.945	1.500	2	HPLC-UV	0.750	-1.6	-4.5
C-05	3.664	0.183	2	HPLC-DAD	0.092	-2.5	-11.8
C-10	7.550	1.500	2	HPLC-UV	0.750	-1.0	-2.8
C-12	4.290	30.000	2	HPLC-DAD	15.000	-2.3	-0.4
C-17	6.800	-	-	HPLC-DAD	0.000	-1.3	-6.1
O-06	12.650	2.590	2	photometry	1.295	1.0	1.8
O-08	7.150	-	-	HPLC-DAD	0.000	-1.2	-5.5
0-13	7.590	0.940	2	HPLC-DAD	0.470	-1.0	-3.5
<mark>O-14</mark>	<mark>14.690</mark>	<mark>2.410</mark>	2	HPLC-UV	<mark>1.205</mark>	1.8	3.5

Solamente sette dei 18 laboratori partecipanti hanno espresso il giudizio di conformità/ non conformità e valutato correttamente la conformità/non conformità dei campioni rispetto ai livelli massimi consentiti ML per ciascun carotenoide e per la somma dei carotenoidi.

		X PT (mg/Kg)	U PT (mg/Kg)	X (mg/Kg)	U (mg/Kg)	Maximum limits (mg/Kg)	Compliance (Y/N)
CAMPIONE 1	AXN	50.204	0.988	35,84	4.11	100	Υ
	CXN	7.172	0.264	3.30	1.18	80	Υ
	ADR	16.735	0.399	12.52	1.32		
	SUM			51.66		100	Υ
CAMPIONE 2	CXN	10.106	0.770	14.69	2.41	<mark>25</mark>	Υ

- GRAZIE PER L'ATTENZIONE