
Determinazione dei coccidiostatici autorizzati nei mangimi: esito del PT 2014 organizzato dal EURL-FA

C. Civitareale & M. Fiori

LNRs Metalli Pesanti negli Alimenti e nei Mangimi e Additivi nei Mangimi

V Workshop

19-20 Novembre 2015, Roma

La Direzione Generale per la Sanità e la Sicurezza Alimentare della Commmissione (DG SANTE)

Additivi nei Mangimi (*Institute for Reference Materials* and *Measurements - Joint Research Centre*) di organizzare un PT rivolto ai LNRs per

valutare la capacità di determinare correttamente gli 11 coccidiostatici autorizzati nei mangimi (come FA e come sostanze indesiderate)

Nel 2014 l'EURL-FA ha organizzato il PT

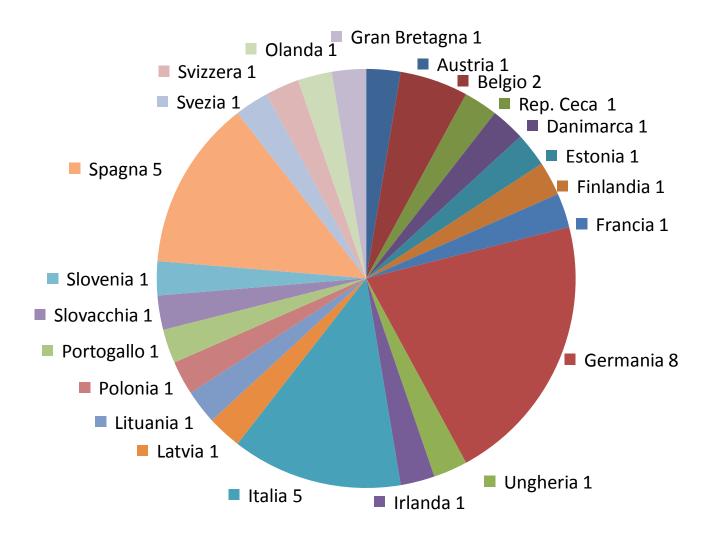
"Determination of authorised coccidiostats at additive and cross-contamination level in feedingstuffs"

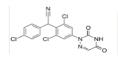
Invio dei campioni ai LNRs - 18 giugno Invio dei risultati all'EURL - 29 agosto

Matrice: mangime completo per polli e per suini

2 mangimi per polli:

- √ + monensin, narasin, diclazuril e robenidina (MAT 1)
- ✓ + lasalocid, decochinato, semduramicina e alofuginone (MAT 2)


2 mangimi per suini:


- ✓ Negativo (MAT 3)
- √ + diclazuril a livello di 1 mg/kg (livello FA) (MAT 4)

I laboratori non conoscono la composizione dei campioni - screening per la presenza di tutti gli 11 cocciostatici e quantificazione di quelli rilevati.

Hanno partecipato 38 laboratori provenienti da 22 nazioni

Italia – laboratori partecipanti

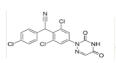
- 1. Istituto Superiore di Sanità (LNR additivi nei mangimi)
- 2. IZS Lazio e Toscana
- 3. IZS Lombardia ed Emilia Romagna
- 4. IZS Piemonte Liguria e Valle d'Aosta
- 5. IZS Umbria e Marche

Non tutti i laboratori hanno riportato i risultati per tutti gli 8 analiti aggiunti

38: monensin e narasin

37: lasalocid

35: robenidina


32: diclazuril

31: decochinato

29: semduramicina

26: alofuginone

32: diclazuril (FA)

Italia - molecole analizzate dai laboratori partecipanti

Istituto Superiore di Sanità (LNR additivi nei mangimi) + 3 labs: 8 analiti + diclazuril FA

1 lab: ionofori e robenidina - no decochinato, alofuginone, semduramicina e diclazuril (FA)

I risultati dei laboratori sono stati valutati usando z- e ζ-scores (zeta-scores)

I valori degli scores sono considerati

|score | ≤ 2 soddisfacenti

2 < |score | ≤ 3 da valutare

|score| > 3 non soddisfacenti

$$z = \frac{x_{lab} - x_a}{\sigma_p}$$

$$\zeta = \frac{x_{lab} - x_a}{\sqrt{u_{lab}^2 + u_a^2}}$$

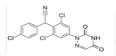
x _{lab} = risultato ottenuto dai labs Dove:

x_a = valore assegnato

u_{lab} = incertezza tipo riportata dai labs

= incertezza tipo del valore assegnato

 $\sigma_{\rm p}$ = scarto tipo della prova valutativa (equazione Horwitz o modificata Thompson (diclazuril e alofuginone)



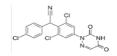


Table 2: Assigned concentrations (X_a) in mg kg $^{-1}$ of feed, expressed as mean value \pm expanded uncertainty (k=2) and target standard deviations in %. The mean concentrations $(C_{homogeneity})$ obtained

during the homogeneity study are given for information.

Test item	Measurand	$x_a \pm U_a (k=2)$ $mg kg^{-1}$			Target standard deviation $\sigma_p(\%)$	C _{homogeneity} (mg kg ⁻¹)	±	U _{homogeneity} (k=2)	
		A	ssign	ed		Observed (n=20)			
	Monensin	1.083	±	0.070	15.7	1.035	±	0.060	
MAT 1	Narasin	0.692	±	0.045	16.8	0.689	±	0.030	
	Diclazuril	0.010	±	0.001	22.0	0.010	±	0.001	
	Robenidine	0.609	±	0.025	17.1	0.673	±	0.004	
	Lasalocid	1.195	±	0.080	15.5	1.236	±	0.068	
MAT 2	Decoquinate	0.394	±	0.018	18.3	0.409	±	0.014	
	Semduramicin	0.223	±	0.026	19.9	0.259	±	0.022	
	Halofuginone	0.025	±	0.002	22.0	0.024	±	0.002	
MAT 4	Diclazuril	1.494	±	0.058	15.0	1.430	±	0.054	
		Foi	rmula	tion		Homogeneity			

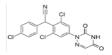
Tratto da EURL-FA Report finale 2015

z-scores

Table 1: Summary results of the proficiency test exercise expressed as z-scores. x_a is the assigned value for the analytes.

Analyte	Xa	Number of	Total number of	Relative number
	mg kg ⁻¹	satisfactory z-	z-scores	of satisfactory
		scores		results
				(%)
Monensin	1.083	30	38	79
Narasin	0.692	30	38	79
Lasalocid	1.195	27	37	73
Diclazuril	0.010	23	32	72
Decoquinate	0.394	21	31	68
Halofuginone	0.025	17	26	65
Robenidine	0.609	22	35	63
Semduramicin	0.223	20	29	69
Diclazuril (FA)	1.494	22	30	69

Tratto da EURL-FA Report finale 2015



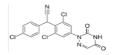


Table 4a: Laboratories having reported satisfactory results

Labs with	Labs	Labs with							
Z ≤ 2 for	with Z ≤	Z ≤ 2 for							
9	2 for 8	2 for 7	2 for 6	2 for 4	2 for 4	2 for 3	2 for 2	2 for 1	0
analytes	analyte	analyte							
L09	L07	L01	L02	L06	L13*	L16*	L08*	L11*	L38*
L29	L12	L03	L04*	L18	L31	L20*	L32		L17*
L35	(L21)	L05*	L15*	L23*					
	L27	L10	L22	L24*					
	L30	L14	L37*	L25					
		L19		L26*					
		L34*		L28					
		L36		L33					

22 laboratories (58%) performed the analysis for all 9 targeted coccidiostats; laboratories marked with an * performed the analysis for 2 to 8 coccidiostats out of the 9 targeted (details in Table 4b).

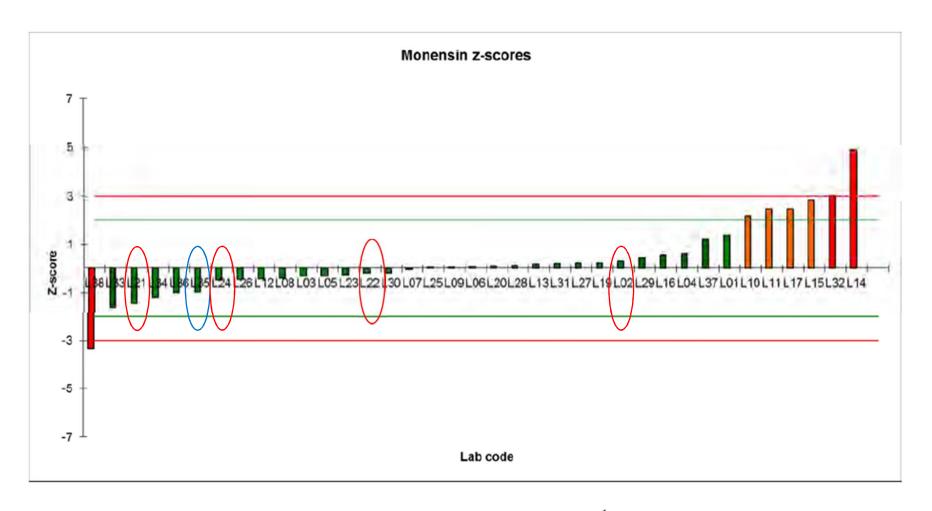


Figure 3: Z-scores for the determination of monensin (x_a : 1.083 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

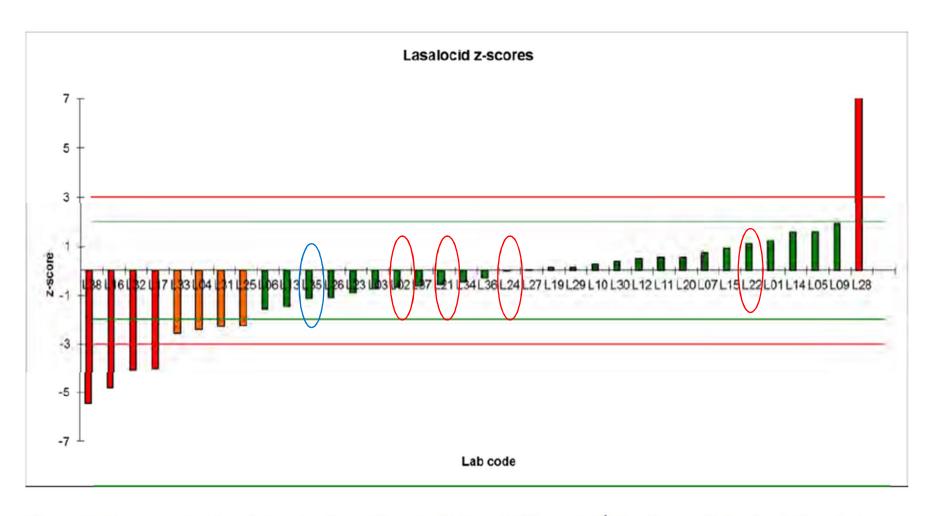


Figure 5: Z-scores for the determination of lasalocid (x_a: 1.195 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

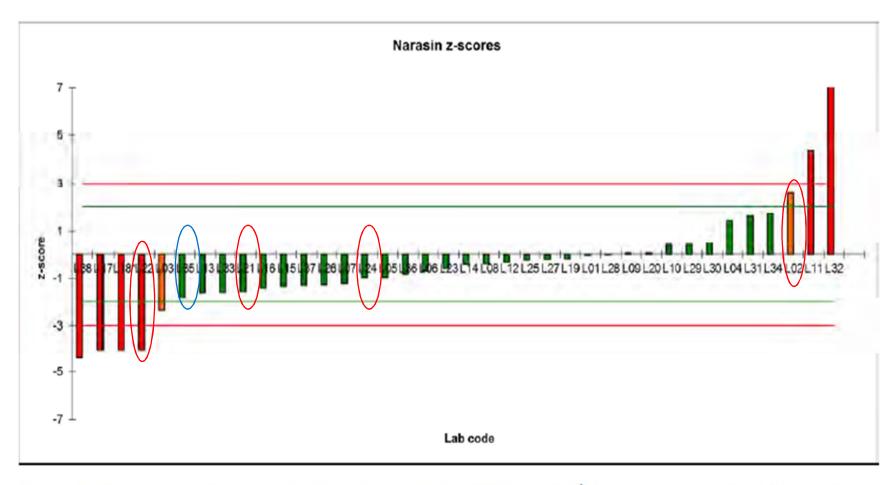


Figure 7: Z-scores for the determination of narasin (x_a: 0.692 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

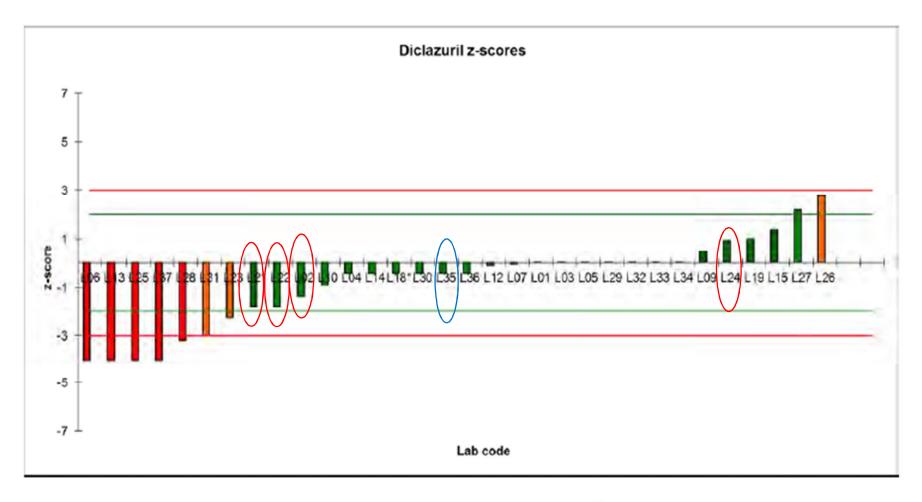


Figure 9: Z-scores for the determination of diclazuril (x_a: 0.010 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.



Figure 11: Z-scores for the determination of decoquinate (x_a: 0.394 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

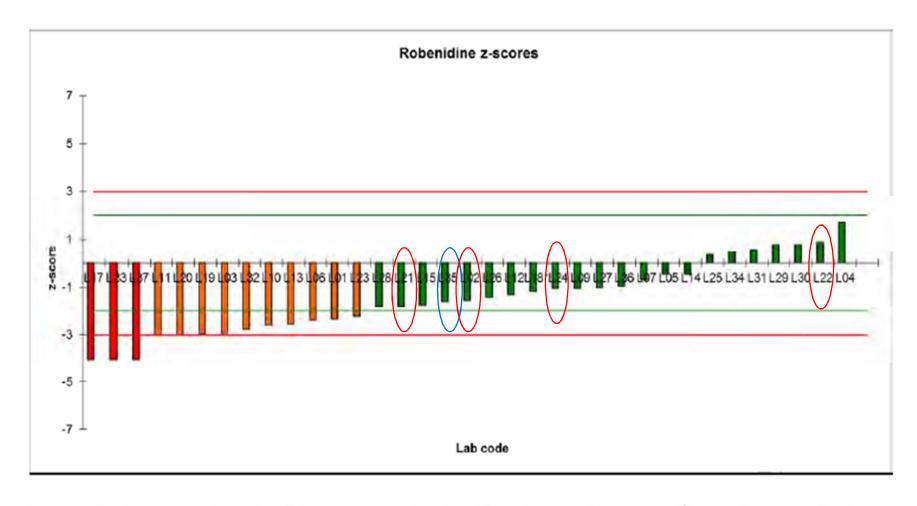


Figure 13: Z-scores for the determination of robenidine (x_a: 0.609 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

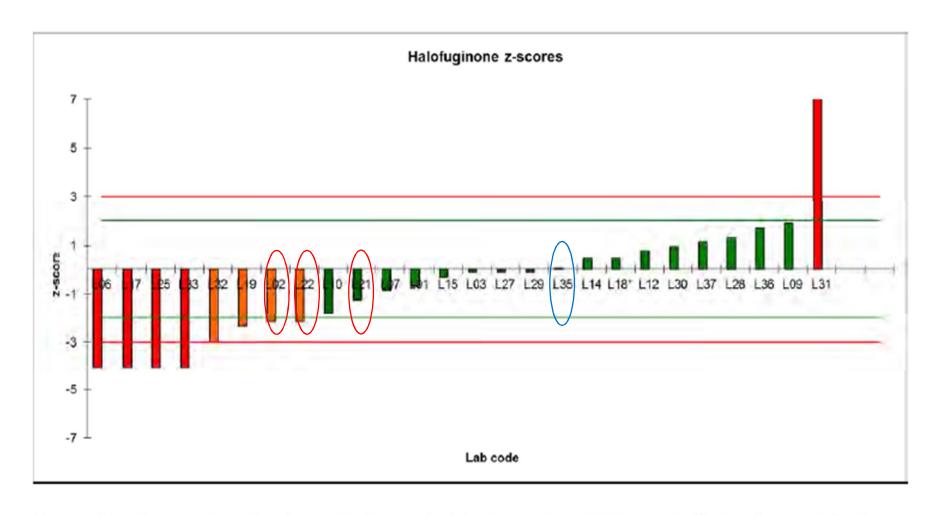


Figure 15: Z-scores for the determination of halofuginone (x_a : 0.025 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

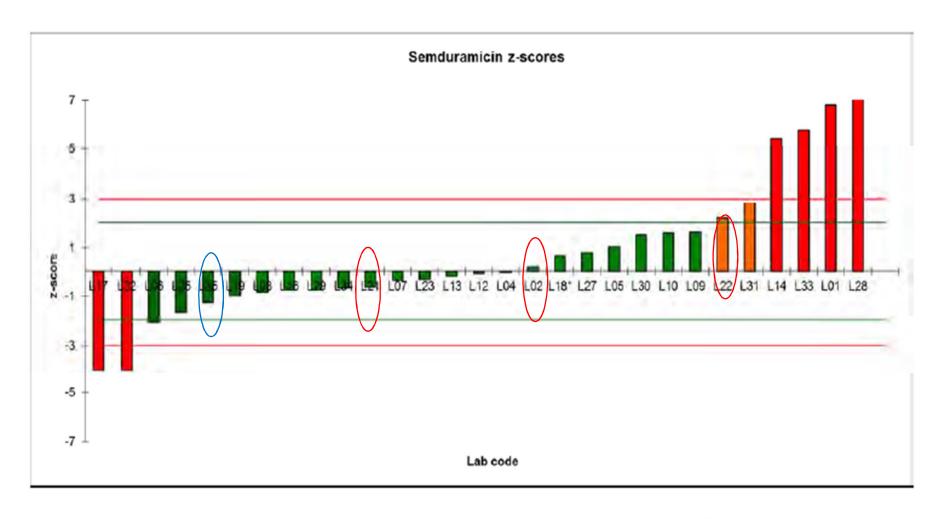
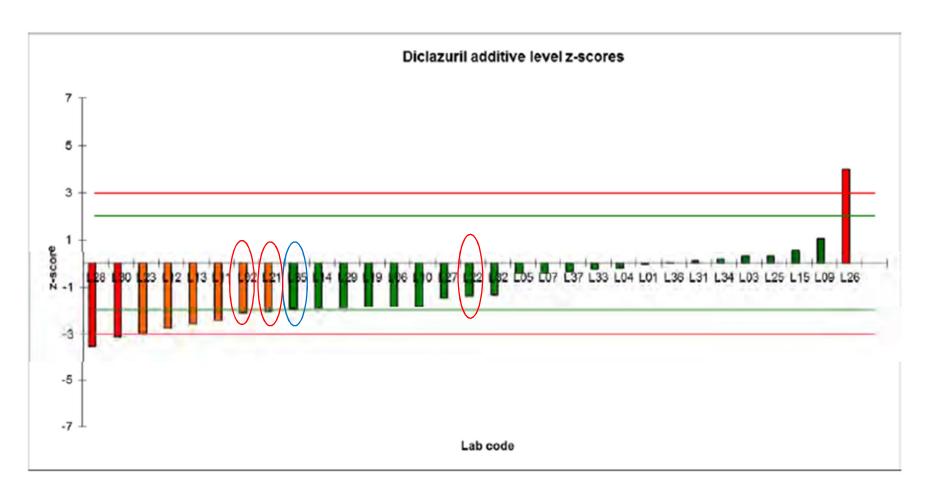
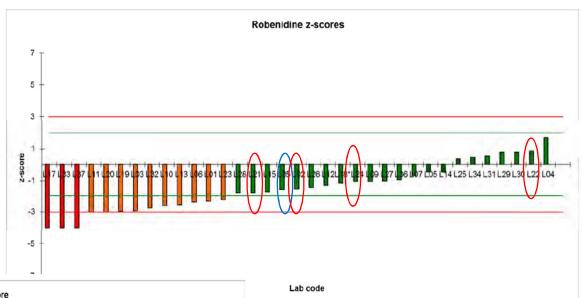
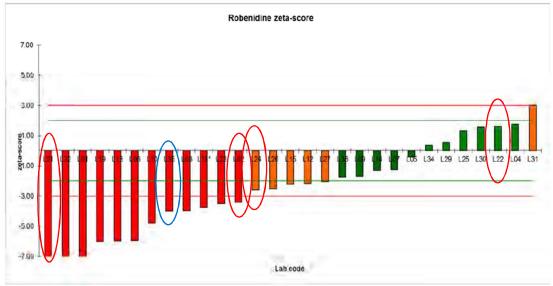
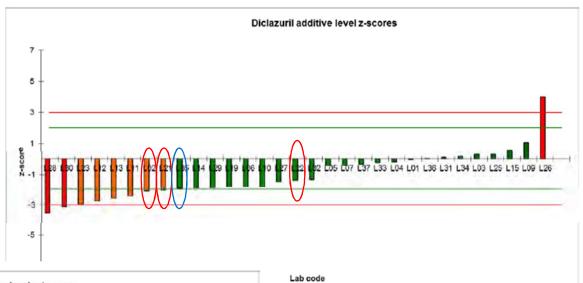


Figure 17: z-scores for the determination of semduramicin (x_a : 0.223 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.


Figure 19: z-scores for the determination of diclazuril FA (x_a : 1.494 mg kg⁻¹) for the participating laboratories. The green line shows the limit for satisfactory and the red line for questionable performance.

ζ -scores



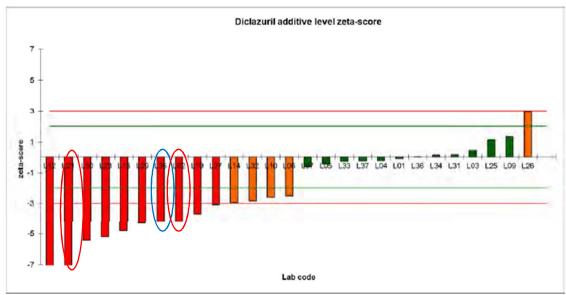
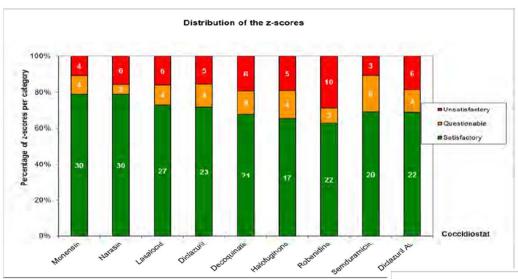
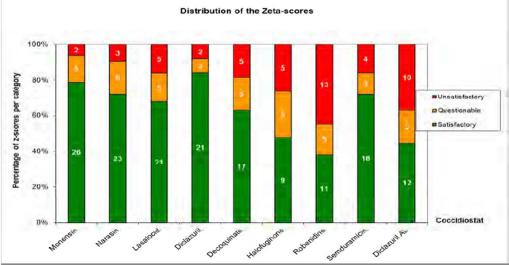




Figure 2: Complete distribution of the z- and ζ -scores values. The number of reporting laboratories for each category is given in the graphs

Tratto da EURL-FA Report finale 2015

Risultati Labs nazionali

	Lab code									
Analita (x _{ref} ±σ _p *)	02 Scores		21 Scores		22 Scores		24 Scores		35 - ISS Scores	
	Z	ζ	Z	ζ	Z	ζ	Z	ζ	Z	ζ
Monensin (1.083±0.170)	0.28	0.37	-1.43	-4.06	-0.19	No Inc	-0.49	-1.00	-0.95	-1.38
Narasin (0.692±0.116)	2.56	2.65	-1.54	-5.22	-4.00		-0.97	-2.01	-1.85	-3.17
Lasalocid (1.195±0.185)	-0.67	-1.02	-0.56	-1.40	1.11	No Inc	-0.03	-0.04	-1.13	-2.40
Diclazuril (0.010±0.002)	-1.35	-2.66	-1.81	-3.56	-1.81	No Inc	0.93	1.29	-0.44	-0.61
Decochinato (0.394±0.072)	-020	-0.35	-0.59	-1.74	-0.75	-2.04	NA	NA	-0.49	-1.00

^{*} $\sigma_p = u_{max}$

Scarto tipo della prova valutativa calcolato in base all'equazione di Horwitz o modificata da Thompson (diclazuril e alofuginone)

Risultati Labs nazionali

Analita (x _{ref} ±σ _p *)	Lab code									
	02 Scores z ζ		21 Scores z ζ		22 Scores z ζ		24 Scores z ζ		35 - ISS Scores z ζ	
Alofuginone (0.025±0.005)	-2.16	-6.31	-1.24	-3.62	-2.16	No Inc	NA	NA	0.05	0.06
Robenidina (0.609±0.104)	-1.52	-3.39	-1.80	- 11.80	0.88	1.62	-1.04	-2.59	-1.57	-3.99
Semduramicin (0.223±0.044)	0.15	0.21	-0.66	-1.54	2.18	No Inc	NA	NA	-1.24	-1.77
Diclazuril (FA) (1.494±0.223)	-2.12	-4.17	-2.08	-7.47	-1.35	No Inc	NA	NA	-1.94	-4.17

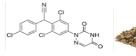
^{*} $\sigma_p = u_{max}$

Scarto tipo della prova valutativa calcolato in base all'equazione di Horwitz o modificata da Thompson (diclazuril e alofuginone)

Un valore di ζ-scores non soddisfacente può essere causato

✓ quantificazione non accurata della concentrazione dell'analita

✓ stima non idonea dell'incertezza associata



Sovrastima o sottostima dell'incertezza di misura del lab

 u_{min} (incertezza tipo del valore assegnato) < u_{lab} < u_{max} (scarto tipo della prova valutativa)

Sottostima dell'incertezza se $u_{lab} < u_{min}$ Sovrastima dell'incertezza se $u_{lab} > u_{max}$

Una valutazione dell'incertezza del lab si può fare considerando

$$\mathbf{x}_{\mathsf{lab}} - \mathbf{x}_{\mathsf{a}}$$

differenza tra i due valori piccola/incertezza larga: sovrastima dell'incertezza

deviazione tra i due valori ampia ma coperta dall'incertezza: incertezza assegnata idonea anche se larga

-scores ISS-LNR

Lasalocid = -2,40

$$\begin{split} X_{lab} - X_{PT} &= -0,209 \ (18\%^*); \ u_{lab} \ 8\% \ u_{PT} \ 3 \ \%; \ U_{lab}\% \ 16_{(u_{lab} \, 8)}; \ \sigma_p\% \ 16^* \\ & \textbf{Narasin} \ = -3,17 \\ X_{lab} - X_{PT} &= -0,215 \ (31\%); \ u_{lab} \ 13\% \ u_{PT} \ 3 \ \%; \ U_{lab}\% \ 27_{(u_{lab} \, 13,5)}; \ \sigma_p\% 17 \\ & \textbf{Robenidina} \ = -3,99 \\ X_{lab} - X_{PT} &= -0,164 \ (27\%); \ u_{lab} \ 9\% \ u_{PT} \ 2 \ \%; \ U_{lab}\% \ 18_{(u_{lab} \, 9)}; \ \sigma_p\% 17 \\ & \textbf{Diclazuril} \ (\textbf{FA}) \ = -4,17 \\ X_{lab} - X_{PT} &= -0,434 \ (29\%); \ u_{lab} \ 9\% \ u_{PT} \ 2\%; \ U_{lab}\% \ 19_{(u_{lab} \, 9,5)}; \ \sigma_p\% 15 \end{split}$$

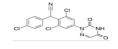
 $\sigma_p > u_{lab} > u_{PT}$ ma non ampia abbastanza da coprire lo scostamento dal valore assegnato? E' un problema di sottostima della

concentrazione?

* Differenza % tra il x_{lah} e x_{PT}

* valore arrotondato

CONCLUSIONI

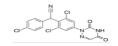

I lab. nazionali nel complesso hanno registrato un buon andamento in termini di z-scores

risultati da valutare

- √ Nar (sovrastima 0,990±0,110 vs 0,692±0,116) e Sem (sovrastima 0,320 vs 0,223±0,044) 1 lab
- ✓ Alo (sottostima 0,013±0,002 e 0,013 vs) 0,025±0,005) e Dicl FA (sottostima 1,020±0,110 e 1,030±0,055 vs 0,025±0,005) 2 lab

risultati non soddisfacenti

✓ Nar 1 lab < LOQ



CONCLUSIONI

✓ Nessun lab. ha riportato falsi negativi o falsi positivi

Novità

Workshop EURL-FA Control 17-18 Novembre

2017

√ 4° PT per la determinazione di coccidiostatici nei mangimi

Matrice: mangime per polli

Analiti: clopidol, salinomicina, diclazuril, alofuginone,

decochinato (da confermare)

Livelli di concentrazione ?

Novità

✓ Metodo per la determinazione di coccidiostatici a livello di additivazione e cross-contaminazione e di antibiotici vietati a livelli sub-terapeutici

Gennaio 2016 completamento validazione (collaborative trial)

Dicembre 2017 completamento della procedura finalizzata alla definizione di standard CEN

Novità

✓ Dicalzuril

- 2014 EURL-FA Control: verifica in-house metodo Reg. 152/2009 (modifiche SPE 100 mg → 5000 mg);
- 2015 Ring trial (15 labs) e valutazione dei risultati
- No falsi positivi o falsi negativi;
- Deviazione standard relativa per la ripetibilità: 4,1% 14%
- Deviazione standard relativa per la riproducibilità: 13,2% -19,4%
- Horrat value < 1,5</p>

Conclusione: il metodo è fit for purpose

Novità - metalli

√ 1° PT per la determinazione del cobalto nei mangimi (in collaborazione con EURL-HM)

GRAZIE PER L'ATTENZIONE

