

RAPPORTI ISTISAN 21 19

ISSN: 1123-3117 (cartaceo) • 2384-8936 (online)

Results of the proficiency test on plant protection products in 2021

A. Santilio, R. Cammarata, V. Picardo

ISTITUTO SUPERIORE DI SANITÀ

Results of the proficiency test on plant protection products in 2021

Angela Santilio, Roberto Cammarata, Valentina Picardo Dipartimento Ambiente e Salute

ISSN: 1123-3117 (cartaceo) • 2384-8936 (online)

Rapporti ISTISAN 21/19

Istituto Superiore di Sanità Results of the proficiency test on plant protection products in 2021. Angela Santilio, Roberto Cammarata, Valentina Picardo 2021, v, 33 p. Rapporti ISTISAN 21/19

In 2021, the fourth Proficiency Test (PT) was organized among laboratories all over world on plant protection products available on the Italian market. The aim of the trial was to find out the quantity of active ingredient on the different formulation of the plant protection products. Eight Italian laboratories and seventeen worldwide laboratories, that routinely deal with pesticides, were invited to participate. Laboratories are not obligated to take part in the PT. Four Italian laboratories and thirteen worldwide laboratories sent their results. All laboratories obtained data with acceptable values of z-score within the limits $-3.5 \le Z \le +3.5$.

Key words: Proficiency test; Plant protection products; Imazamox; Fenhexamid; Trinexapc-ethyl

Istituto Superiore di Sanità Risultati dell'esercizio interlaboratorio sui prodotti fitosanitari nel 2021. Angela Santilio, Roberto Cammarata, Valentina Picardo 2021, v, 33 p. Rapporti ISTISAN 21/19 (in inglese)

Nel 2021 è stato organizzato il quarto esercizio interlaboratorio su prodotti fitosanitari disponibili sul mercato nazionale. L'esercizio riguardava la determinazione del contenuto di principio attivo presente in prodotti fitosanitari di diversa formulazione. Sono stati invitati a partecipare 8 laboratori italiani preposti al controllo dei prodotti fitosanitari e 17 laboratori mondiali interessati ai controlli sui prodotti fitosanitari. La partecipazione è su base volontaria e hanno aderito quattro laboratori italiani e tredici europei. Tutti i laboratori hanno ottenuto risultati con valori di z-score entro i limiti definiti -3.5 $\leq Z \leq +3.5$.

Parole chiave: Esercizio interlaboratorio; Prodotti fitosanitari; Imazamox; Fenhexamid; Trinexapac-ethyl

Per informazioni su questo documento scrivere a: angela.santilio@iss.it

Il rapporto è accessibile online dal sito di questo Istituto: www.iss.it

Citare questo documento come segue:

Santilio A, Cammarata R, Picardo V. Results of the proficiency test on plant protection products in 2021. Roma: Istituto Superiore di Sanità; 2021. (Rapporti ISTISAN 21/19).

Legale rappresentante dell'Istituto Superiore di Sanità: Silvio Brusaferro Registro della Stampa - Tribunale di Roma n. 114 (cartaceo) e n. 115 (online) del 16 maggio 2014

Direttore responsabile della serie: *Paola De Castro* Redazione: *Sandra Salinetti* La responsabilità dei dati scientifici e tecnici è dei singoli autori, che dichiarano di non avere conflitti di interesse.

© Istituto Superiore di Sanità 2021 viale Regina Elena, 299 – 00161 Roma

TABLE OF CONTENTS

Abbreviations	iii
Preface	. v
Introduction	.1
1. Proficiency test on plant protection products	
1.1. Test materials	.2
 1.2. Description of the active substances in the PPPs 1.2.1. Imazamox 1.2.2. Fenhexamid	.2 .3
1.3. Homogeneity and stability test.1.3.1. Homogeneity.1.3.2. Stability.	. 3
1.4. Distribution of the samples and instructions for the participants	.6
 1.5. Statistical evaluation of results	.7 .7 .7
2. Analysis of the substances	. 8
2.1. Imazamox	. 8
2.2. Fenhexamid	.9
2.3. Trinexapac-ethyl	10
3. Results	11
References	21
Appendix A The announcement letter	23
Appendix B Calendar and list of participants2	27
Glossary	31

ABBREVIATIONS

AFSCA	Agence fédérale pour la sécurité de la chaîne alimentaire (Federal Agency for the Safety of the Food Chain)
AAPCO	Association of American Pesticide Control Officials
CAS	Chemical Abstract Service
CIPAC	Collaborative International Pesticide Analytical Council
CS	Capsule Suspension
CV	Coefficient of Variation
DAD	Diode Array Detector
FID	Flame Ionisation Detector
GC	Gas Chromatography
HRMS	High Resolution Mass Spectrometry
ISO	International Organization for Standardization
ITPT	Italian Proficiency Test
LC	Liquid Chromatography
MAD	Median absolute deviation
MS	Mass Spectrometry
N/A	Not Available
PDA	PhotoDiode Array
PPP	Plant Protection Product
PPP01	Plant Protection Product number 1
PPP02	Plant Protection Product number 2
PPP03	Plant Protection Product number 3
PT	Proficiency Test
SC	Suspension Concentrate
SD	Standard Deviation
SL	Soluble Concentrate
UV	UltraViolet
VIS	Visible
VWD	Variable Wavelength Detector
z-score	Standard Score

Symbols

σ_P	standard deviation for proficiency test
T-test	statistic test of Student's t distribution

PREFACE

The European legislation on Plant Protection Products (PPPs) – Regulation (EC) 1107/2009) – regulates the authorisation, placing on the market, use and control of PPPs and of any active substances, safeners, synergists, co-formulants and adjuvants, which they might contain or which they might consist of.

The objective of those rules is to ensure a high level of protection of both human and animal health and of the environment through evaluation of the risks posed by PPPs, while improving the functioning of the Union market through harmonisation of the rules for their placing on the market and improving agricultural production.

In addition, the Regulation (EU) 2017/625 establishes a harmonised European Union framework for the organisation of official controls and official activities taking into account the rules on official controls laid down in Regulation (EC) 882/2004 and in relevant sectoral legislation, and the experience gained from the application of those rules.

The laboratories designated by the competent authorities to perform analyses on PPP samples taken in the context of official controls should possess the expertise, equipment, infrastructure and staff to carry out such tasks to the highest standards. To ensure sound and reliable results, those laboratories should be accredited for the use of these methods according to standard EN ISO/IEC 17025.

One of the instruments to reach a high-quality standard and performance is the participation in the interlaboratory test (Proficiency Test, PT) to demonstrate that the analytical data obtained from laboratories are reliable.

In the area of PPPs there are two organizations that plan PTs:

- Association of American Pesticide Control Officials (AAPCO) International organization that schedules PT on the active ingredient content on PPP on the basis of the American monitoring programmes;
- Agence Fédérale pour la Sécurité de la Chaîne Alimentaire (AFSCA)
 European organization that plans PT on physical chemical properties for PPPs.

For this reason, it is important to organize PTs for the active ingredient content for the national official laboratories.

This activity was planned in the framework of the collaboration with the Italian Ministry of Health and the Istituto Superiore di Sanità (ISS, the National Institute of Health in Italy).

As the national monitoring programs are in comply with the European monitoring ones, it is useful to enlarge the invitation to European Member State laboratories that work on this issue.

INTRODUCTION

In January 2021, all relevant Italian laboratories and European Member State laboratories were invited to participate in the 4th Italian PT on PPPs (later indicated as ITPT2021).

The announcement letter (Appendix A) was sent to the laboratories on 4th November 2020, according to the calendar the laboratories were asked to forward the invitation. The invitation was sent to 8 Italian laboratories and to 17 worldwide laboratories.

For the PT three different commercial products containing three active ingredients (Imazamox 7.62%; Fenhexamid 42.8%; Trinexapac-ethyl 11.30%) were shipped to the laboratories.

1. PROFICIENCY TEST ON PLANT PROTECTION PRODUCTS

1.1. Test materials

The test materials of the ITPT2021 consisted of three PPPs obtained from manufacturer and available from Italian market.

The product types are: Soluble Concentrate (SL), Suspension Concentrate (SC) and Capsule Suspension (CS) at a declared concentration reported in Table 1.

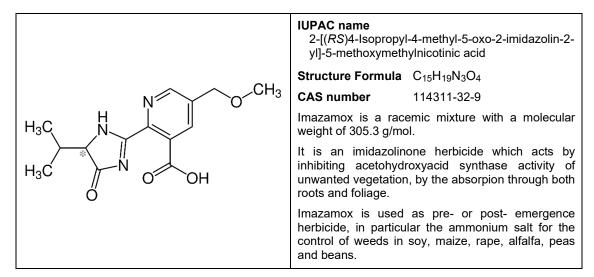
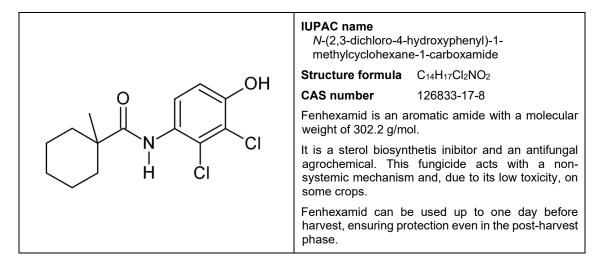
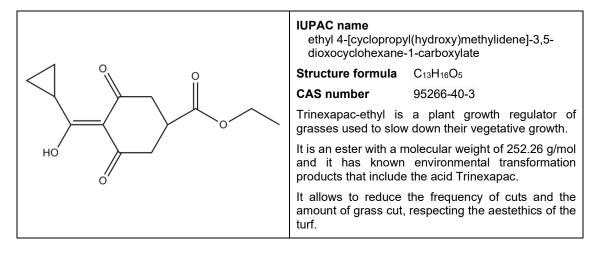

Check Sample N.	Product description	Active ingredient	Declared level %
PPP01	Soluble Concentrate	Imazamox	7.62
PPP02	Suspension Concentrate	Fenhexamid	42.8
PPP03	Capsule Suspension	Trinexapac-ethyl	11.3

Table 1. Test materials of ITPT2020


For the preparation of the subsamples to send each laboratories, the PPPs were mixed mechanically and shared in 17 samples for a total of 51 plastic containers sealed and stored at ambient temperature before the shipment to the participants. Each laboratory received three samples. Nothing was added to our samples.

1.2. Description of the active substances in the PPPs


1.2.1. Imazamox

1.2.2. Fenhexamid

1.2.3. Trinexapac-ethyl

1.3. Homogeneity and stability test

Homogeneity and stability tests were performed according to the ISO 13528:2015(E) - Annex B and the International Harmonized Protocol.

1.3.1. Homogeneity

Regarding the homogeneity test, ten bottles were randomly chosen and analysed in duplicate, in two different days.

Considering that the σ_{PT} is unknown, the statistically significant differences between PT items used were evaluated with the analysis of variance T-test at α =0.05, if the data series are more than two the Fisher Test is necessary. The T-test shows a significativity level (P) higher than 0.05 for

each active substance. It is possible to say the samples are not different one each other: they are homogeneous.

The results are shown in Table 2 for all compounds and the concentrations are in g/kg.

Sample ID	Imazamox Fenhexamid			mid	Trinexapad	c-ethyl
	а	b	а	b	а	b
#1	70.9	72.7	404.7	367.4	115.1	122.7
#2	70.6	73.5	416.0	375.2	116.5	115.8
#3	71.2	73.2	423.1	421.7	113.6	100.8
#4	71.2	73.0	421.9	419.1	114.4	100.7
#5	70.1	72.7	424.2	428.0	111.6	111.8
#6	70.4	72.4	405.3	402.6	107.1	103.1
#7	69.9	72.0	409.3	407.9	104.6	95.9
#8	71.8	73.8	420.8	420.4	111.3	107.0
#9	69.7	71.8	414.4	409.1	106.2	94.1
#10	70.1	72.1	415.4	413.8	107.9	94.6
Mean	72.0	72.7	415.5	406.5	110.8	113.1
SD	1.62	0.64	6.99	19.5	4.04	11.7
t**	1.40		1.37		0.58	
P***	0.18		0.19		0.57	
Homogeneity	YES		YES		YES	

 Table 2. Homogeneity results of the PT samples in g/kg (ITPT2021)

a, b: replicates of the same sample

t**: T of Student Test

P***: significativity level;

SD: Standard Deviation

1.3.2. Stability

The stability test was performed using two bottles, randomly chosen, which were analysed in duplicate in two occasions and each occasion twice:

- Day 1: before the shipment of the samples in January 2021;
- Day 2: at the deadline for reporting results in April 2021.

Stability test was judged acceptable as the percentage difference of concentration for each active substance was found less than 10%.

Table 3 shows the stability data of the ITPT2021.

Active Ingredient	January	April	Concentration
Imazamox	73.6	70.7	76.2
Fenhexamid	407.6	427.3	428
Trinexapac-ethyl	114.6	108.3	116.4

Tables 4, 5, and 6 show the individual results for each substance. The deviation calculated with reference to the 1st analysis and to the declared label show a deviation less than 10% for all substances. The products are stable.

Parameter	January				April			
	Replicate 1		Replicate 2		Replicate 1		Replicate 2	
	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2
Sample 1	75.0	73.0	73.6	73.8	69.1	69.0	73.2	71.8
Sample 2	72.6	72.7	74.0	73.8	69.4	69.4	71.6	71.8
Mean	73	3.3	73	3.8	69	9.2	72.1	
SD	1.	11	0.	18	0.20		0.77	
Mean of 2 days	73.6			70.7				
Standard Deviation of 2 days		0.	35			2.05		
Deviation (ref 1st Analysis)/ [(M2-M1)/M1]*100	-3.94							
Deviation (ref to declared label g/kg)/ [(SM-76.2)/76.2]*100	-5.25							
Stability Mean	72.2			Declar	ed Label	g/kg	76.2	
Stability Standard Deviation	1.20			CV %			1.66	

Table 4. IMAZAMOX: results of stability test in g/kg (ITPT2021)

Table 5. FENHEXAMID: results of stability test in g/kg (ITPT2021)

Parameter	January				April			
	Replicate 1		Replicate 2		Replicate 1		Replicate 2	
	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2
Sample 1	394.0	392.5	387.0	387.7	426.0	426.1	419.7	419.7
Sample 2	427.2	427.3	421.7	421.5	426.9	427.0	436.3	436.7
Mean	41	0.6	40	4.5	42	6.5	428.1	
SD	20	0.0	19	9.8	0.51		9.70	
Mean of 2 days		40	7.6		427.3			
Standard Deviation of 2 days		4.	31		1.13			
Deviation (ref 1st Analysis)/ [(M2-M1)/M1]*100	4.83							
Deviation (ref to declared label g/kg)/ [(SM-428)/428]*100	-2.45							
Stability Mean	417.5			Declare	ed Label	g/kg	428	
Stability Standard Deviation	2.25			CV %			0.54	

Parameter	January				April			
	Replicate 1		Replicate 2		Replicate 1		Replicate 2	
	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2	inj 1	inj 2
Sample 1	114.2	108.9	116.4	112.6	100.4	111.1	111.1	105.3
Sample 2	117.4	112.4	118.6	116.4	110.4	114.8	107.7	105.9
Mean	11	3.0	116.2		109.2		107.5	
SD	3.18		2.	2.66 6.15		15	2.60	
Mean of 2 days		11	4.6		108.3			
Standard Deviation of 2 days		0.	37		1.20			
Deviation (ref 1st Analysis)/ [(M2-M1)/M1]*100	-5.50							
Deviation (ref to declared label g/kg)/ [(SM-116.4)/116.4]*100	-4.			21				
Stability Mean	111.5			Declare	ed Label	g/kg	116.4	
Stability Standard Deviation	0.59			CV %			0.53	

Table 6. TRINEXAPAC-ETHYL: results of stability test in g/kg (ITPT2021)

1.4. Distribution of the samples and instructions for the participants

Three plastic transparent containers with red cup were filled. Each sample was shipped to the participating laboratories at ambient temperature. An information message was sent out by e-mail during shipment so that laboratories make their own arrangements for the reception of the package, and a protocol was sent by e-mail.

The participants (Appendix B) were asked:

- to inform on the safe recipient of the samples in their laboratories;
- to report results in the appropriate form and send them to the organizer by e-mail along with the details of methodology used.

The samples were sent to the participant on 15th January 2021.

The deadline for results was 30th of April 2021.

The final report was dispatched to all participant at the end of July 2021.

1.5. Statistical evaluation of results

This PT has been evaluated using the modified z-score parameter to rate the laboratory performance for each active substance according to AAPCO protocol.

The outliers were calculated using the modified z-score.

1.5.1. Robust mean

The purpose of using a robust estimator for the mean was to cope with the possibility of outlying data points without having to remove them from the sample.

The robust mean estimator used was the median.

1.5.2. Robust estimate of standard deviation

The robust estimate of the standard deviation used was the MAD_E value. To obtain the MAD_E , calculate Median Absolute Deviation (MAD) from the sample median:

MAD = median ($|X_i - median (Xi)|_{i=1,2...n}$)

Calculate MAD_E:

 $MAD_E = K \times MAD$

For normally distributed data, K = 1.483:

 $MAD_E = 1.483 \text{ x MAD}$

1.5.3. Calculation of modified z-scores

Modified z-scores (Zi) for each laboratory were calculated as:

 $Zi = 0.6745 x^{(Xi - median)} / MAD$

Z values falling outside the range of $-3.5 \le Zi \le 3.5$ were marked as outliers.

1.5.4. Presentation of data

Data is presented graphically in two ways:

- a scatter plot showing each participating laboratory's two-day mean value for each analyte along with the associated standard deviation. These plots also show the upper and lower Horwitz (Thompson) limits for the sample, as well as median ±2 MAD_E.
- a plot of modified z-scores.

2. ANALYSIS OF THE SUBSTANCES

Description and statistical evaluation of the results are presented for each compound separately. This year we decide to not apply Horwitz theorem, because the active substances concentrations are high enough to make it unnecessary.

2.1. Imazamox

Regarding the active substance Imazamox, 17 boxes were sent to all over the world, in particular 4 to Italian's Laboratories and 13 to European Laboratories outside Italy. They have been received 16 participation results; the one Laboratory missing is from Germany.

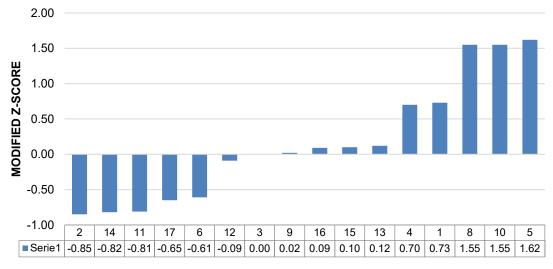

All the laboratories used for the analysis an LC instrument: 15 of them with a UV Detector and just 1 with a MS Detector. It is interesting to note that almost all of the laboratories choose to use an in-house method and just two applied a manufacturer's method, as is shown in Table 10. At the same time, all the methods gave appreciable data.

Table 10. IMAZAMOX: methods	applied for analy	sis (ITPT2021)
-----------------------------	-------------------	----------------

Laboratories	In-House	CIPAC	Manufacturer's	
Number	r 14		2	

On the collected data it was applied a statistical evaluation based on a robust estimator (median) instead the mean. The purpose of this choose was to cope the possibility of outlying data points without having to remove them, so it was used the median and the standard deviation.

Figure 1 shows the lab's values of modified Z-score. The results obtained are laudable data, in fact all of them are inside the modified z-score range of $-3.5 \le Z \le +3.5$.

Two laboratories obtained an excellent value of modified z-score of 0.

Figure 1. IMAZAMOX: modified z-scores (ITPT2021)

LABORATORY NUMBER

2.2. Fenhexamid

For the active substance Fenhexamid, 17 boxes were sent to all over the world, in particular 4 to Italian's Laboratories and 13 to European Laboratories outside Italy. They have been received 15 participation results. Fourteen laboratories used for the analysis an LC instrument and one the GC: 13 of them with a UV Detector, 1 with an FID Detector and 1 with a MS Detector.

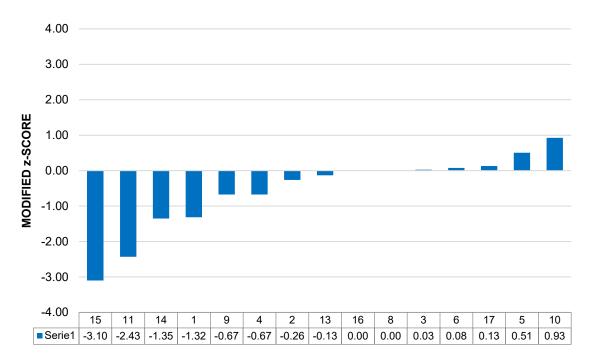

To carry out this analysis 11 laboratories applied an in-house method, 2 the CIPAC method and 2 used the manufacturer's method, as is showed in Table 11. At the same time, all the methods gave appreciable data, as Figure 2 shows.

Table 11.	FENHEXAMID:	methods	applied f	or analy	vsis ((ITPT2021)	

Laboratories	In-House	CIPAC	PAC Manufacturer's		
Number	11	2	2		

As for the Fenhexamid, on the collected data it was applied a statistical evaluation based on a robust estimator instead the mean. The purpose of this choose was to cope the possibility of outlying data points without having to remove them, so it was used the median and the standard deviation. Figure 2 shows the lab's values of modified z-score. The results obtained are valuable data, in fact all of them are inside the z-score range of $-3.5 \le Z \le +3.5$.

Three laboratories obtained the excellent value of modified z-score of 0.

LABORATORY NUMBER

Figure 2. FENHEXAMID: modified z-scores (ITPT2021)

2.3. Trinexapac-ethyl

Trinexapac-ethyl was the last active substance and, as the other two, 17 boxes were sent to all over the world, in particular 4 to Italian's Laboratories and 13 to European Laboratories outside Italy. They have been received 16 participation results; the laboratory missing is from Italy. The analysis was performed using LC instrument for 12 laboratories and the other 4 decide to use the GC: 12 of them with a UV Detector and 4 with FID Detector. Thirteen laboratories choose to use an In-house method, others three a manufacturer's method, as is showed in Table 12. At the same time, all the methods gave appreciable data.

Table 12. FLUDIOXONIL: methods a	pplied for anal	lysis (ITPT2020)
----------------------------------	-----------------	------------------

Laboratories	In-House	CIPAC	Manufacturer's
Number	13	0	3

As for the other two active substances mentioned before, on the collected data it was applied a statistical evaluation based on a robust estimator (median) instead the mean. The purpose of this choose was to cope the possibility of outlying data points without having to remove them, so it was used the median and the standard deviation.

Figure 3 shows the lab's values of modified z-score. The results obtained are valuable data, in fact all of them are inside the z-score range of $-3.5 \le Z \le +3.5$.

One laboratory obtained the excellent value of modified z-score of 0.

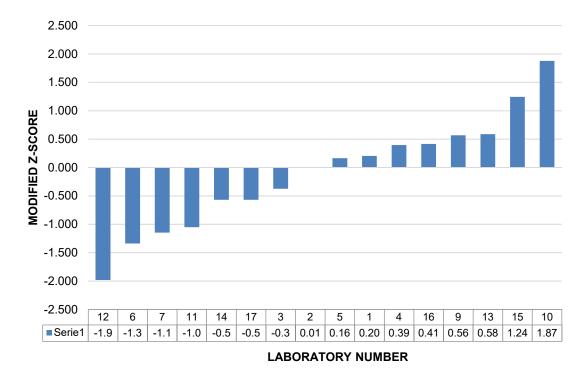


Figure 3. TRINEXAPAC-ETHYL: modified z-scores (ITPT2021)

3. RESULTS

The outcome of the ITPT2021 can be considered satisfactory due to the fourth PT organized by Italy.

The participation of the Italian and European laboratories was good. For Italy, four laboratories participated distributed as two of the north, one in central and one in the south of the Country. The European laboratories were thirteen, excluding Italy, distributed all in Europe.

The performance of the laboratories expressed in terms of modified z-score was satisfactory by almost all participants for all substances. For each active substance, there are not outlier values.

Almost all of the laboratories preferred to use an in-house method, inspired from the CIPAC and adapted to their lab conditions so with some modification, for example, without using the internal standard.

Tables 16, 17 and 18 summarize the participation per active ingredient and the results per active ingredient including and excluding the outliers.

For each active substance there were a percentage of failing results obtained with the modified z-score, as Table 16 shows.

ID Sample	Product description	Active ingredient	Participants (n.)	Labs using GC (n.)	Labs using LC (n.)	Failing results¹(%)
PPP01	Soluble Concentrate	Imazamox	16	0	16	0
PPP02	Suspencion Concentrate	Fenhexamid	15	1	14	0
PPP03	Capsule Suspencion	Trinexapac- ethyl	16	4	12	0

Table 16. Summar	v of ı	partici	oation	per active	ingredient	(ITPT2021)

¹ Where failing indicates a mean assay result outside the modified z-score defined acceptable limits.

Table 17. Summary	v of lab results	per active ingr	redient. including	outliers	(ITPT2021)

ID Sample	Analyte (Label claim)	Minimum result	Maximum result	Grand Average	Grand %CV
PPP01	Imazamox 7.62%	7.08	7.98	7.37	3.47
PPP02	Fenhexamid 42.8%	38.3	50.4	42.4	7.20
PPP03	Trinexapac-ethyl 11.3%	10.6	11.8	11.1	2.50

Table 18, Summar	v of lab results	per active ingredient	. excludina	outliers (IT	PT2021)

ID Sample	Analyte (Label claim)	N. of outliers ¹	Average excluding outliers	%CV excluding outliers
PPP01	Imazamox 7.62%	0	7.37	3.47
PPP02	Fenhexamid 42.8%	0	42.4	3.80
PPP03	Trinexapac-ethyl 11.3%	0	11.1	2.50

¹ An outlier is flagged when the modified z-score falls outside the range of $-3.5 \le Zi \le 3.5$; see Appendix for calculations.

The performance by almost the laboratories expressed in terms of modified z-score was satisfactory for all substances. For each active substance, there are not outlier values.

Almost all of the laboratories used in-house methods, inspired from the CIPAC and adapted to their laboratories conditions so with some modification, for example, without using the internal standard.

Based on the results, it can be concluded that the PT was successfully organized and we are very glad to say a satisfactory number of people took part with all the inconvenient of this year and we run out our fourth edition!

Details of the z-score values for each laboratory are given in Tables 19, 20 and 21 with the analytical technique used for each substance.

ID Lab	Analytical technique	Two day average ¹	RPD ¹	Modified z- score ²	Outlier ²
1	HPLC-UV	7.54	0.00	0.73	NO
2	LC-DAD	7.08	-0.42	-0.85	NO
3	LC-UV	7.33	0.68	0.00	NO
4	HPLC-DAD	7.53	1.86	0.70	NO
5	HPLC-DAD	7.80	0.77	1.62	NO
6	LC-DAD	7.15	0.70	-0.31	NO
8	LC-HRMS	7.78	0.26	1.55	NO
9	HPLC-DAD	7.33	0.55	0.02	NO
10	HPLC-DAD	7.78	5.14	1.55	NO
11	LC-PhotoDA	7.09	0.07	-0.81	NO
12	LC-DAD	7.30	1.37	-0.09	NO
13	HPLC-DAD UV VIS	7.36	-0.82	0.12	NO
14	LC-DAD	7.09	0.14	-0.82	NO
15	LC-DAD	7.30	1.23	-0.10	NO
16	HPLC-VWD	7.35	-0.82	0.09	NO
17	LC-PhotoDA	7.14	-0.14	-0.65	NO
Grand Average	³ 7.37				
Total SD	0.26				
Total Median ⁴	7.33				
MAD	0.002				

Table 19. IMAZAMOX Sample PPP01: summary results (ITPT2021)

¹ Average yield and Relative Percent Difference between the two-day determinations per laboratory.

² An outlier is flagged when the modified z-score falls outside the range of $-3.5 \le Zi \le 3.5$; see Glossary.

³ Grand average, standard deviation and median.

MADE

⁴ Median Absolute Deviation Robust estimate of standard deviation; see Glossary for calculations.

0.003

ID Lab	Analytical technique	Two day average ¹	RPD ¹	Modified z-score ²	Outlier ²
1	HPLC-UV	42.5	0.47	-0.27	NO
2	LC-DAD	42.8	-0.47	-0.13	NO
3	LC-UV	43.2	-0.46	0.67	NO
4	HPLC-DAD	42.7	-4.22	-0.00	NO
5	HPLC-DAD	42.6	-1.18	-0.13	NO
6	LC-DAD	43.5	-1.15	1.01	NO
8	LC-HRMS	42.9	0.12	0.33	NO
9	HPLC-DAD	42.5	0.09	-0.27	NO
10	HPLC-DAD	42.9	-1.17	0.13	NO
11	UHPLC-PhotoDA	40.9	-1.34	-2.43	NO
13	GC-FID	42.9	0.00	0.27	NO
14	LC-DAD	42.1	-1.19	-0.78	NO
15	LC-DAD	40.4	-10.4	-3.10	NO
16	HPLC-VWD	42.9	1.37	0.29	NO
17	LC-PhotoDA	42.0	-2.86	-0.94	NO
Grand Averag	e ³ 42.4				
Total SD	0.90				
Total Median ⁴	42.7				
MAD	0.00				
MADE	0.01				

Table 20. FENHEXAMID	Sample PPP02: summary	/ results (ITPT2021)

¹ Average yield and Relative Percent Difference between the two-day determinations per laboratory.

² An outlier is flagged when the modified z-score falls outside the range of $-3.5 \le Zi \le 3.5$; see Glossary.

³ Grand average, standard deviation and median.

⁴ Median Absolute Deviation Robust estimate of standard deviation; see Glossary for calculations.

ID Lab	Analytical technique	Two day average ¹	RPD ¹	Modified z-score ²	Outlier ²
1	HPLC-UV	11.2	0.00	0.20	NO
2	LC-DAD	11.2	0.90	0.01	NO
3	LC-UV	11.1	-0.90	-0.38	NO
4	HPLC-DAD	11.3	4.44	0.39	NO
5	HPLC-DAD	11.2	1.07	0.16	NO
6	LC-DAD	10.8	1.85	-1.34	NO
7	GC-FID	10.9	0.92	-1.15	NO
9	HPLC-DAD	11.3	0.09	0.57	NO
10	GC-FID	11.6	-0.09	1.88	NO
11	LC-PhotoDA	10.9	0.28	-1.05	NO
12	LC-DAD	10.6	1.22	-1.98	NO
13	HPLC-DAD	11.3	0.00	0.59	NO
14	LC-DAD	11.0	-0.36	-0.57	NO
15	GC-FID	11.5	-4.88	1.24	NO
16	GC-FID	11.3	2.40	0.41	NO
17	LC-PhotoDA	11.0	1.82	-0.57	NO
Grand Averag	e³ 11.1				
Total SD	0.28				
Total Median ⁴	11.1				
MAD	0.00	2			
MADE	0.00	3			

Table 21. TRINEXAPAC-ETHYL sample PPP03: summary results (ITPT2021)

¹ Average yield and Relative Percent Difference between the two-day determinations per laboratory.

² An outlier is flagged when the modified z-score falls outside the range of $-3.5 \le Zi \le 3.5$; see Glossary.

³ Grand average, standard deviation and median.

⁴ Median Absolute Deviation Robust estimate of standard deviation; see Glossary for calculations.

Table 25, 26 and 27 report the information on analytical methods used for each substance and each laboratory.

Tab	ole 25. IMAZAN	IOX: repres	Table 25. IMAZAMOX: representative method fo	for the determination (ITPT2021)	•			
Lat	ID Reference Lab method	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Column Detector T°	Column
-	In-house method	N/A	Acetonitrile	Sonicate for 15 min. Filter through a 0.45 µm filter	5 µL	ambient	Dionex UVD 170S	Zorbax SB-C18 5 µm, 4.6 mm × 250 mm
2	In-house method	N/A	Acetonitrile	Sonicate for 8 min. Filter through 0.22 µm PTFE syringe 0.5 µL filter	0.5 µL	25°C	DAD	Phenomenex Kinetix C18 2.6 µm, 100 mm × 2.1 mm
ю	In-house method	N/A	Acetonitrile	Sonicate for 15 min	2 µL	30°C	٨	XTerra RP18 3.5 μm, 150 mm × 2.1 mm
4	In-house method	N/A	Water:Acetonitrile (10:90 v/v)	Ultrasonicate 15 min. Dilute and filter with 0.45 µm PTFE	10 µL	30 °C	DAD	Kintex C18 5 µm, 150 mm × 4.6 mm
5	In-house method	N/A	Acetonitrile	Dilute in 100 mL volumetric flasks with ACN	10 µL	35°C	DAD	NUCLEODUR C18 Gravity 5 µm, 150 mm × 4.6 mm
9	In-house method	N/A	Acidified water / Tetrahydrofuran (50/50 (v/v))	Sonicate for 15 min. Shake for homogenization. Filter through 0.2 µm PP disk	10 µL	35°C	DAD	Kromasil C8 5 µm, 150 mm × 4.6 mm
ø	In-house method	N/A	Water:Methanol (10:90 v/v)	Dissolve sample in 5 mL of water. Fill to mark with methanol. Dilute with methanol 20 µL and filter 0.45	20 µL	25°C	HRMS	Synergy 4µm Hydro-RP 80 Å4 µm, 150 mm × 2 mm
6	In house method	N/A	Acetonitrile	Ultrasonic 20 min	5 µL	40°C	DAD	ZORBAX ODS 5 µm, 4.6 mm × 150 mm
10	In house method	N/A	N/A	Weight sample and dilute 25 mL ACN. Take 1 mL of sample 10 µL to 10 mL mobile phase	10 µL	none	DAD	Zorbax Edipse Plus C18 5 µm, 4.6 mm × 250 mm
÷	In-house method	N/A	Acetonitrile	Weigh 350 mg sample into a 50 mL measuring flask. Ultrasonicate for 5 min, fill to the mark at 20°C with acetonitrile. Filter through a 0.45 µm PTFE filter	2 µL	40°C	PhotoDA	Agilent Poroshell 120 SB-C18 2.7 µm, 4.6 mm i.d. × 100 mm

Rapporti ISTISAN 21/19

segue

15

D. Reference Interval Sample Injection Vince Column Decetor Column Co	con	continua							
In-house method method NA Acetonitate and filter through 0.45 um 10 µL 35°C DAD In house method NA Add water. Sonicate for 10 s. (10.90 v/v) Add water. Sonicate for 10 s. Homogenea and equilibrate to the room emperature is method 2 µL 40°C DAD V/VIS Manufacturer's NJA Water. Acetonitrile (20.80 v/v) Sonicate for 7 min. througeneous sample 2 µL 40°C DAD V/VIS Manufacturer's NJA Water. Acetonitrile (20.80 v/v) Sonicate for 7 min. through 0.45 µm nylon disk 40°C DAD V/VIS Manufacturer's NJA Water. Acetonitrile (20.80 v/v) Sonicate for 7 min. through 0.45 µm nylon disk 40°C DAD Manufacturer's NJA Acetonitrile (10 µL), add 40°C DAD Acetonitrile (10 µL), add 50°L Add Manufacturer's NJA Acetonitrile (10 µL), add 10 µL 25°C DAD Acetonitrile (10 µL), add 5 20°C DAD Manufacturer's NJA Acetonitrile (10 µL), add 10 µL 25°C DAD Acetonitrile (10 µL), add 25°C DAD Manufacturer's NJA Acetonitrile (10 µL Acetonitrile (10 µL), add	LD	p	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Detector	Column
In house method N/A Add water. Sonicate for 10 s. Add methanol to the mark. He noom temperature Add water. Sonicate for 1 min. Adv water. Sonicate for 5 min. Adv water. Sonicate for 5 min. Adv water. Sonicate for 5 min. Adv water. Sonicate for 1 min. Adv water. Accetonitrie Adv water. Accetonitrie Sonicate for 1 min. Adv water. Accetonitrie Adv water. Accetonitrie Adv water. Accetonitrie Sonicate for 1 min. Adv water. Accetonitrie Adv water. Adv wite accetonitrie Adv water. Adv water. Adv water. Adv water. Adv water. Adv wa	12		N/A	Acetonitrile	Sonicate for 15 min. Dilute and filter through 0.45 um nylon disk	10 µL	35°C	DAD	Agilent Zorbax Eclipse XDB C8 5 µm, 150 mm × 4.6 mm
Manufacturer's ImplicieN/AWater.Acetonitrile Shake for 1 min and filter bake for 1 min and filter through 0.45 µm nylon disk0.40°CDADManufacturer's Number(20:80 v/v) (20:80 v/v)Transfer a quantity of the homogeneous sample containing about 100 mg of active substance to a soutunetric flask (100 mL), add 50 mL volumetric flask (100 mL)25°CPhotoDA	13		N/A	Water: Methanol (10:90 v/v)	Add water. Sonicate for 10 s. Add methanol to the mark. Homogenize and equilibrate to the room temperature	, 2 µL	40°C		Phenomenex Gemini NX C18 3 μm, 150 mm × 4.6 mm
Imanufacturer's N/A Acetonitrile Imanufacturer a quantity of the containing about 100 mg of active substance to a volumetric flask (100 mL), add 50 mL of acetonitrile. Manufacturer's N/A Acetonitrile Ultrasonicate for 5 min. Wait of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution and fill to mark with acetonitrile. Take 5 mL of this solution 0.45 m distenses to this solution 0.45 m distenses to this solution 0.45 m distenses to the solution on the solution on the solution acetonitrile. Take 5 mL of this solution active to this solution 0.45 m distenses to the solution on the solution o	4		s N/A	Water:Acetonitrile (20:80 v/v)	Sonicate for 5 min. Shake for 1 min and filter through 0.45 µm nylon disk	10 µL	40°C	DAD	Phenomenex Gemini C18 5 µm, 150 mm × 4.6 mm
In-houseN/AAcetonitrileSonicate for 10 min. Filter through Nylon 0.45 μm disk5 μL30°CVWDNote the through Nylon 0.45 μm disk5 μL25°CPhotoDAIn-houseN/AAcetonitrilevolume	15		S N/A	Acetonitrile	Transfer a quantity of the homogeneous sample containing about 100 mg of active substance to a volumetric flask (100 mL), add 50 mL of acetonitrile. Ultrasonicate for 5 min. Wait until the temperature is stabilized and fill to mark with acetonitrile. Take 5 mL of this solution and dilute to a final volume of 50 mL with acetonitrile. Filter before to inject		25°C	DAD	Zorbax eclipse C18 5µm, 250 mm × 4.6 mm
In-house N/A Acetonitrile Weigh, dilute in acetonitrile to _{5 μL} 25°C PhotoDA method	16		N/A	Acetonitrile	Sonicate for 10 min. Filter through Nylon 0.45 µm disk	5 µL	30°C	DWV	ZORBAX Eclipse, XDB-C18 5 μm, 250 mm × 4.6 mm
	17		N/A	Acetonitrile	Weigh, dilute in acetonitrile to volume	5 µL	25°C	PhotoDA	Phenomenex Kinetix C18 2.6 µm, 100 mm × 2.1 mm

Tab	Ne 26. FENHEX	(AMID: repre	Table 26. FENHEXAMID: representative method	d for the determination (ITPT2021)	21)			
ID Lab	ID Reference Lab method	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Detector	Column Detector Column T°
÷	In-house method	N/A	Acetonitrile	Sonicate for 15 min, filter 0.45 µm	5 µL	ambient	Dionex UVD 170S	Zorbax SB-C18 5 μm, 4.6 mm × 250 mm
7	In-house method	N/A	Acetonitrile: Water (90:10 v/v)	Sonicate for 8 min, filter through 0.22 µm PTFE syringe 0.5 µL filter	0.5 µL	25° C	DAD	Phenomenex Kinetex C18 2.6 µm, 100 mm × 2.1 mm
з	In-house method	N/A	Acetonitrile	Sonicate for 15 min	2 µL	30° C	N۷	XTerra RP18 3.5 µm, 150 mm × 2.1 mm
4	In-house method	N/A	Methanol	Ultrasonicate for 15 min, dilute and filter with 0.45 µm PTFE	10 µL	30° C	DAD	Kintex C18 5 µm, 150 mm × 4.6 mm
5	In-house method	N/A	Acetonitrile	Dilute in 100 mL volumetric flasks with ACN	10 µL	35° C	DAD	Phenomenex Luna C18 5µm, 250 mm × 4.6 mm
9	In-house method	N/A	Acidified water / Tetrahydrofuran (50/50 (v/v))	Sonicate for 15 mins, shake for homogenization. Filter through 0.2 µm PP disk	10 µL	35° C	DAD	Accucore Thermo 4 µm, 250 mm × 3 mm
ø	In-house method	N/A	Water: Methanol (10:90 v/v)	Dissolve sample in 5 mL of water. Fill to mark with methanol. Dilute with methanol and filter 0.45 µm	20 µL	25°C	HRMS	Synergy 4µm Hydro-RP 80 Å 4 µm, 150 mm × 2 mm
6	In-house method	N/A	THF	Ultrasonicate for 30 min. Filter 0.45 µm PTFE disk	5 µL	40°C	DAD	ZORBAX ODS 5 μm, 4.6 mm × 150 mm
10	Manufacturer's _{N/A} method	s N/A	Acetonitrile	Weigh and dilute in 50 mL ACN 10 µL	1 10 µL	none	DAD	Zorbax Eclipse Plus C18 5 .0 μm, 4.6 mm × 250 mm
7	CIPAC UHPLC	N/A	Acetonitrile	Weigh 55 mg sample into a 200 mL measuring flask. Add 10 mL water and acetonitrile Ultrasonicate until complete dissolution. Fill to the mark at 20°C with acetonitrile. Filter through a 0.2 µm PTFE filter	0.5 µL	30°C	PhotoDA	PhotoDA Waters Acquity UPLC BEH C18 1.7 µm, 2.1 mm i.d. × 100 mm
								segue

17

cont	continua							
ID Lat	ID Reference Lab method	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Detector	Column Detector Column T°
13	In-house method	Dicyclohexyl phthalate 0.500 g/mL	Acetone	Sonicate for 5 min, shake for 5 seconds, filter through 0.45 µm 1 µL nylon disk	1 µL	270°C	FID	Phenomenex ZB-5HT 30 m × 0.25 mm, 0.25 µm
4	CIPAC	N/A	Acetonitrile:Water (80:20 v/v)	Add 2 mL of water and shake to homogenize. Add extraction solvent and sonicate for 15 min. Dilute 1/10 with extraction solvent. Filter through 0.45 µm nylon disk	10 µL	40°C	DAD	Phenomenex Gemini C18 5 µm, 4.6 mm × 150 mm
15	Manufacturer's _{N/A} method	s N/A	Acetonitrile	Transfer a quantity of the homogeneous sample containing about 50 mg of active substance to a volumetric flask, add 50 mL of acetonitrile. Ultrasonic bath for 15 minutes. Wait until the temperature is stabilized and fill to mark with acetonitrile. Filter before to inject.	10 µL	40°C	DAD	Lichrospher RP-18 5 mm, 250 mm x 4 mm
16	In-house method	N/A	Acetonitrile	Sonicate for 10 min. Filter through Nylon 0.45 µm disk	5 µL	30° C	DWV	ZORBAX Eclipse, XDB-C18 5 μm, 4.6 mm × 250 mm
17	17 In-house method	N/A	Acetonitrile	Weigh, disperse in 10 mL water, dilute in acetonitrile to volume	5 µL	25°C	PhotoDA	PhotoDA Phenomenex Kinetex C18 2.6 µm, 100 mm × 4.6 mm

Tab	ile 27. TRINEX/	АРАС ЕТНҮ	Table 27. TRINEXAPAC ETHYL: representative n	method for the determination (ITPT2021)	ITPT2021)			
Lab Lab	Reference o method	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Column Detector T°	Column
.	In-house method	N/A	Acetonitrile	Sonicate for 15 min. Filter through a 0.45 µm filter	5 µL	ambient	Dionex UVD 170S	Zorbax SB-C18 5 µm, 4.6 mm × 250 mm
7	In-house method	N/A	Acetonitrile	Sonicate for 8 min. Filter through 0.22 µm PTFE syringe filter	0.5 µL	25°C	DAD	Phenomenex Kinetix C18 2.6 µm, 100 mm × 2.1 mm
З	In-house method	N/A	Acetonitrile	Sonicate 15 min	2 µL	30°C	Ŋ	XTerra RP18 3.5 μm, 150 mm × 2.1 mm
4	In-house method	N/A	Water:Acetonitrile (10:90 v/v)	Ultrasonicate for 15 min. Dilute and filter with 0.45 µm PTFE	10µL	30°C	DAD	Kintex C18 5 µm, 150 mm × 4.6 mm
2	In-house method	N/A	Acetonitrile	Dilute in 100 mL volumetric flasks with ACN and further dilute 10 mL to 50 mL volumetric flask with mobile phase: 100% ACN (550 mL) + 0.1% H ₃ PO ₄ in water (450 mL)	10µL	30°C DAD	DAD	Phenomenex Luna C18 5 µm, 250 mm × 4.6 mm
9	In-house method	N/A	Acidified water / Tetrahydrofuran (50/50 (v/v)) 10:90	Sonicate for 15 min. Shake for homogenization. Filter through 0.2 µm PP disk	10 µL	35°C	DAD	Accucore Thermo 4 µm, 250 mm × 3 mm
7	In-house method	N/A	Acetone	Dilute in 50 mL acetone. Sonicate for 15 min	1 µL	250°C	FID	Zebron/HM-G-006 DB17-01 30 m × 0.32 mm × 0.25 μm
6	In-house method	N/A	Acetonitrile	Ultrasonicate for 20 min. Filter 0.45 µm PTFE disk	5 µL	40°C	DAD	LUNA 3u C18 3 µm, 4.6 mm × 150 mm
10	Di-n- Manufacturer's propyl method 3 mg/r	Di-n- s propyl phthalate 3 mg/mL	Acetone	Weight sample. Add 25 mL IS	1 µL	325°C	FID	Thermo 30 m × 0.25 mm × 0.25 μm
								enbes

Rapporti ISTISAN 21/19

conti ID Lab	<i>continua</i> ID Reference Lab method	Internal standard	Extractants	Sample preparation	Injection volume	Column T°	Column Detector T°	Column
, -	In-house method	A/A	Acetonitrile	Weigh 320 mg sample into a 100 mL measuring flask. Dissolve and fill to the mark at 20°C with acetonitrile. Dilute 5 times in acetonitrile. Filter through a 0.45 µm PTFE filter	10 µL	30°C	PhotoDA	ZORBAX SB-C18 5 μm, 4.6 mm i.d. × 250 mm
12	In-house method	N/A	N/A Acetonitrile	Sonicate for 15 minutes. Dilute and filter through 0.45 um nylon 10 µL disk	10 µL	35°C	DAD	Agilent Zorbax Eclipse XDB C8 5 μm, 150 mm ×4.6 mm
13	In-house method	N/A	Methanol	Add methanol to the mark, homogenise and equilibrate to room temperature	2 µL	40°C	DAD UV VIS	Phenomenex Kinetex XB-C18 2.6 µm, 100 mm × 4.6 mm
4	Manufacturer's _{N/A} method	s N/A	Water:Acetonitrile (20:80 v/v)	Sonicate for 5 minutes. Filter through 0.45 µm nylon disk	10 µL	40°C	DAD	Phenomenex Gemini C18 5 µm, 4.6 mm × 150 mm
15	Di-n-pro- Manufacturer's pylftalate method 2,7171 mg/mL	Di-n-pro- s pylftalate 2,7171 mg/mL	Acetone	Transfer a quantity of about 50 mg of a.s. to a volumetric flask, add 10 mL of IS. Ultrasonicate for 5 min. Wait until the temperature is stabilized and fill to mark with acetone. Filter before to inject	1 µL	325°C	FID	DB-5 30 m, 0.32 mm × 0.25 mm
16	In-house method	Methyl Benzoate 1.5 mg/mL	Ethyl acetate	Sonicate for 15 min. Filter through Nylon 0.45 µm disk	1 µL	270 °C	FID	HP -5 5% Phenyl Methyl Siloxane 30.0 m × 0.32 mm × 0.25 µm
17	In-house method	N/A	Acetonitrile	Weigh, disperse in 10 mL water, dilute in acetonitrile to volume	5 µL	25°C	PhotoDA	Phenomenex Kinetex C18 2.6 µm, 100 mm × 4.6 mm

Rapporti ISTISAN 21/19

REFERENCES

- Association of American Pesticide Control Officials. *Pesticide formulations checks sample program*. West Lafayette; AAPCO; 2016.
- ISO/IEC 13528:2015. *Statistical methods for use in proficiency testing by interlaboratory comparison.* Geneva: International Organization for Standardization; 2015
- ISO/IEC 17025:2018. *General requirements for the competence of testing and calibration laboratories*. Geneva: International Organization for Standardization; 2018.
- Rivera CP, Rodríguez RD, Pimentel SH. Horwitz equation as quality benchmark in ISO/IEC 17025 Testing Laboratory. In: *Conference proceedings*; 2011.
- Thompson M, Ellison SLR, Wood R. The International Harmonized Protocol for the Proficiency testing of analytical chemistry laboratories (IUPAC Technical Report). *Pure Appl Chem* 2006;78(1):145-96.

APPENDIX A The announcement letter

ANNOUNCEMENT/INVITATION ITPT2021

Dear Colleagues,

We herewith cordially invite you to participate in the Italian Proficiency Test on the analysis of PPPs in SE and SL. This exercise is organized by the Italian Laboratory of National Institute of Health – Department of Environment and Health. The ITPT2021 is scheduled to run from 15th January until 30th April 2021.

AIMS

Participation in proficiency tests is part of the QA/QC system of laboratories and provides them with an assessment of their analytical performance as well as a comparison with the performance of other laboratories. The general aim is to help laboratories demonstrate adequate analytical performance and, in case of underperformance, to help them identify sources of errors so that the necessary measures for quality improvement can be taken.

TEST ITEM

Ca. 10 g of PPP test Item will be delivered to each participating lab.

TARGET ANALYTES

The analytes are:

Active Substance	Conc (g/L)	Formulation
Fenhexamid	500	SC
Imazamox	80	SL
Trinexapac-Ethyl	116.4	CS

SHIPMENT AND RECEIPT OF THE TEST ITEM

The shipment of the Test Item is planned to start around 15th January 2021. If any laboratory will be on holiday in the week of the shipment, please inform the organizer to rearrange shipment. Participants must check the integrity and condition of the materials upon receipt and to report within <u>48h if they accept the materials or not.</u>

IMPORTANT DATES

- The shipment of the Test Items is planned to start around 15 January 2021.
- Submission of results and method information should be done by 30 April 2021.

PARTICIPATION FEE

The participation is free of charge.

RELEVANT DOCUMENTS

Participants are encouraged to employ the method typically run in their lab for these analytes.

SUPPORT AND CONTACT INFORMATION

For any questions about the ITPT-PPP01, please mail to angela.santilio@iss.it

Best regards,

The ITPT2021 Organizing Team

APPENDIX B Calendar and list of participants

CALENDAR for the ITPT2021

Activity	Dates
Opening of the ITPT2020	4 th November 2020
Confirm the participation	30 th November 2020
Shipment of the ITPT-PPP03 Test Item	15 th January 2021
Confirmation of Sample Receipt and Acceptance	Within 48 h of receipt
Result Submission	30 th January – 30 th April 2021
Preliminary Report	May 2021
Final Report	June 2021

LIST OF PARTICIPANTS

Italian participants

Arianna Palchetti	Laboratorio analisi alimenti e sicurezza dei prodotti – APPA BZ
Luigi Bazzani	ARPA Emilia Romagna Sede secondaria laboratorio Multisito, sezione di Ferrara
Leonardo Sabatino	Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari - Laboratorio di Catania
Valentina Picardo	Istituto Superiore di Sanità, Roma
European participants	
Lajos Sándor Benke	National Food Chain Safety Office- Hungary
Florentina Ciotea	National Phytosanitary Authority - Romania
Frantisek Csicsay	ÚKSÚP - Bratislava, Slovakia
Christoph Czerwenka	AGES GmbH - Wien, Austria
Kristina Dürkop	Federal Office of Consumer Protection and Food Safety, Germany
Eva Jacobsen	Danish Technological Institute - Aarhus, Denmark
Helen Karasali	Benaki Phytopathological Institute – Athens, Greece
Olga Novákova	UKZUZ National Reference Laboratory – Brno, Czech Republic
Benoit Saclier	Service Commun des Laboratoires, France
St. Nikolova Petar Ilchev	CLCT, Bulgary
Pierre Hucorne	Walloon Agricultural Research Centre (CRA-W), Belgium
Javier Garcìa-Hierro Navas	Laboratorio Arbitral Agroalimentario, Spain
Paul Martin-Carr Denis	Pesticides Formulations Laboratory, DAFM, Ireland

GLOSSARY

- Active Ingredient. An active ingredient (AI) is the ingredient in a pharmaceutical drug or plant-health drug that is biologically active. Some products may contain more than one active ingredient.
- **Analyte.** An analyte, component, or chemical species is a substance or chemical constituent that is of interest in an analytical procedure.
- **CAS number.** A CAS Registry Number, also referred to as CASRN or CAS Number, is a unique numerical identifier assigned by the Chemical Abstracts Service (CAS) to every chemical substance described in the open scientific literature (currently including all substances described from 1957 through the present, plus some substances from the early or mid-1900s) including organic and inorganic compounds, minerals, isotopes, alloys and no structural materials (UVCBs, of unknown, variable composition, or biological origin). The registry maintained by CAS is an authoritative collection of disclosed chemical substances and 67 million protein and DNA sequences, plus additional information about each substance. It is updated with around 15,000 additional new substances daily.
- **Chemical formula.** A chemical formula is a way that chemists describe a molecule. The formula says what atoms, and how many of each type, are in the molecule. Sometimes the formula shows how the atoms are linked, and sometimes the formula shows how the atoms are arranged in space. The letter shows what chemical element each atom is.^[1] The subscript shows the number of each type of atom.
- % CV. The coefficient of variation (CV) is defined as the ratio of the standard deviation σ to the mean μ multiplied 100: CV= (σ / μ) x 100.
- **E isomer.** is the IUPAC convention of a molecular configuration, if the two groups of higher priority are on opposite sides of the double bond, the bond is assigned the configuration E (from the German word for "opposite" *entgegen*).
- **Grand Average.** The grand mean or average is the mean of the means of several subsamples, as long as the subsamples have the same number of data points. For example, consider several lots, each containing several items. The items from each lot are sampled for a measure of some variable and the means of the measurements from each lot are computed. The mean of the measures from each lot constitutes the subsample mean. The mean of these subsample means is then the grand mean.
- **Homogeneity.** Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity in a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e., colour, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly non uniform in one of these qualities.
- **Internal Standard.** An internal standard in analytical chemistry is a chemical substance that is added in a constant amount to samples, the blank and calibration standards in a chemical analysis. This substance can then be used for calibration by plotting the ratio of the analyte signal to the internal standard signal as a function of the analyte concentration of the standards. This is done to correct

for the loss of analyte during sample preparation or sample inlet. The internal standard is a compound that is very similar, but not identical to the chemical species of interest in the samples, as the effects of sample preparation should, relative to the amount of each species, be the same for the signal from the internal standard as for the signal(s) from the species of interest in the ideal case.

- **MAD.** In statistics, the Median Absolute Deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. MAD = median of $(|X_i \text{median } (Xi)|_{i=1,2...n})$.
- **Median.** The median is the value separating the higher half of a data sample, a population, or a probability distribution, from the lower half. For a data set, it may be thought of as the "middle" value. For a continuous probability distribution, the median is the value such that a number is equally likely to fall above or below it. The median is a commonly used measure of the properties of a data set in statistics and probability theory. The basic advantage of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed so much by extremely large or small values, and so it may give a better idea of a "typical" value. Because of this, the median is of central importance in robust statistics.
- **Modified z-score.** The z-score of an observation is defined as $Zi = (X \mu) / \sigma$, where X is a sample, μ the sample mean and σ the standard deviation. In other words, data is given in units of how many standard deviations it is from the mean. Although it is common practice to use z-scores to identify possible outliers, this can be misleading in particularly for small sample sizes, so is better to use the modified z-score:

 $Zi = 0.6745 \text{ x}^{(Xi - median)} / MAD$

The modified z-scores with an absolute value of greater or lower than 3.5 be labelled as an outlier.

- **Outlier.** An outlier is an observation that appears to deviate markedly from other observations in the sample. Identify potential outliers is important because it may indicate a bad data. For example, the data may have been coded incorrectly or an experiment may not have been run correctly. If it can be determined that an outlying point is in fact erroneous, then the outlying value should be deleted from the analysis (or corrected if possible). If it is not possible to simply delete the outlying observation, the use of robust statistical techniques may be considered.
- **Reference Method.** A reference method is an analytic procedure sufficiently free of random or systemic errors to make it useful for validating proposed new analytic procedures for the same analyte. This method has to be accuracy of a definitive method already certified demonstrated through direct comparison and must use primary reference material (standards, glasses, instruments). An in-house method it means that the method is not certified and made with the laboratory's instruments and techniques. The CIPAC methods is an analytical method make following CIPAC's instructions as the Manufacturer's method is make with the Manufacturer's instructions.
- **SD.** The standard deviation (SD, also represented by the Greek letter sigma σ or the Latin letter s) is a measure that is used to quantify the amount of variation or dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values.

- **Stability.** The stability is a molecular characteristic of a chemical or compound; is the tendency of a material to resist change or decomposition in its natural environment or when exposed to air, heat, light, pressure or other natural conditions or due to internal reaction.
- **Z** isomer. is the IUPAC convention of a molecular configuration, if the two groups of higher priority are on the same side of the double bond, the bond is assigned the configuration Z (from the German word for "together" *zusammen*).

Serie Rapporti ISTISAN numero di ottobre 2021, 3° Suppl.

Stampato in proprio Servizio Comunicazione Scientifica – Istituto Superiore di Sanità

Roma, ottobre 2021