# 9. B. VISINTIN e N. GANDOLFO - Sulla determinazione della silice.

La determinazione di piccole quantità di silice, eseguita con i metodi ponderali classici, non solo costituisce un'operazione lunga e laboriosa, ma porta spesso a risultati di scarso valore analitico.

Di conseguenza, la ricerca di un metodo rispondente ai requisiti di una più sollecita indagine e di una maggiore sensibilità, è giustificata dalle nuove esigenze. Un notevole contributo è stato apportato dall'analisi colorimetrica: a tal proposito sono da ricordare Dienert e Wandelbulche (¹), che tra i primi idearono un metodo colorimetrico, basandosi sulla colorazione gialla del complesso silico-molibdico che si forma per azione del molibdato di ammonio su di una soluzione di acido silicico, leggermente acidificata con acido solforico. L'intensità di colorazione viene confrontata con quella di una soluzione di acido picrico, l'equivalenza della quale è stata precedetemente fissata a mezzo di una soluzione di acido silicico a titolo noto.

Successivamente M. L. Isaacs (²), in luogo di avvalersi della sopracitata colorazione gialla, ha ritenuto opportuno trattare l'acido silico-molibdico con soluzione solfitica, deducendo il contenuto in silice dalla intesità della colorazione azzurra del prodotto di riduzione risultante.

F. Oberhauser e J. Schormüller (³) eseguiscono la riduzione dell'acido silico-molibdico con cloruro stannoso; M. Teitelbaum (⁴) con soluzione alcolica di pirrolo.

I metodi colorimetrici, basati sul principio di cui sopra è cenno, sono influenzati particolarmente dall'acido fosforico, il quale, combinandosi con l'acido molibdico, dà un complesso analogo a quello che si riscontra per l'acido silicico. A. Nemec, J. Lanik e A. Koppova (5), prendendo in esame il procedimento dettato da Isaacs, hanno notato che l'acido fosfomolibdico, sebbene subisca un'azione

<sup>(1)</sup> Compt. rend., 176, 1478 (1923).

<sup>(2)</sup> Bull. Soc. chim. biol., 6, 157 (1924).

<sup>(3)</sup> Z. anorg. Chem., 178, 381 (1929).

<sup>(4)</sup> Riportato da: A. NEMEC, J. LANIK e A. KOPPOVA, in Anal. Chem., 83, 431 (1931).

<sup>(5)</sup> Anal. Chem., 83, 428 (1931).

riducente più lenta per opera del solfito, influisce sull'acido silicomolibdico, ritardandone la riduzione. Per ovviare a tale inconveniente e per aumentare la sensibilità del metodo, detti A.A. propongono di eseguire la determinazione in ambiente alcalino e consigliano perciò il seguente procedimento:

La soluzione contenente una quantità di acido silicico pari a mg 0,1-1,0 di SiO<sub>2</sub> si tratta, entro pallone tarato della capacità di cm³ 100 con cm³ 3 di una soluzione di molibdato al 10%. Trascorsi 5 minuti, si aggiungono cm³ 2 di una soluzione, 100 cm³ della quale contengono g 0,5 di idrochinone e g 20 di solfito di sodio. Dopo mezz'ora si addizionano cm³ 10 di una soluzione al 10% di carbonato sodico, si porta a volume con acqua distillata e si confronta al colorimetro. La contemporanea presenza di acido fosforico in quantità non superiore al milligrammo non nuoce.

C. Urbach (6) ha ulteriormente elaborato il procedimento su descritto ed è suo merito particolare avergli conferito maggiore sensibilità, con l'impiego del fotometro graduale di Pulfrich. Presenta, per la ricerca della silice nelle acque naturali, due metodi: uno in assenza ed uno in presenza di acido fosforico. Per queste ricerche l'A. dichiara di aver impiegato del silicato di sodio, senza per altro specificarne la composizione.

Nello sperimentare il primo dei due metodi, abbiamo riscontrato alcune incongruenze che vengono prese in considerazione nel presente lavoro. Per meglio chiarire le nostre osservazioni, riportiamo la descrizione del metodo medesimo.

« Per la determinazione della silice nell'acqua sono necessari i seguenti reagenti:

I - Soluzione di acido molibdico;

II - Soluzione di idrochinone;

III - Miscela di carbonato-solfito.

I - g 50 di molibdato di ammonio puro vengono disciolti in 1000 cm³ di acido solforico I N. privo di acido fosforico, evitando il riscaldamento. A 5 cm³ di questa soluzione si aggiungono 5 cm³ di soluzione di idrochinone (II) e dopo 5 minuti si aggiungono 25 cm³ della miscela di carbonato-solfito (III). La soluzione deve rimanere incolora. In caso contrario il molibdato di ammonio o

<sup>(6)</sup> Mikrochemie, 14, 189 (1933).

l'acido solforico sono impuri e la soluzione non può essere adoperata.

II - g 20 di idrochinone vengono sciolti con aggiunta di 1 cm³ di acido solforico concentrato in 1000 cm³ di acqua. La soluzione deve essere conservata ben chiusa. Le soluzioni scure sono inservibili.

III - g 75 di solfito di sodio (anidro) vengono sciolti in 500 cm³ di acqua coll'aggiunta di 2 litri di una soluzione al 20% di soda anidra. La soluzione viene filtrata. La miscela di carbonato-solfito deve essere conservata ben chiusa ed è utilizzabile al massimo per due settimane.

Per la determinazione vengono messi in un palloncino tarato della capacità di 100 cm3, 5-30 cm3 di acqua, a seconda del contenuto di acido silicico. Nel caso in cui vengono adoperati meno di 30 cm3 di acqua, deve essere aggiunta tanta acqua distillata da arrivare ad un volume di circa 30 cm3; quindi vengono aggiunti 5 cm³ della soluzione di ac. molibdico e 5 cm³ di quella di idrochinone, si agita e si lascia in riposo almeno per 5 minuti. Poi si aggiungono 32 cm3 della miscela di carbonato-solfito, si riempie fino al segno, si mescola e si misura fotometricamente. La misurazione fotometrica graduale ha luogo illuminando per 10 minuti la vaschetta con la lampada dell'apparecchio, inserendo il filtro S 61 ed osservando il campo colorato attraverso uno strato dello spessore rispettivamente di 10 e di 20 mm, in confronto con acqua otticamente pura. La quantità in mg di SiO2 corrispondente al valore letto sul tamburo, si ricava dalle curve dei diagrammi e più semplicemente dalle tabelle : si ha in tal modo il contenuto di SiO2 della soluzione colorata ».

#### PARTE SPERIMENTALE

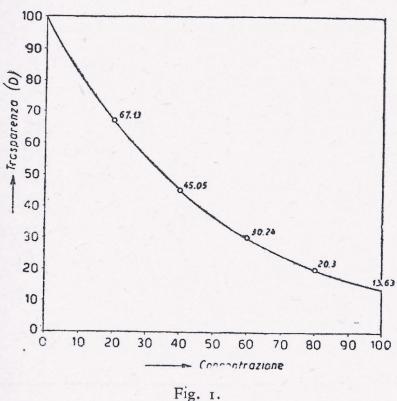
Per queste esperienze ci siamo valsi di una soluzione di disilicato di sodio, avente un titolo in SiO<sub>2</sub> uguale a quello impiegato da Urbach. Di conseguenza abbiamo da prima preparato una soluzione il cui contenuto in SiO<sub>2</sub>, determinato per via ponderale, è risultato essere del 0,5315%; quindi, attraverso due successive diluizioni della medesima, abbiamo ottenuto la soluzione al 0,0042% di SiO<sub>2</sub> (silicato A). Questa venne accuratamente conservata entro recipienti di ceresina previamente lavati con acido fluoridrico ed acqua distillata. Per le suddette soluzioni ci siamo valsi esclusivamente di acqua distillata di fresco, attraverso serpentino di stagno puro. In merito al procedimento dettato da Urbach, impiegando reattivi preparati di fresco, abbiamo eseguito tre determinazioni: le quantità in SiO<sub>2</sub> impiegate per le singole determinazioni ed i valori riscontrati sono riportati dalla tabella I.

TABELLA I.

|                                      |   | I            | II                 | ° III         |
|--------------------------------------|---|--------------|--------------------|---------------|
| Silice in mg                         |   | 0,21 $38,64$ | $0,336$ $2^{+},48$ | 0,504<br>9,98 |
| listinzione (E) (log. negativo di D) | : | 0,413        | 0,668              | 1,005         |

I valori relativi alle estinzioni riscontrate, riportati in un sistema di coordinate, in funzione con le rispettive concentrazioni in SiO<sub>2</sub>, giacciono esattamente su di una retta passante per l'origine del sistema medesimo, il cui angolo di apertura, formato con l'asse delle ascisse, è più piccolo di quello racchiuso dalla curva di Urbach (fig. 3).

Poichè si ritiene esatta la curva ottenuta da Urbach, la deviazione da noi riscontrata fa supporre che non tutto l'acido silicico presente nella soluzione si combini con l'acido molibdico; l'aliquota che in tal caso sfugge all'analisi deve essere presente in una forma incapace di combinarsi. Dienert e Wandenbulcke ammettono infatti che la silice colloidale non sia in grado di legarsi all'acido molibdico.


In una interessante esposizione sul comportamento dei vari silicati di sodio in soluzione acquosa, G. Hägg (\*) precisa che, mentre le soluzioni di metasilicato possono contenere quantità piccolissime di silice colloidale e quelle di disilicato quantità leggermente maggiori, le soluzioni di polisilicati, dotati di un equivalente in SiO<sub>2</sub> superiore a quello necessario a costituire il disilicato, si decompongono in silicati semplici ed in silice colloidale. Il tenore di questa dipende dal termine del polisilicato preso in esame. R. Schwarz e H. Richter (\*) confermano la notevole stabilità dei

<sup>(7)</sup> Z. anorg. Chem., 155, 21 (1926).

<sup>(8)</sup> Ber., 60, 2263 (1927).

silicati alcalini semplici in soluzione acquosa ed aggiungono che l'equilibrio esistente tra il meta ed il disilicato e l'eventuale formazione di silice colloidale dipendono dall'acidità attuale dell'ambiente.

Le nostre esperienze sono state eseguite su di un disilicato di sodio della Casa Merk, dichiarato purissimo. La piccola quantità



di acido silicico sottrattasi ai reattivi si può dunque spiegare con la lieve tendenza del sale ad idrolizzarsi e con la conseguente formazione di silice colloidale. Nell'intento di disgregare appunto tale aliquota di silice e determinare così per via fotometrica tutto l'acido silicico esistente nella soluzione, abbiamo ritenuto opportuno trattare la soluzione in esame con piccole quantità di soluzione normale di

idrossido di sodio (rispettivamente con cm3 0,5; 1,0; 2,0)...

L'azione dell'alcali, esplicata a freddo, si è dimostrata lenta ed incompleta, così che i valori riscontrati apparirono incostanti anche dopo diversi giorni. Questa resistività di fronte all'idrossido di sodio venne del resto già riscontrata da F. Kohlrausch (9), sperimentando soluzioni diluite di silicato di sodio preparate già da qualche tempo. E' utile inoltre far rilevare come l'alcali, anche se in forte diluizione, dia luogo a solubilizzazione di silice delle pareti, sostando in recipienti di vetro, come da controlli eseguiti su soluzioni diluite di idrossido di sodio: si tratta generalmente di piccole quantità di acido silicico. Ma poichè siamo nel caso di un metodo micro-analitico, è necessario evitare qualsiasi apporto accidentale di tale acido.

<sup>(9)</sup> Z. Phys. Chem., 12, 773 (1893).

Per una più completa disgregazione della silice colloidale, abbiamo voluto sperimentare l'efficacia del bicarbonato di sodio a caldo, come fecero Dienert e Wandenbulcke in analoghe esperienze.

Di conseguenza, per ogni singola determinazione, ponemmo in capsula di platino una quantità di soluzione non eccedente i 30 cm³ e, dopo aver aggiunto alle medesime g 0,20 di bicarbonato di sodio, sottoponemmo la capsula a riscaldamento su b.m. bollente, per tempi diversi. I risultati conseguiti non furono soddisfacenti: i valori in SiO<sub>2</sub>, che riscontrammo in base alle letture fotometriche, erano tanto più bassi quanto più a lungo veniva protratto il riscaldamento. Eseguendo infatti una serie di tre determinazioni, prendendo in considerazione quantità uguali di SiO<sub>2</sub>, mantenendo in una di esse, durante il riscaldamento a b.m., il volume costante mediante piccole aggiunte di acqua distillata e protraendo nelle altre due l'evaporazione a concentrazione diversa, abbiamo riscontrato, dopo il solito trattamento con acido molibdico ed idrochinone, i seguenti valori relativi alla trasparenza: 44,5; 30,1; 22,3.

Evitando che il liquido si concentri nella capsula, mediante accurate successive aggiunte di acqua distillata, si nota che i va-

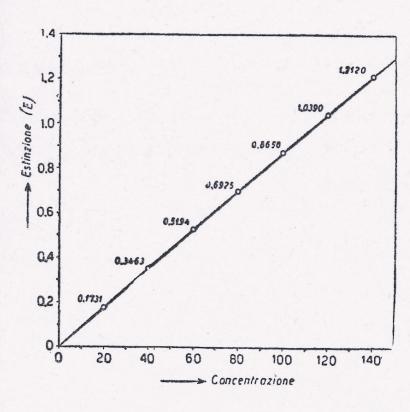



Fig. 2

lori relativi all'estinzione conservano una netta proporzionalità con la quantità di acido silicico presa in considerazione.

Per semplificare il procedimento, è stato possibile evitare la formazione del residuo che si forma durante il riscaldamento a b.m., impedendo che i vapori che si sviluppano dal bagno abbiano ad investire le pareti della capsula. Si provvide a tal riguardo a che soltanto la parte cen-

trale del fondo della capsula venisse investita dai vapori. Nel contempo, per mantenere sempre umide le pareti sovrastanti il liquido in esame e ridurne la velocità di concentrazione, si adagiò sulla capsula medesima una seconda più ampia, anch'essa di platino, contenente acqua mantenuta fredda per tutto il periodo del riscaldamento.

Osservando le modalità su descritte e protraendo il riscaldamento per 30' per 1 h e per 2 h, in prove successive, nelle quali vennero prese in considerazione quantità uguali di acido silicico, si ebbe a riscontrare una perfetta concordanza tra i diversi valori ottenuti. Inoltre, procedendo alla determinazione di quantità diverse di SiO<sub>2</sub>, notammo che i valori relativi all'estinzione della soluzione colorata variano in funzione della concentrazione della soluzione presa in esame (fig. 2). Tale procedimento venne ripetuto, sostituendo al bicarbonato di sodio l'idrossido di sodio, in ragione di cm³ 0,5 e cm³ 1 di soluzione normale. I valori ottenuti in base alla lettura fotometrica hanno messo in evidenza, in rapporto alla concentrazione di silice, la medesima proporzionalità già sopra riscontrata.

Per escludere altre eventuali influenze dipendenti dalla natura del sale impiegato, ripetemmo la determinazione sulla silice isolata da un determinato volume della soluzione in esame. Di conseguenza acidificammo con acido cloridrico cm³ 10 della soluzione concentrata di disilicato di sodio (al 0,5315% di SiO2) e portammo a secchezza su b.m. bollente, seguendo la tecnica clàssica. La silice così ottenuta, venne disgregata dopo accurato lavaggio, impiegando al riguardo bicarbonato di sodio purissimo, preparato da carbonato puro per analisi. La massa risultante dalla fusione venne disciolta in acqua distillata di fresco e quindi diluita al volume di 1000 cm³.

Sulla soluzione risultante determinammo con il solito procedimento l'estinzione: i valori ottenuti, tenuto conto della concentrazione, vennero a cadere sulla curva, ottenuta sperimentando la soluzione di disilicato previo trattamento con bicarbonato sodico (fig. 2).

Le esperienze sulla determinazione fotometrica della silice vennero ripetute su di un silicato di sodio di composizione non definita e di incerta purezza. Preparammo perciò una soluzione al 0,042% di SiO2 (silicato B), sulla quale eseguimmo varie letture fotometriche, operando:

- 1) sulla soluzione direttamente;
- 2) sulla soluzione previo trattamento con bicarbonato di sodio;
- 3) sulla silice, di un determinato volume della soluzione, disgregata con bicarbonato di sodio e sciogliendo il prodotto della disgregazione, come descritto nel caso del disilicato.

Nella fig. 4 sono rappresentate le curve dedotte in base alle letture fotometriche ed alle concentrazioni in silice delle soluzioni considerate. La curva (— - — - ) rispecchia i valori ottenuti se-

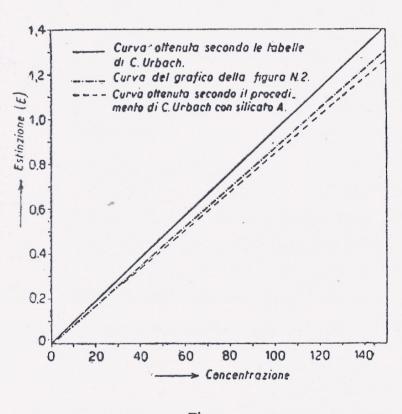



Fig. 3.

condo il procedimento di Urbach (1); la curva (—), quelli ottenuti dopo il trattamento con bicarbonato sodico (2); la curva (— —) si riferisce ai valori riscontrati sulla soluzione ottenuta per disgregazione della silice (3).

La soluzione (silicato B) impiegata per queste prove contiene dunque una notevole quantità di silice colloidale. Il silicato relativo non deve perciò appartenere ai due primi termini, ma

ad un polisilicato più complesso. Degno di nota è il fatto che la soluzione trattata con bicarbonato di sodio dà, a parità di contenuto in SiO<sub>2</sub>, valori relativi alla estinzione, più elevati di quelli ottenuti con la soluzione del disilicato (silicato A) che ha subìto analogo trattamento (10). Inoltre la curva ottenuta dalla soluzione

<sup>(10)</sup> I valori più elevati riscontrati con la soluzione del silicato di sodio (silicato B), previo trattamento con bicarbonato di sodio, si devono attribuire alle impurità del silicato medesimo.

di cui al N. 3, coincide invece perfettamente con quella riportata nella fig. 2.

La fig. 1 mette in evidenza le variazioni della trasparenza 11 rapporto con quelle della concentrazione della soluzione. Si chiarisce pertanto che nei diagrammi qui riportati il valore 100 della ascissa corrisponde ad un contenuto di mg 0,42 di SiO<sub>2</sub> per 100 cm³ della soluzione colorata. In ogni caso si fece uso di vaschette da 20 mm., da 30 mm. e da 50 mm. e del filtro S 61.

Nella fig. 2 sono riportate le variazioni della estinzione in funzione della concentrazione. I singoli punti di questo diagramma vengono a cadere su di una retta che non coincide con quella ottenuta da Urbach, ma racchiude con l'asse delle ascisse un angolo più piccolo (fig. 3). In base alle suesposte esperienze, il metodo consigliato da Urbach non permette inoltre di determinare tutta la silice presente nella soluzione in esame e l'errore è particolarmente grande, quando si tratta di determinare la silice nelle acque naturali oppure in una soluzione di polisilicati.

Descriviamo il procedimento da noi elaborato:

In capsula di platino da ceneri, della capacità di 80 cm<sup>3</sup> circa, si versa la soluzione in esame in volume non superiore ai 30 cm<sup>3</sup>, si aggiungono g 0,2 di bicarbonato sodico puro,

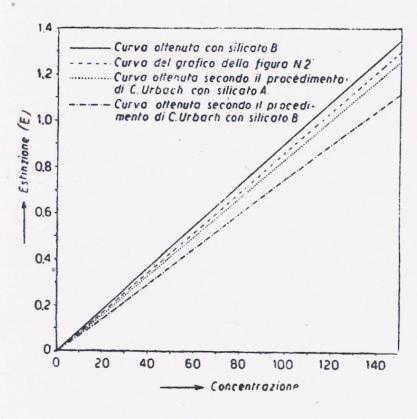



Fig. 4

esente da silice e si espone la parte centrale della base della capsula ai vapori di un b.m. bollente. Le pareti della capsula non debbono essere investite dai vapori. Allo scopo di condensare i vapori della soluzione, evitando la sua concentrazione e di creare nell' interno della la quell'ambiente umido necessario a mantenere costantemente in soluzione la silice ed il carbonato di sodio, si adagia sulla prima capsula una seconda, anch'essa di platino, ben pulita esternamente e contenente dell'acqua che va mantenuta fredda per tutto il periodo di riscaldamento della soluzione. Dopo circa un'ora di riscaldamento, si allontana la capsula superiore, avendo cura di unire alla soluzione di silicato, con l'aiuto di una spruzzetta, i vapori che si trovano condensati esternamente, sul fondo della capsula medesima.

Si toglie dal b.m. la capsula con la soluzione in esame, vi si aggiungono cm³ 2,4 di acido solforico normale e si lascia raffreddare; indi si versa quantitativamente la soluzione in un palloncino da 100 cm³. Si aggiungono cm³ 5 della soluzione di acido molibdico, preparata secondo I) (vedi metodo Urbach), dopo 5' si addizionano cm³ 5 della soluzione di idrochinone, preparata secondo II) e dopo altri 5' cm³ 32 della soluzione carbonato solfito con acqua distillata, si agita, quindi si riempie la vaschetta e si porta al fotometro.

Adoperando reattivi preparati di fresco, la colorazione azzurra che si ottiene, è molto persistente e resta invariata anche dopo tre ore. Allo scopo di mantenere il maggior tempo possibile inalterate, e quindi buone per l'uso, la soluzione di acido molibdico e quella di idrochinone, abbiamo constatato che è conveniente tenerle in bottiglie ben chiuse, le cui pareti esterne siano ricoperte di carta nera. Tale protezione ha particolarmente lo scopo di ritardare l'ossidazione della soluzione di idrochinone.

Il procedimento qui descritto permette di determinare con esattezza quantità di SiO<sub>2</sub> comprese tra mg 0,80 e mg 0,01. Per una conveniente determinazione delle letture entro detti limiti, abbiamo riscontrato l'opportunità di impiegare la vaschetta da 20 mm per quantità di SiO<sub>2</sub> comprese tra mg 0,80 e mg 0,02, quella da 30 mm per quantità di SiO<sub>2</sub> comprese tra mg 0,50 e mg 0,015, e la vaschetta da 50 mm per quantità di SiO<sub>2</sub> comprese tra mg 0,3 e 0,01.

Le tabelle II, III e IV si riferiscono all'impiego delle vaschette sopracitate e permettono di risalire direttamente al valore della silice contenuta nel cm³ 100 di soluzione colorata, partendo dal valore relativo alla trasparenza che si legge ai tamburi dell'apparecchio, facendo uso del filtro S 61.

TABELLA II.

Valori delle letture al tamburo e delle corrispondenti quantità di SiO in mg. ottenuti adoperando le vaschette da 20 mm. ed il filtro S  $61.^2$  D = valori letti al tamburo A = SiO in mg.

| D   | <b>A</b> | D   | A      | D    | Α ,    | D    | A      | D    | A      |
|-----|----------|-----|--------|------|--------|------|--------|------|--------|
|     |          |     |        |      |        |      |        |      |        |
| 2,0 | 0,8260   | 5,4 | 0,6150 | 8,8  | 0,5105 | 12,2 | 0,4425 | 15,6 | 0,3910 |
| 2,1 | 0,8150   | 5,5 | 0,6110 | 8,9  | 0,5085 | 12,3 | 0,4405 | 15,7 | 0,3895 |
| 2,2 | 0,8050   | 5,6 | 0,6070 | 9,0  | 0,5065 | 12,4 | 0,4390 | 15,8 | 0,3880 |
| 2,3 | 0,7955   | 5,7 | 0,6030 | 9,1  | 0,5045 | 12,5 | 0,4370 | 15,9 | 0,3870 |
| 2,4 | 0,7870   | 5,8 | 0,6000 | 9,2  | 0,5025 | 12,6 | 0,4355 | 16,0 | 0,3855 |
| 2,5 | 0,7775   | 5,9 | 0,5960 | 9,3  | 0,5000 | 12,7 | 0,4335 | 16,1 | 0,3840 |
| 2,6 | 0,7700   | 6,0 | 0,5930 | 9,4  | 0,4975 | 12,8 | 0,4320 | 16,2 | 0,3830 |
| 2,7 | 0,7625   | 6,1 | 0,5830 | 9,5  | 0,4950 | 12,9 | 0,4305 | 16,3 | 0,3815 |
| 2,8 | 0,7510   | 6,2 | 0,5850 | 9,6  | 0,4925 | 13,0 | 0,4290 | 16,4 | 0,3800 |
| 2,9 | 0,7415   | 6,3 | 0,5820 | 9,7  | 0,4900 | 13,1 | 0,4280 | 16,5 | 0,3780 |
| 3,0 | 0,7395   | 6,4 | 0,5785 | 9,8  | 0,4880 | 13,2 | 0,4265 | 16,6 | 0,3775 |
| 3,1 | 0,7325   | 6,5 | 0,5750 | 9,9  | 0,4860 | 13,3 | 0,42-0 | 16,7 | 0,3760 |
| 3,2 | 0,7260   | 6,6 | 0,5720 | 10,0 | 0,4840 | 13,4 | 0,4235 | 16,8 | 0,3750 |
| 3,3 | 0,7195   | 6,7 | 0,5690 | 10,1 | 0,4820 | 13,5 | 0,4220 | 16,9 | 0,3735 |
| 3,4 | 0,7130   | 6,8 | 0,5660 | 10,2 | 0,4800 | 13,6 | 0,4205 | 17,0 | 0,3725 |
| 3,5 | 0,7070   | 6,9 | 0,5625 | 10,3 | 0,4780 | 13,7 | 0,4185 | 17,1 | 0,3710 |
| 3,6 | 0,7010   | 7,0 | 0,5595 | 10,4 | 0,4760 | 13,8 | 0,4165 | 17,2 | 0,3700 |
| 3,7 | 0,6350   | 7,1 | 0,5565 | 10,5 | 0,4740 | 13,9 | 0,4150 | 17,3 | 0,3685 |
| 3,8 | 0,6895   | 7,2 | 0,5540 | 10,6 | 0,4720 | 14,0 | 0,4135 | 17,4 | 0,3675 |
| 3,9 | 0,6840   | 7,3 | 0,5510 | 10,7 | 0,4700 | 14,1 | 0,4120 | 17,5 | 0,3660 |
| 4,0 | 0,6785   | 7,4 | 0,5480 | 10,8 | 0,4680 | 14,2 | 0,4105 | 17,6 | 0,3650 |
| 4,1 | 0,6725   | 7,5 | 0,5450 | 10,9 | 0,4660 | 14,3 | 0,4090 | 17,7 | 0,3635 |
| 4,2 | 0,6675   | 7,6 | 0,5420 | 11,0 | 0,4640 | 14,4 | 0,4075 | 17,8 | 0,3625 |
| 4,3 | 0,6635   | 7,7 | 0,5395 | 11,1 | 044620 | 14,5 | 0,4060 | 17,9 | 0,3615 |
| 4,4 | 0,6585   | 7,8 | 0,5365 | 11,2 | 0,4605 | 14,6 | 0,4050 | 18,0 | 0,3605 |
| 4,5 | 0,6535   | 7,9 | 0,5335 | 11,3 | 0,4585 | 14,7 | 0,4035 | 18,1 | 0,3590 |
| 4,6 | 0,6485   | 8,0 | 0,5310 | 11,4 | 0,4565 | 14,8 | 0,4020 | 18,2 | 0,3580 |
| 4,7 | 0,6440   | 8,1 | 0,5285 | 11,5 | 0,4550 | 14,9 | 0,4005 | 18,3 | 0,3570 |
| 4,8 | 0,6400   | 8,2 | 0,5255 | 11,6 | 0,4530 | 15,0 | 0,3390 | 18,4 | 0,3560 |
| 4,9 | 0,6350   | 8,3 | 0,5230 | 11,7 | 0,4510 | 15,1 | 0,3975 | 18,5 | 0,3550 |
| 5,0 | 0,6300   | 8,4 | 0,5205 | 11,8 | 0,4490 | 15,2 | 0,3360 | 18,6 | 0,3540 |
| 5,1 | 0,6260   | 8,5 | 0,5180 | 11,9 | 0,4475 | 15,3 | 0,3945 | 18,7 | 0,3525 |
| 5,2 | 0,6220   | 8,6 | 0,5155 | 12,0 | 0,4460 | 15,4 | 0,3935 | 18,8 | 0,3515 |
| 5,3 | 0,6185   | 8,7 | 0,5130 | 12,1 | 0,4440 | 15,5 | 0,3920 | 18,9 | 0,3505 |

Segue: TABELLA II.

| D    | A      | D    | A      | D    | A      | D            | Α      | D    | <b>A</b> . |
|------|--------|------|--------|------|--------|--------------|--------|------|------------|
|      | -      |      |        |      |        |              |        |      |            |
| 19,0 | 0,3495 | 25,6 | 0,2860 | 33,2 | 0,2320 | 42,0         | 0,1825 | 62,0 | 0,1005     |
| 19,1 | 0,3480 | 25,8 | 0,2840 | 33,4 | 0,2310 | 42,5         | 0,1800 | 63,0 | 0,0975     |
| 19,2 | 0,3470 | 26,0 | 0,2825 | 33,6 | 0,2295 | 43,0         | 0,1775 | 64,0 | 0,0940     |
| 19,3 | 0,3455 | 26,2 | 0,2810 | 33,8 | 0,2280 | 43,5         | 0,1750 | 65,0 | 0,0905     |
| 19,4 | 0,3445 | 26,4 | 0,2795 | 34,0 | 0,2270 | 44,0         | 0,1725 | 66,0 | 0,0875     |
| 19,5 | 0,3435 | 26,6 | 0,2775 | 34,2 | 0,2255 | 44,5         | 0,1700 | 67,0 | 0,0845     |
| 19,6 | 0,3425 | 26,8 | 0,2760 | 34,4 | 0,2240 | 45,0         | 0,1680 | 68,0 | 0,0815     |
| 19,7 | 0,3415 | 27,0 | 0,2750 | 34,6 | 0,2230 | 45,5         | 0,1650 | 69,0 | 0,0780     |
| 19,8 | 0,3400 | 27,2 | 0,2735 | 34,8 | 0,2215 | 46,0         | 0,1625 | 70,0 | 0,0750     |
| 19,9 | 0,3390 | 27,4 | 0,2715 | 35,0 | 0,2205 | 46,5         | 0,1605 | 71,0 | 0,0720     |
| 20,0 | 0,3380 | 27,6 | 0,2700 | 35,2 | 0,2195 | 47,0         | 0,1580 | 72,0 | 0,0690     |
| 20,2 | 0,3370 | 27,8 | 0,2685 | 35,4 | 0,2180 | 47,5         | 0,1555 | 73,0 | 0,0660     |
| 20,4 | 0,3350 | 28,0 | 0,2670 | 35,6 | 0,2170 | 48,0         | 0,1535 | 74,0 | 0,0630     |
| 20,6 | 0,3325 | 28,2 | 0,2655 | 35,8 | 0,2155 | 48,5         | 0,1520 | 75,0 | 0,0600     |
| 20,8 | 0,3300 | 28,4 | 0,2640 | 36,0 | 0,2145 | 49,0         | 0,1500 | 76,0 | 0,0570     |
| 21,0 | 0,3280 | 28,6 | 0,2625 | 36,2 | 0,2130 | 49,5         | 0,1475 | 77,0 | 0,0550     |
| 21,2 | 0,3260 | 28,8 | 0,2610 | 36,4 | 0,2120 | 50,0         | 0,1455 | 78,0 | 0,0525     |
| 21,4 | 0,3245 | 29,0 | 0,2600 | 36,6 | 0,2110 | 50,5         | 0,1435 | 79,0 | 0,0490     |
| 21,6 | 0,3225 | 29,2 | 0,2585 | 36,8 | 0,2095 | 51,0         | 0,1410 | 80,0 | 0,0465     |
| 21,8 | 0,3200 | 29,4 | 0,2570 | 37,0 | 0,2085 | 51,5         | 0,1390 | 81,0 | 0,0440     |
| 22,0 | 0,3185 | 29,6 | 0,2555 | 37,2 | 0,2075 | <b>52</b> ,0 | 0,1370 | 82,0 | 0,0415     |
| 22,2 | 0,3165 | 29,8 | 0,2545 | 37,4 | 0,2065 | 52,5         | 0,1350 | 83,0 | 0,0390     |
| 22,4 | 0,3145 | 30,0 | 0,2530 | 37,6 | 0,2050 | 53,0         | 0,1330 | 84,0 | 0,0370     |
| 22,6 | 0,3125 | 30,2 | 0,2524 | 37,8 | 0,2040 | 53,5         | 0,1315 | 85,0 | 0,0345     |
| 22,8 | 0,3110 | 30,4 | 0,2505 | 38,0 | 0,2030 | 54,0         | 0,1300 | 86,0 | 0,0320     |
| 23,0 | 0,3090 | 30,6 | 0,2490 | 38,2 | 0,2020 | 54,5         | 0,1280 | 87,0 | 0,0295     |
| 23,2 | 0,3075 | 30,8 | 0,2475 | 38,4 | 0,2005 | 55,0         | 0,1255 | 88,0 | 0,0275     |
| 23,4 | 0,3055 | 31,0 | 0,2465 | 38,6 | 0,1995 | 55,5         | 0,1240 | 89,0 | 0,0250     |
| 23,6 | 0,3 35 | 31,2 | 0,2450 | 38,8 | 0,1985 | 56,0         | 0,1220 | 90,0 | 0,0225     |
| 23,8 | 0,3015 | 31,4 | 0,2435 | 39,0 | 0,1975 | 56,5         | 0,1200 | 91,0 | 0,0200     |
| 24,0 | 0,3000 | 31,6 | 0,2420 | 39,2 | 0,1935 | 57,0         | 0,1180 | 92,0 | 0,0175     |
| 24,2 | 0,2980 | 31,8 | 0,2410 | 39,4 | 0,1955 | 57,5         | 0,1160 | 93,0 | 0,0150     |
| 24,4 | 0,2965 | 32,0 | 0,2395 | 39,6 | 0,1945 | 58,0         | 0,1140 | 94,0 | 0,0125     |
| 24,6 | 0,2945 | 32,2 | 0,2380 | 39,8 | 0,1935 | 58,5         | 0,1120 | 95.0 | 0,0100     |
| 24,8 | 0,2930 | 32,4 | 0,2370 | 40,0 | 0,1925 | 59,0         | 0,1105 | 96,0 | 0,0085     |
| 25,0 | 0,2910 | 32,6 | 0,2355 | 40,5 | 0,1900 | 59,5         | 0,1090 | 97,0 | 0,0065     |
| 25,2 | 0,2895 | 32,8 | 0,2340 | 41,0 | 0,1875 | 60,0         | 0,1075 | 98,0 | 0,0040     |
| 25,4 | 0,2875 | 33,0 | 0,2330 | 41,5 | 0,1850 | 61,0         | 0,1040 | 99,0 | 0,0020     |
|      |        |      |        |      |        |              |        |      |            |

TABELLA III.

Valori delle letture al tamburo e delle corrispondenti quantità di SiO in mg. ottenuti adoperando le vaschette da 30 mm. ed il filtro S 61.

D = valori letti al tamburo

A = SiO in mg.

D A D D A D D A A A 2,0 0,5507 5,5 0,4073 9,0 0,3377 12,5 0,2913 16,0 0,2570 5,6 9,1 0,3363 2,1 0,5433 0,4047 12,6 0,2903 16,1 0,2560 5,7 9,2 0,3350 12,7 2,2 0,5367 0,4020 0,2890 16,2 0,2553 5,8 9,3 0,3333 2,3 0,5303 0,4000 12,8 0,2880 16,3 0,2543 5,9 0,3317 12,9 2,4 0,5247 0,3977 9,4 0,2870 16,4 0,2533 6,0 2,5 0,5183 9,5 0,3300 13,0 0,2860 0,2527 0,3953 16,5 0,3283 2,6 0,5133 6,1 9,6 13,1 0,2853 16,6 0,2517 0,3927 6,2 2.7 0,5083 0,3900 9.7 0,3267 13,2 0,2843 16,7 0,2507 2,8 0,5007 6,3 0,3880 9,8 0,3253 13,3 0,2833 16,8 0,2500 6,4 0,3240 0,2490 2,9 0,4943 0,3857 9,9 13,4 0,2823 16,9 0,2813 6,5 10,0 0,3227 13,5 0,2483 0,4930 0,3833 17,0 3,0 6,6 0,3213 0,2803 10,1 13,6 17,1 0,2473 3,1 0,4883 0,3813 10,2 0,3200 13,7 0,2790 0,2467 6,7 17,2 3,2 0,4840 0.3793 6,8 10,3 0,3187 0,2777 17,3 0,2457 3.3 0,4797 0.3773 13,8 0,2767 6,9 10,4 0,3173 0,2450 3,4 0,4753 13,9 17,4 0,3750 0,2440 0,27573,5 7,0 0,3730 10,5 0,3160 14,0 17,5 0,4713 0,2747 7,1 0,2433 3,6 0,4673 0,3710 10,6 0,3147 14,1 17,6 7,2 0,2737 0,2423 3,7 10,7 0,3133 14,2 0,4633 0,3693 17,7 0,2727 7,3 0,2417 10.8 0,3120 14,3 17,8 3,8 0,4597 0.3673 7,4 10.9 0.3107 0,2410 3,9 0.4560 9.3653 14.4 0,2717 17,9 7,5 0,3093 0,2707 0,2403 4,0 0,4523 0,3633 11,0 14,5 18,0 7,6 0,3080 0,2393 4,1 0,4483 0,3613 11,1 14,6 0,2700 18,1 4,2 0,4450 7,7 11,2 0,3070 14,7 0,2690 18,2 0,2387 0,3597 0,2380 4,3 0,4423 7,8 0,3577 11,3 0,3057 14,8 0,2680 18,3 0,2373 0,4390 7,9 11,4 0,3043 14,9 0,2670 18,4 4,4 0,3557 0.2367 0,4357 8,0 11,5 0,3033 15,0 0,2660 18.5 4,5 0,3540 18,6 0,2360 0,4323 8,1 11,6 0,3020 15,1 0,2650 4,6 0,3523 0,4293 8,2 11,7 0,3007 15,2 0,2640 18,7 0,23504,7 0,3503 0,4267 8,3 11,8 0,2993 15,3 0,2630 18,8 0,2343 4,8 0,3487 4,9 0,4233 8,4 11,9 0,2983 15,4 0,2623 18,9 0,2337 0,3470 0,4200 12,0 0,2973 0,2613 19,0 0,2330 5,0 8,5 15,5 0,3453 19,1 12,1 0,2960 0,2607 0,2320 5,1 0,4173 8,6 0,3437 15,6 5,2 12,2 0,2950 19,2 0,2313 0,4147 8.7 0.3420 15.7 0,2597 12,3 0,2937 19,3 0,2303 5,3 0,4123 8,8 0,3403 15,8 0,2587 0,3390 0,2927 0,2297 5,4 0,4100 8,9 12,4 15,9 0,258019,4

Segue: TABELLA III.

| D    | A      | D    | A      | D    | A      | D    | A      | D     | A      |
|------|--------|------|--------|------|--------|------|--------|-------|--------|
|      |        |      |        |      | 1      | Ī    |        |       |        |
| 19,5 | 0,2290 | 26,8 | 0,1840 | 34,6 | 0,1487 | 45,0 | 0,1120 | 67,0  | 0,0563 |
| 19,6 | 0,2283 | 27,0 | 0,1833 | 34,8 | 0,1477 | 45,5 | 0,1100 | 68,0  | 0,0543 |
| 19,7 | 0,2277 | 27,2 | 0,1823 | 35,0 | 0,1470 | 46,0 | 0,1083 | 69,0  | 0,0520 |
| 19,8 | 0,2267 | 27,4 | 0,1810 | 35,2 | 0,1463 | 46,5 | 0,1070 | 70,0  | 0,0500 |
| 19,9 | 0,2260 | 27,6 | 0,1800 | 35,4 | 0,1453 | 47,0 | 0,1013 | 71,0  | 0,0480 |
| 20,0 | 0,2253 | 27,8 | 1,1790 | 35,6 | 0,1447 | 47,5 | 0,1037 | 72,0  | 0,0460 |
| 20,2 | 0,2247 | 28,0 | 1,1780 | 35,8 | 0,1437 | 48,0 | 0,1023 | 73,0  | 0,0440 |
| 20,4 | 0,2233 | 28,2 | 0,1770 | 36,0 | 0,1430 | 48,5 | 0,1013 | 74,0  | 0,0420 |
| 20,6 | 0,2216 | 28,4 | 0,1760 | 36,2 | 0,1420 | 49,0 | 0,1000 | 75,0  | 0,0400 |
| 20,8 | 0,2200 | 28,6 | 0,1750 | 36,4 | 0,1413 | 49,5 | 0,0983 | 76,0  | 0,0380 |
| 21,0 | 0,2187 | 28,8 | 0,1740 | 36,6 | 0,1407 | 50,0 | 0,0970 | 77,0  | 0,0367 |
| 21,2 | 0,2173 | 29,0 | 0,1733 | 36,8 | 0,1397 | 50,5 | 0,0957 | 78,0  | 0,0350 |
| 21,4 | 0,2163 | 29,2 | 0,1723 | 37,0 | 0,1390 | 51,0 | 0,0940 | 79,0  | 0,032  |
| 21,6 | 0,2150 | 29,4 | 0,1713 | 37,2 | 0,1383 | 51,5 | 0,0927 | 80,0  | 0,0310 |
| 21,8 | 0,2133 | 29,6 | 0,1703 | 37,4 | 0,1377 | 52,0 | 0,0913 | 81,0  | 0,029  |
| 22,0 | 0,2123 | 29,8 | 0,1697 | 37,6 | 0,1367 | 52,5 | 0,0900 | 82,0  | 0,027  |
| 22,2 | 0,2110 | 30,0 | 0,1687 | 37,8 | 0,1360 | 53,0 | 0,0887 | 83,0  | 0,026  |
| 22,4 | 0,2097 | 30,2 | 0,1682 | 38,0 | 0,1353 | 53,5 | 0,0877 | 84,0  | 0,024  |
| 22,6 | 0,2083 | 30,4 | 0,1670 | 38,2 | 0,1347 | 54,0 | 0,0867 | 85,0  | 0,023  |
| 22,8 | 0,2073 | 30,6 | 0,1660 | 38,4 | 0,1337 | 54,5 | 0,0853 | 86,0  | 0,0213 |
| 23,0 | 0,2060 | 30,8 | 0,1650 | 38,6 | 0,1330 | 55,0 | 0,0837 | 87,0  | 0,019  |
| 23,2 | 0,2050 | 31,0 | 0,1643 | 38,8 | 0,1323 | 55,5 | 0,0827 | 88,0  | 0,018  |
| 23,4 | 0,2037 | 31,2 | 0,1633 | 39,0 | 0,1317 | 56,0 | 0,0813 | 89,0  | 0,016  |
| 23,6 | 0,2023 | 31,4 | 0,1623 | 39,2 | 0,1310 | 56,5 | 0,0800 | 90,0  | 0,015  |
| 23,8 | 0,2010 | 31,6 | 0,1613 | 39,4 | 0,1303 | 57,0 | 0,0787 | 91,0  | 0,013  |
| 24,0 | 0,2000 | 31,8 | 0,1607 | 39,6 | 0,1297 | 57,5 | 0,0773 | 92,0  | 0,011  |
| 24,2 | 0,1987 | 32,0 | 0,1597 | 39,8 | 0,1290 | 58,0 | 0,0760 | 93,0  | 0,010  |
| 24,4 | 0,1977 | 32,2 | 0,1587 | 40,0 | 0,1283 | 58,5 | 0,0747 | 94,0  | 0,008  |
| 24,6 | 0,1963 | 32,4 | 0,1580 | 40,5 | 0,1267 | 59,0 | 0,0737 | 95,0  | 0,006  |
| 24,8 | 0,1953 | 32,6 | 0,1570 | 41,0 | 0,1250 | 59,5 | 0,0727 | 96,0  | 0,005  |
| 25,0 | 0,1940 | 32,8 | 0,1560 | 41,5 | 0,1233 | 60,0 | 0,0717 | 97,0  | 0,004  |
| 25,2 | 0,1930 | 33,0 | 0,1553 | 42,0 | 0,1217 | 61,0 | 0,0693 | 98,0  | 0,002  |
| 25,4 | 0,1917 | 33,2 | 0,1547 | 42,5 | 0,1200 | 62,0 | 0,0670 | 99,0  | 0,001  |
| 25,6 | 0,1907 | 33,4 | 0,1540 | 43,0 | 0,1183 | 63,0 | 0,0650 | 100,0 | 0,000  |
| 25,8 | 0,1893 | 33,6 | 0,1530 | 43,5 | 0,1167 | 64,0 | 0,0627 |       |        |
| 26,0 | 0,1883 | 33,8 | 0,1520 | 44,0 | 0,1150 | 65,0 | 0,0603 |       |        |
| 26,2 | 0,1873 | 34,0 | 0,1513 | 44,5 | 0,1133 | 66,0 | 0,0183 |       |        |
| 26,4 | 0,1863 | 34,2 | 0,1503 |      |        |      |        |       |        |
| 26,6 | 0,1850 | 34,4 | 0,1493 |      |        |      |        |       |        |

TABELLA IV.

Valori delle letture al tamburo e delle corrispondenti quantità di SiO in mg. ottenuti adoperando le vaschette da 50 mm. ed il filtro S 61.  $A = SiO_2$  in mg.

| D   | A      | D   | Á      | D    | <b>A</b> , | D    | A      | D    | A      |
|-----|--------|-----|--------|------|------------|------|--------|------|--------|
| 2,0 | 0,3304 | 5,5 | 0,2444 | 9,0  | 0,2026     | 12,5 | 0,1748 | 16,0 | 0,1542 |
| 2,1 | 0,3260 | 5,6 | 0,2428 | 9,1  | 0,2018     | 12,6 | 0,1742 | 16,1 | 0,1536 |
| 2,2 | 0,3220 | 5,7 | 0,2412 | 9,2  | 0,2010     | 12,7 | 0,1734 | 16,2 | 0,1532 |
| 2,3 | 0,3182 | 5,8 | 0,2400 | 9,3  | 0,2000     | 12,8 | 0,1728 | 16,3 | 0,1526 |
| 2,4 | 0,3148 | 5,9 | 0,2386 | 9,4  | 0,1990     | 12,9 | 0,1722 | 16,4 | 0,1520 |
| 3,5 | 0,3110 | 6,0 | 0,2372 | 9,5  | 0,1980     | 13,0 | 0,1716 | 16,5 | 0,1516 |
| 2,6 | 0,3080 | 6,1 | 0,2356 | 9,6  | 0,1970     | 13,1 | 0,1712 | 16,6 | 0,1510 |
| 2,7 | 0,3050 | 6,2 | 0,2340 | 9,7  | 0,1960     | 13,2 | 0,1703 | 16,7 | 0,1504 |
| 2,8 | 0,3004 | 6,3 | 0,2328 | 9,8  | 0,1952     | 13,3 | 0,1700 | 16,8 | 0,1500 |
| 2,9 | 0,2966 | 6,4 | 0,2314 | 9,9  | 0,1944     | 13,4 | 0,1624 | 16,9 | 0,1494 |
| 3,0 | 0,2358 | 6,5 | 0,2300 | 10,0 | 0,1936     | 13,5 | 0,1688 | 17,0 | 0,1490 |
| 3,1 | 0,2.30 | 6,6 | 0,2288 | 10,1 | 0,1928     | 13,6 | 0,1682 | 17,1 | 0,1484 |
| 3,2 | 0,2904 | 6,7 | 0,2276 | 10,2 | 0,1920     | 13,7 | 0,1674 | 17,2 | 0,1480 |
| 3,3 | 0,2878 | 6,8 | 0,2264 | 10,3 | 0,1912     | 13,8 | 0,1666 | 17,3 | 0,1474 |
| 3,4 | 0,2852 | 6,9 | 0,2250 | 10,4 | 0,1804     | 13,9 | 0,1660 | 17,4 | 0,1470 |
| 3,5 | 0,2828 | 7,0 | 0,2238 | 10,5 | 0,1896     | 14,0 | 0,1654 | 17,5 | 0,1464 |
| 3,6 | 0,2804 | 7,1 | 0,2226 | 10,6 | 0,1888     | 14,1 | 0,1648 | 17,6 | 0,1460 |
| 3,7 | 0,2780 | 7,2 | 0,2216 | 10,7 | 0,1880     | 14,2 | 0,1642 | 17,7 | 0,1454 |
| 3,8 | 0,2758 | 7,3 | 0,2204 | 10,8 | 0,1872     | 14,3 | 0,1636 | 17,8 | 0,1450 |
| 3,9 | 0,2736 | 7,4 | 0,2192 | 10,9 | 0,1864     | 14,4 | 0,1630 | 17,9 | 0,1446 |
| 4,0 | 0,2714 | 7,5 | 0,2180 | 11,0 | 0,1856     | 14,5 | 0,1624 | 18,0 | 0,1442 |
| 4,1 | 0,2690 | 7,6 | 0,2168 | 11,1 | 0,1848     | 14,6 | 0,1620 | 18,1 | 0,1436 |
| 4,2 | 0,2670 | 7,7 | 0,2158 | 11,2 | 0,1842     | 14,7 | 0,1614 | 18,2 | 0,1432 |
| 4,3 | 0,2654 | 7,8 | 0,2146 | 11,3 | 0,1834     | 14,8 | 0,1608 | 18,3 | 0,1428 |
| 4,4 | 0,2634 | 7,9 | 0,2134 | 11,4 | 0,1826     | 14,9 | 0,1602 | 18,4 | 0,1424 |
| 4,5 | 0,2614 | 8,0 | 0,2124 | 11,5 | 0,1820     | 15,0 | 0,1596 | 18,5 | 0,1420 |
| 4,6 | 0,2594 | 8,1 | 0,2114 | 11,6 | 0,1812     | 15,1 | 0,1590 | 18,6 | 0,1416 |
| 4,7 | 0,2576 | 8,2 | 0,2102 | 11,7 | 0,1804     | 15,2 | 0,1584 | 18,7 | 0,1410 |
| 4,8 | 0,2560 | 8,3 | 0,2092 | 11,8 | 0,1796     | 15,3 | 0,1578 | 18,8 | 0,1406 |
| 4,9 | 0,2540 | 8,4 | 0,2082 | 11,9 | 0,1790     | 15,4 | 0,1574 | 18,9 | 0,1402 |
| 5,0 | 0,2520 | 8,5 | 0,2072 | 12,0 | 0,1784     | 15,5 | 0,1568 | 19,0 | 0,1398 |
| 5,1 | 0,2504 | 8,6 | 0,2062 | 12,1 | 0,1776     | 15,6 | 0,1564 | 19,1 | 0,1392 |
| 5,2 | 0,2488 | 8,7 | 0,2052 | 12,2 | 2,1770     | 15,7 | 0,1558 | 19,2 | 0,1388 |
| 5,3 | 0,2474 | 8,8 | 0,2042 | 12,3 | 0,1762     | 15,8 | 0,1552 | 19,3 | 0,1382 |
| 5,4 | 0,2460 | 8,9 | 0,2034 | 12,4 | 0,1756     | 15,9 | 0,1548 | 19,4 | 0,1378 |

Segue: TABELLA IV.

| D    | A      | D    | A      | D    | A      | D            | A      | D     | Α .    |
|------|--------|------|--------|------|--------|--------------|--------|-------|--------|
|      |        | ı    | 1      |      |        |              |        |       |        |
| 19,5 | 0,1374 | 26,6 | 0,1110 | 34,2 | 0,0302 | 44,5         | 0,0680 | 67,0  | 0,0338 |
| 19,6 | 0,1370 | 26,8 | 0,1104 | 34,4 | 0,0896 | 45,0         | 0,0672 | 68,0  | 0,0326 |
| 19,7 | 0,1366 | 27,0 | 0,1100 | 34,6 | 0,0892 | 45,5         | 0,0660 | 69,0  | 0,0312 |
| 19,8 | 0,1360 | 27,2 | 0,1094 | 34,8 | 0,0886 | 46,0         | 0,0650 | 70,0  | 0,4300 |
| 19,9 | 0,1356 | 27,4 | 0,1086 | 35,0 | 0,0882 | 46,5         | 0,0642 | 71,0  | 0,0288 |
| 20,0 | 0,1352 | 27,6 | 0,1080 | 35,2 | 0,0878 | 47,0         | 0,0632 | 72,0  | 0,0276 |
| 20,2 | 0,1346 | 27,8 | 0,1074 | 35,4 | 0,0872 | 47,5         | 0,0622 | 73,0  | 0,0264 |
| 20,4 | 0,1338 | 28,0 | 0,1068 | 35,6 | 0,0868 | 48,0         | 0,0614 | 74,0  | 0,0252 |
| 20,6 | 0,1328 | 28,2 | 0,1062 | 35,8 | 0,0862 | 48,5         | 0,0608 | 75,0  | 0,0240 |
| 20,8 | 0,1320 | 28,4 | 0,1056 | 36,0 | 0,0858 | 49,0         | 0,0600 | 76,0  | 0,0228 |
| 21,0 | 0,13 2 | 28,6 | 0,1050 | 36,2 | 0,0852 | 49,5         | 0,050  | 77,0  | 0,0220 |
| 21,2 | 0,1304 | 23,8 | 0,10 4 | 36,4 | 0,0848 | 50,0         | 0,0582 | 78,0  | 0,0210 |
| 21,4 | 0,1298 | 29,0 | 0,1040 | 36,6 | 0,0844 | 50,5         | 0,0574 | 79,0  | 0,0190 |
| 21,6 | 0,1290 | 29,2 | 0,1034 | 36,8 | 0,0838 | 51,0         | 0,0564 | 80,0  | 0,018  |
| 21,8 | 0,1280 | 29,4 | 0,1028 | 37,0 | 0,0834 | 51,5         | 0,0556 | 81,0  | 0,0170 |
| 22,0 | 0,1274 | 29,6 | 0,1022 | 37,2 | 0,0830 | 52,0         | 0,0548 | 82,0  | 0,0160 |
| 22,2 | 0,1266 | 29,8 | 0,1018 | 37,4 | 0,0826 | 52,5         | 0,0540 | 83,0  | 0,0150 |
| 22,4 | 0,1258 | 30,0 | 0,1012 | 37,6 | 0,0820 | <b>53,</b> 0 | 0,0532 | 84,0  | 0,0148 |
| 22,6 | 0,1250 | 30,2 | 0,1009 | 37,8 | 0,0816 | 53,5         | 0,0526 | 85,0  | 0,0138 |
| 22,8 | 0,1244 | 30,4 | 0,1002 | 38,0 | 0,08.2 | 54,0         | 0,0520 | 86,0  | 0,0128 |
| 23,0 | 0,1236 | 30,6 | 0,0996 | 38,2 | 0,0808 | 54,5         | 0,0512 | 87,0  | 0,0118 |
| 23,2 | 0,1230 | 30,8 | 0,0 90 | 38,4 | 0,0802 | 55,0         | 0,0502 | 88,0  | 0,0110 |
| 23,4 | 0,1222 | 31,0 | 0,0986 | 38,6 | 0,07.8 | 55,5         | 0,0496 | 89,0  | 0,0100 |
| 23,6 | 0,1214 | 31,2 | 0,0980 | 38,8 | 0,0784 | 56,0         | 0,0488 | 90,0  | 0,0000 |
| 23,8 | 0,1203 | 31,4 | 0,0974 | 39,0 | 0,0780 | 56,5         | 0,0480 | 91,0  | 0,0080 |
| 24,0 | 0,1200 | 31,6 | 0,0063 | 39,2 | 0,0786 | 57,0         | 0,0472 | 92,0  | 0,0070 |
| 24,2 | 0,1192 | 31,8 | 0,0164 | 39,4 | 0,0782 | 57,5         | 0,0464 | £3,0° | 0,0060 |
| 24,4 | 0,1186 | 32,0 | 0.0958 | 39,6 | 0,0778 | 58,0         | 0,0456 | 94,0  | 0,0050 |
| 24,6 | 0,1178 | 32,2 | 0,0252 | 39,8 | 0,0774 | 58,5         | 0,0448 | 25,0  | 0,0040 |
| 24,8 | 0,1172 | 32,4 | 0,0948 | 40,0 | 0,0770 | 59,0         | 0,0442 | 96,0  | 0,0030 |
| 25,0 | 0,1164 | 32,6 | 0,0242 | 40,5 | 0,0760 | 59,5         | 0,0436 | 97,0  | 0,0026 |
| 25,2 | 0,1158 | 32,8 | 0,0936 | 41,0 | 0,0750 | 60,0         | 0,0430 | 98,0  | 0,0016 |
| 25,4 | 0,1150 | 33,0 | 0,0932 | 41,5 | 0,0740 | 61,0         | 0,0416 | 99,0  | 0,0008 |
| 25,6 | 0,1144 | 33,2 | 0,0228 | 42,0 | 0,0730 | 62,0         | 0,0402 | 100,0 | 0,0000 |
| 25,8 | 0,1136 | 33,4 | 0,0324 | 42,5 | 0,0720 | 63,0         | 0,0310 |       |        |
| 26,0 | 0,1 30 | 33,6 | 0,0318 | 43,0 | 0,07.0 | 64,0         | 0,0376 | -     |        |
| 26,2 | 0,1124 | 33,8 | 0,0512 | 43,5 | 0,0700 | 65,0         | 0,0362 |       |        |
| 26,4 | 0,1118 | 34,0 | 0,0008 | 44,0 | 0,0690 | 66,0         | 0,0350 |       |        |
|      |        |      |        |      |        |              |        |       |        |

Roma - Istituto superiore di Sanità - Laboratorio di chimica

#### **RIASSUNTO**

Gli A.A., in seguito ad alcune inesattezze riscontrate nello sperimentare il metodo di Urbach, hanno precisato il rapporto esistente tra estinzione della soluzione colorata e concentrazione in SiO<sub>2</sub> ed hanno fissato le condizioni più idonee per la determinazione dell'acido silicico, tenendo particolarmente conto di quello allo stato colloidale.

### RESUMÉ

A la suite de quelques inexactitudes trouvées en utilisant la méthode de Urbach, les AA., ont précisé le rapport existant entre l'extinction de la solution colorée et la concentration en SiO<sub>2</sub> et ils ont fixé les conditions plus convenables pour la détermination de l'acide silicique en tenant particulièrement compte de son état colloidal.

### **SUMMARY**

The authors, following to some inexactnesses which they have found while experiencing Urbach's method, have ascertained the ratio between the extinction of the colored solution and the concentration in SiO<sub>2</sub>, and have fixed the most suitable conditions for the determination of silicic acid, with particular reference to silicic acid at the colloidal state.

## ZUSAMMENFASSUNG

Infolge einiger bei Versuchen mit dem Urbach Verfahren aufgedeckten Ungenauigkeiten, haben die Verfasser das zwischen dem Erlöschen der farbigen Lösung und der SiO<sub>2</sub> Konzentration bestehende Verhältnis festgestellt und haben die vorteilhaftesten Bedingungen zur Bestimmung der Kieselsäure, vorzugsweise im Kolloidalzustand, festgesetzt.