6. Bruno VISINTIN e Nicolò GANDOLFO — Determinazione di piccole quantità di arsenico col fotometro di Pulfrich. - Nota II.

In una precedente nota (¹), abbiamo presentato un metodo per la determinazione dell'acido arsenico, basato sulla valutazione, al fotometro graduale di Pulfrich, dell'intensità della colorazione azzurra che si ottiene per riduzione a caldo dell'arsenomolibdato di ammonio con idrochinone e successiva aggiunta della soluzione carbonato-solfitica, dopo raffreddamento.

Poichè detto metodo permette di dosare vantaggiosamente piccole quantità di arsenico, abbiamo ritenuto opportuno eseguire una serie di esperienze, allo scopo di rendere possibile la sua applicazione in tutti quei casi nei quali sia appunto necessario dosare piccole quantità dell'elemento. Le sostanze che maggiormente incidono sull'esattezza del metodo sono: la silice, l'acido fosforico, il ferro e l'acido nitrico; inoltre, esercitano pure la loro influenza i precipitati che possono formarsi in seno al liquido in esame.

Già R. B. Deemer e J. A. Schricker (²) e più tardi Zinzadze (³), determinavano l'arsenico nelle piante, distillandolo sotto forma di tricloruro. A tale scopo, riducevano nella forma trivalente l'arsenico con cloruro rameoso ed, in presenza di acido cloridrico, lo distillavano come AsCl₃; infine, dopo averlo ossidato ad acido arsenico, mediante acido nitrico saturo per bromo, lo determinavano per via colorimetrica impiegando a tal fine del blù di molibdeno.

W. C. Taber (4) invece, servendosi dello stesso apparecchio di distillazione (5), operava la riduzione con solfato ferroso in presenza di acido cloridrico ottenuto per trattamento del cloruro sodico con acido solforico.

Da un attento esame dei metodi di Deemer e Taber, abbiamo creduto utile applicare il primo di essi, impiegando però un appa-

⁽¹⁾ Questi Annali 33, 111 (-1943).

⁽²⁾ J. Ass. Off. Agr. Chem. 16, 226 (1933).

⁽³⁾ Ind. Eng. Chem. Anal. Edit. 7, 230 (1935).

⁽⁴⁾ J. Ass. Off. Agr. Chem. 14, 436 (1931).

^{(5) «} Methods of Analysis A.Q.A.C. » 3ª Edit., 36 (1930).

recchio meglio rispondente al nostro caso e modificando le condizioni di distillazione.

PARTE SPERIMENTALE

L'apparecchio è costituito da un pallone Kjeldahl da 200 cm³ comunicante con un refrigerante a serpentino per mezzo di un tubo di collegamento a due bolle, munito di innesti a smeriglio. Un imbuto a rubinetto da 20 cm³ circa, comunicante con l'interno del pallone, serve ad introdurre l'acido cloridrico necessario. Un bicchiere di vetro, immerso in bagno di ghiaccio, raccoglie il distillato.

Usando tale apparecchio, abbiamo iniziato una serie di prove tendenti a fissare le condizioni più idonee da seguire per la distillazione del tricloruro di arsenico. Si è impiegata la quantità strettamente necessaria dei reattivi, onde ridurre al minimo il tempo di distillazione ed il volume del liquido distillato. Si è fatto uso di una soluzione di arseniato a titolo noto, di cloruro rameoso preparato secondo A. Cavazzi (6) e di acido cloridico concentrato esente da arsenico e ferro.

Per accertarci che in tali condizioni l'arsenico del campione in esame distilla quantitativamente come AsCl₃, abbiamo scelto il metodo lodometrico basato sulla seguente reazione:

$$_2$$
AsCl₃ + 4J + 5H₂O \leftarrow As₂O₅ + 4HJ + 6HCl

A tal fine il distillato, mantenuto immerso nel bagno di ghiaccio, si neutralizza con soluzione concentrata di idrato sodico in presenza di fenolftaleina; dopo lieve acidificazione con acido cloridrico, si neutralizza nuovamente con bicarbonato sodico solido e se ne aggiunge poi un eccesso per fissare l'acido iodidrico che si forma nella reazione. Si titola infine con soluzione 0,05 N di iodio.

Impiegando quantità diverse dei citati reattivi, è stato possibile fissare in cm³ 20 il volume masimo di liquido in esame da sottoporre a distillazione, in g 5 la quantità di cloruro rameoso, in cm³ 30 il volume di acido cloridrico concentrato da versare nel pallone in tre porzioni: la prima di 16 cm³ all'inizio del riscalda-

⁽⁶⁾ Gazz. chim. ital. 16, 167 (1886).

mento e le altre due di 7 cm³ ciascuna durante il corso dell'operazione.

Come da precedente nota, l'arsenomolibdato di ammonio si ottiene soltanto quando l'arsenico si trova nella sua forma pentavalente; è stato quindi indispensabile ossidare il tricloruro ad anidride arsenica. Soddisfacenti sono state le prove eseguite adoperando come ossidante il perossido di idrogeno a 100 volumi, si porta così a secchezza su di un bagno maria bollente, per scacciare tutto l'acido cloridrico.

Con questa operazione, viene anche eliminata l'influenza di piccole quatità di silice eventualmente presenti nella soluzione ossidante od in quella del distillato (proveniente dall'azione dei vapori sul vetro); la silice viene infatti a trovarsi in una forma incapace di dare con l'acido molibdico un composto suscettibile di essere ridotto con idrochinone. A conferma di ciò, in capsula di vetro sono stati portati a secchezza 10 cm³ di una soluzione cloridrica addizionata di una quantità di silicato di sodio corrispondente a mg 0,5 circa di SiO₂, quantità questa rilevante in rapporto a quella che può essere presente nel distillato: i reattivi, aggiunti al rèsiduo ripreso con acqua, non hanno prodotto alcuna colorazione azzurra.

Ulteriori prove ci hanno permesso di constatare che, nelle condizioni in cui si opera, possono passare nel distillato anche piccole quantità di acido fosforico, ferro ed acido nitrico.

L'acido fosforico, trattato con acido molibdico e successivamente ridotto con idrochinone, si trasforma nel composto ceruleo, parimenti a quanto avviene per l'arsenico. Ci siamo quindi proposti di spiegare la causa della sua presenza nel distillato ed il tenore di essa in rapporto al contenuto in acido fosforico del prodotto in esame.

A tal proposito, i singoli liquidi ottenuti per distillazione, sono stati divisi in due campioni di egual volume e portati a secchezza, previa ossidazione di uno di essi. Questi campioni, trattati con i reattivi della ceruleo-molibdometria, ed esaminati al fotometro, hanno dato, relativamente alla trasparenza, valori uguali fra di loro (tabella I). Si deduce quindi che l'acido fosforico è presente nel distillato soltanto perchè trascinato dai vapori; se infatti derivasse da riduzione ad opera del cloruro rameoso (presente in forte eccesso),

TABELLA I.

					one non dato	C a m p i o n e ossidato		
				D	A	D	A	
1. Distillando gr 1 H ₃ PO ₄				41.0	0,206	41,0	0,206	
2. Distillando gr 0,3 H ₃ PO ₄ 3. Distillando mg 5 H ₃ PO ₄			:	42,6	0,200	42,6	0,200	

i campioni ossidati dovrebbero produrre una colorazione più intensa e quindi una trasparenza minore. Mentre il primo ed il secondo caso riportati nella tabella dimostrano che, distillando nelle medesime condizioni quantità diverse di acido fosforico (rispettivamente g I e g 0,3), viene trascinata una quantità pressochè uguale di acido, il terzo caso ci fa notare che, riducendo a mg 5 la quantità di acido posta nel pallone da distillazione non si riscontra nel distillato neppure traccia di esso.

Per risalire dalle letture fotometriche alla quantità di acido fosforico ci siamo valsi delle tabelle presentate da C. Urbach (1), adoperando le vaschette da 3 cm ed il filtro S 61.

Potendosi tuttavia verificare che il campione da esaminare contenga quantità tali di acido fosforico da causarne la presenza nel distillato, si potrà adottare la seguente modifica al procedimento che viene descritto più avanti: il residuo della soluzione cloridrica del distillato si riprende con acqua e si divide quantitativamente in due porzioni; ad una di esse si aggiungono a freddo le soluzioni di acido molibdico e di idrochinone e si nota come non si abbia formazione di arsenomolibdato, ma soltanto di fosfomolibdato; alla seconda porzione si aggiungono i reattivi medesimi a caldo (vedi arsenico) e si constata la formazione di ambedue i complessi. Dal confronto delle due soluzioni, aventi diversa intensità di colorazione, si deduce che il valore della trasparenza, letto al tamburo del fotometro, deve attribuirsi al solo arsenico.

La presenza del ferro nel distillato può essere causa di errore perchè impartisce al liquido una colorazione verde, risultante dalla combinazione del giallo del cloruro ferrico con l'azzurro degli os-

⁽⁷⁾ Mikrochemie 13, 201 (1933).

sidi di molibdeno; inoltre, l'idrolisi del cloruro ferrico toglie al liquido la limpidezza necessaria per eseguire una buona lettura.

Abbiamo pertanto potuto stabilire che il limite massimo tollerabile si aggira intorno a mg I di ferro mentre la quantità che passa nel distillato da campioni contenenti fino a g o, I di ferro si aggira intorno a un decimo di milligrammo. In ogni modo, qualora nel campione in esame ve ne fossero forti quantità, è consigliabile eliminarlo come idrato ferrico prima della distillazione.

L'eventuale presenza di acido nitrico nella soluzione non disturba la determinazione, perchè si elimina completamente quando si porta a secchezza la soluzione cloridrica del distillato.

Prima di descrivere il procedimento del metodo, riportiamo i reattivi occorrenti e la loro preparazione:

I Soluzione di acido molibdico.

II Soluzione di idrochinone.

III Miscela di solfito-carbonato.

IV Acido cloridrico (d = 1,18).

V Cloruro rameoso.

VI Soluzione di perossido di idrogeno a 100 volumi.

- I g. 50 di molibdato di ammonio puro vengono disciolti in 1000 cm³ di acido solforico N privo di acido fosforico e i arsenico, evitando il riscaldamento. 5 cm³ di questa soluzione, aggiunti di 5 cm³ di soluzione di idrochinone (II), si riscaldano per 10 minuti in bagno maria precedentemente regolato a 50° C., si raffredda sotto getto di acqua e si aggiungono 25 cm³ della miscela di solfito-carbonato (III). La soluzione deve rimanere incolora. In caso contrario, il molibdato di ammonio o l'acido solforico sono impuri e la soluzione non può essere adoperata.
- II g. 20 di idrochinone vengono sciolti con aggiunta di 1 cm³ di acido solforico concentrato in 1000 cm³ di acqua. La soluzione va conservata ben chiusa. Le soluzioni scure sono inservibili.
- III g. 75 di solfito di sodio anidro vengono sciolti in 500 cm³ di acqua con l'aggiunta di 2 litri di una soluzione al 20% di soda anidra. La soluzione viene filtrata. La miscela di solfito-carbonato deve essere conservata ben chiusa ed è utilizzabile al massimo per 2 settimane.

DESCRIZIONE DEL PROCEDIMENTO

Alla soluzione in esame, in volume non superiore a 20 cm³, versata nel pallone Kjeldahl da distillazione, contenente alcuni pezzetti di porcellana lavata e calcinata, si aggiungono g 5 circa di cloruro rameoso. Si unisce il pallone col refrigerante mediante il tubo di collegamento (figura 1). Per mezzo dell'imbuto a rubinetto, si versano nella soluzione 16 cm³ di acido cloridrico concentrato. Si riscalda mediante piccolo bagno di sabbia ed il distillato si raccoglie in un bicchiere di vetro da 250-300 cm³ immerso in bagno di ghiaccio; quest'ultimo ha lo scopo di evitare che il calore della fiamma possa riscaldare col tempo la soluzione e provocare quindi una eventuale volatilizzazione del tricloruro di arsenico. A tale scopo è bene anche interporre tra la fiamma ed il bagno di ghiaccio un setto di amianto.

Quando il liquido nel pallone si è ridotto ad un volume di circa 10 cm³, si fanno cadere dall'imbuto a rubinetto, previo raffreddamento del pallone, altri 7 cm³ di acido cloridrico concentrato e si riprende la distillazione. Si ripete lo stesso trattamento una seconda volta. Infine, si fanno distillare alcuni cm³ di acqua per il lavaggio del tubo di collegamento e del serpentino del refrigerante.

I 40-50 cm³ di liquido così ottenuti vengono aggiunti di 3-4 cm³ di soluzione di perossido di idrogeno e portati su di un bagno maria bollente.

Terminata l'ossidazione, durante la quale si è coperto il bicchiere con un vetrino per evitare eventuali perdite di liquido dovute alla reazione, si porta la soluzione a secchezza e si riprende il residuo con poca acqua calda. Si trasporta il liquido quantitativamente in palloncino tarato da 100 cm³ evitando che il volume complessivo superi i 30 cm³ Si immerge il palloncino in bagno maria munito di termometro Vertex in precedenza regolato a 50° C.; dopo 2 minuti circa si aggiungono al liquido 5 cm³ di acido molibdico preparato secondo (1) e 5 cm³ di soluzione di idrochinone preparato secondo (II) Dopo 10 minuti di riscaldamento, si raffredda bruscamente il liquido sotto un getto di acqua corrente e si aggiungono 32 cm³ della soluzione di solfito-carbonato preparata secondo (III). Si porta a volume con acqua distillata, si agita,

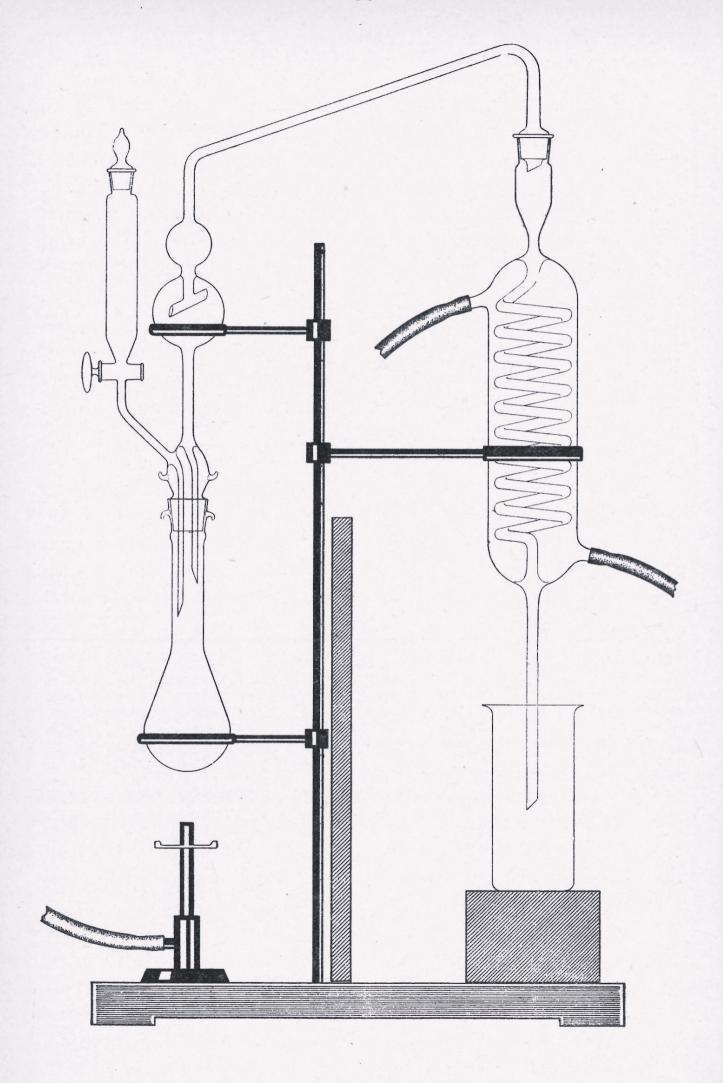


TABELLA II.

Valori delle letture al tamburo e delle corrispondenti quantità di As in mmg ottenuti adoperando le vaschette da 2 cm ed il filtro S 61. D = valori letti al tamburo A = As in mmg

D	A	D	A	D	A	D	A	D	A
10,7	0,6925	16,2	0,5420	23,4	0,4220	34,4	0,3017	53.5	0.1692
10,8	0,6890	16,3	0,5400	23,6	0,4200	34,6	0,3000	54,0	0,1667
10,9	0,6865	16,4	0,5382	23,8	0,4180	34,8	0,2982	54,0	0,1640
11,0	0,6830	16,5	0,5362	24,0	0,4152	35,0	0,2962	55,5	0,1612
11,1	0,6790	16.6	0,5342	24,2	0,4120	35,2	0,2945	55,0	
11,2	0,6750	16,7	0,5322	24,4	0,4105	35,4	0,2925		0,1585
	0,6712	16,8	0,5322	24,6	0,4077	35,6		56,0	0.1560
11,3	,	16.9		24,8	0,4077		0,2907	56,5	0.1537
11,4	0,6675		0,5280			35,8	0,2890	57,0	0,1512
11,5	0,6645	17,0	0,5265	25,0	0,4015	36,0	0.2875	57,5	0,1485
11,6	0,6615	17,1	0,5212	25,2	0,3995	36,2	0.2857	58.0	0.1462
11,7	0,6580	17,2	0,5227	25,4	0,3972	36,4	0,2842	58,5	0,1440
11,8	0,6545	17,3	0,5205	25,6	0,3940	36,6	0,2827	59,0	0,1415
11,9	0,6525	17,4	0,5190	25,8	0,3917	36,8	0.2812	59,5	0,1390
12,0	0,6475	17.5	0,5167	26,0	0,3897	37,0	0,2795	60,0	0,1365
12,1	0,6465	17,6	0,5152	26,2	0,3865	37,2	0,2780	61,0	0,1320
12,2	0,6435	17,7	0,5135	26,4	0,3845	37,4	0,2760	62,0	0,1275
12,3	0,6385	17,8	0,5117	26,6	0,3825	37,6	0,2740	63,0	0,1230
12,4	0,6340	17,9	0,5097	26,8	0,3800	37,8	0,2725	64,0	0,1187
12,5	0,6320	18,0	0,5077	27,0	0,3782	38,0	0,2712	65,0	0,1145
12,6	0,6297	18,1	0,5060	27,2	0,3750	38,2	0,2697	66,0	0,1105
12,7	0,6252	18,2	0,5042	27,4	0,3730	38,4	0,2682	67,0	0,1065
12,8	0,6232	18,3	0,5025	27,6	0,3710	38,6	0,2667	68,0	0,1025
12,9	0,6207	18,4	0,5007	27,8	0,2630	38,8	0,2650	69,0	0,0985
13,0	5,6170	18,5	0,4987	28,0	0,3657	39,0	0,2635	70,0	0,0947
13,1	0,6152	18,6	0,4970	28,2	0,3640	39,2	0,2620	71,0	0,0907
13,2	0,6122	18,7	0,4950	28,4	0,3617	39,4	0,2605	72,0	0,0867
13,3	0,6080	18,8	0,4932	28,6	0,3597	39,6	0,2587	73,0	0,0827
13,4	0,6045	18,9	0,4915	28,8	0,3572	39,8	0,2570	74,0	0,0787
13,5	0,6030	19,0	0,4895	29,0	0,3555	40,0	0,2552	75,0	0,0752
13,6	0,6000	19,1	0,4877	29,2	0,3530	40,5	0,2512	76,0	0,0720
13,7	0,5980	19,2	0,4860	29,4	0,3507	41,0	0,2475	77,0	0,0685
13,8	9,5960	19,3	0,4847	29,6	0,3487	41,5	0,2437	78,0	0,0650
13,9	0,5922	19,4	0,4835	29,8	0,3467	42,0	0,2405	79,0	0,0615
14,0	0,5912	19,5	0,4820	30,0	0,3450	42,5	0,2370	80,0	0,0580
14,1	0,5877	19,6	0,4802	30,2	0,3422	43,0	0,2335	81,0	0,0545
14,2	0,5855	19,7	0,4785	30,4	0,3395	43,5	0,2300	82,0	0,0515
14,3	0,5830	19,8	0,4767	30,6	0,3370	44,0	0,2265	83,0	0,0315
14,4	0,5807	19,9	0,4747	30,8	0,3350	44,5	0,2230	1	0,0455
14,5	0,5782	20.0	0,4735	31,0	0,5335	45,0	0,2197	84,0	
14,6	0,5757	20,2	0,4705	31,2	0,3317			85,0	0,0422
	0,5735	20,4	0,4670	31,4	0,3300	45,5	0,2165	86,0	0,0392
14,7	0,5710	20,4	0,4632		0,3300	46,0	0,21; 2	87,0	0,0360
14,8				31,6		46,5	0,21(0	88,0	0,0330
14,9	0,5680	20,8	0,4595	31,8	0,3262	47,0	0,2067	89,0	9,0300
15,0	0,5360	21.0	0,4575	32,0	0,3242	47,5	0,2025	90,0	0,0272
15,1	0,5642	2,2	0,4555	32,2	0,3222	43,0	0,2005	91,0	0,0245
15,2	0,5625	21,4	0,4520	32,4	0,3205	48,5	0,1975	92,0	0,0217
15,3	0,5602	21,6	0,4482	32,6	0,3185	49,0	0,1945	93,0	0,0190
15,4	0,5585	21,8	0,4445	32,8	0,3165	49,5	0,1915	94,0	0,0162
15,5	0,5560	22,0	0,4422	33,0	0,3140	50,0	0,1885	95,0	0,0135
15,6	0,5535	22,2	0,4395	33,2	0,3125	50,5	0,1855	96,0	0,0107
15,7	0,5515	22,4	0,4370	33,4	0,3105	51,0	0,1830	97,0	0,0080
15,8	0,5492	22.6	0,4332	33,6	0,3090	51,5	0,1805	98,0	0,0050
15,9	0,5472	22,8	6,4312	? 3 ,8	0,3072	52,0	0,1777	99,0	0,0025
16,0	(,5455	23,0	0,4292	31,0	0,3055	52,5	0,1747	100,0	0,0000
16,1	0,5437	23,2	0,4257	34,2	0,3035	53,0	0,1720		

TABELLA III.

Valori delle letture al tamburo e delle corrispondenti quantità di As in mmg ottenuti adoperando le vaschette da 3 cm ed il filtro S 61. D = valori letti al tamburo A = As in mmg

		1	1	1		1	1	T	
D	. A	D	A	D	A	D	A	D	A
10,7	0,4617	16,2	0'3613	23,4	0,2313	31,4	0,2012	53,5	0,1128
10,8	0,4597	11,3	0,3600	23,6	0,2800	31,6	0,2000	54,0	0,1112
10,9	0,4577	16,4	0,3588	23,8	0,2787	31,8	0,1988	54,5	0,1093
11,0	0,4553	16,5	0,3575	24,0	0,2768	35,0	0,1975	55,0	0,1078
	0,4527	16,6	0,3562	24,2	0,2147		0,1963		
11,1						35,2		55,5	0,105
11,2	0,4500	16,7	0,3548	24,4	0,2737	35,4	0,1950	56,0	0,1040
11,3	0,4475	16,8	0,3533	24,6	0,2718	35,6	0,1938	56,5	0,102
11,4	0,4450	16,9	0,3520	24,8	0,2397	35,8	0,1927	57,0	0,1008
11,5	0,4430	17,0	0,3510	25,0	0,2677	36, 0	0,1917	57,5	0,099
11,6	0,4410	17,1	0,3495	25,2	0,2663	36,2	0,1905	58,0	0,097
11,7	0,4387	17,2	0,3455	25,4	0,2348	36,4	0,1895	58,5	0,096
11,8	0,4363	17,3	0,3470	25,6	0,2327	36,6	0,1885	59,0	0,094
11,9	0,4350	17,4	0,3460	25,8	0,2612	36,8	0,1875	59,5	0,092
12,0	0,4317	17,5	0,3445	26,0	0,2598	37,0	0,1863	60,0	0,091
12,1	0,4310	17,6	0,3435	26,2	0,2577	37,2	0,1853	61,0	0,088
12,2	0,4290	17,7	0,3423	26,4	0,2563	37,4	0,1840	62,0	0,085
12,3	0,4257	17,8	0,3412	26,6	0,2550	37,6	0,1827	63,0	0,082
	0,4227	17.9	0,3398	26,8	0,2533	37,8	0,1817		
12,4		1	0,3385					64,0	0,079
12,5	0,4213	18,0		27,0	0,2522	38,0	0,1808	65,0	0,076
12,6	0,4198	18,1	0,3373	27,2	0,2500	38,2	0,1798	66,0	0,073
1.2,7	0,4168	18,2	0,3362	27,4	0,2487	38,4	0,1788	67,0	0,071
12,8	0,4155	18,3	0,3350	27,6	0,2473	38,6	0,1778	63,0	0,068
12,9	0,4138	18,4	0,3338	27,8	0,2153	38,8	0,1767	69,0	0,065
13,0	0,4113	18,5	0,3325	28,0	0,2438	39,0	0,1757	70,0	0,063
13,1	0,4102	18,6	0,3313	28,2	0,2427	39,2	0,1747	71,0	0,060
13,2	0,4082	18,7	0,3300	28,4	0,2412	39,4	0,1737	72,0	0,057
13,3	0,4053	18,8	0,3288	28,6	0,2398	39,6	0,1725	73,0	0,055
13,4	0,4030	18,9	0,3277	28,8	0,2382	39,8	0,1713	74,0	0,052
13,5	0,4020	19,0	0,3263	29,0	0,2370	40,0	0,1702	75,0	0,050
13,6	0,4000	19,1	0,3252	29,2	0,2353	40,5	0,1675	76.0	0,048
13,7	0,3987	19,2	0,3240		0,2338		0,1650		
				29,4		41,0		77,0	0,045
13,8	0,3973	19,3	0,3230	29,6	0,2325	41,5	0,1625	78,0	0,043
13,9	0,3948	19,4	0,3223	29,8	0,2312	42,0	0,1603	79,0	0,041
14,0	0,3942	19,5	0,3213	30,0	0,2300	42,5	0,1580	80,0	0,038
14,1	0,3 918	19,6	0,3202	30,2	0,2282	43,0	0,1557	81,0	0,036
14,2	0,3903	19,7	0,3190	30,4	0,2263	43,5	0,1533	82,0	0,034
14,3	0,3887	19,8	0,3178	37,6	0,2247	44,0	0,1510	83,0	0,032
14,4	9,3872	19,9	0,3165	30,8	0,2233	44,5	0,1487	84,0	0,030
14,5	0,3855	20,0	0,3157	31,0	0,2223	45,0	0,1465	85,0	0,023
14,6	0,3838	20,2	0,3137	31,2	0,2213	45,5	0,1443	86,0	0,023
14,7	0,3823	20,4	0,3113	31,4	0,2200	46,0	0,1422	87,0	0,024
14,8	0,3807	20,6	0,3088	31,6	0,2187	46,5	0,1400	88,0	0,022
14,9	0,3787	20,8	0,3063	31,8	0,2175	47,0	0,1378	89,0	0,020
15,0	0,3773	21,0	0,3050	32,0	0,2162	47,5	0,1357	90,0	0,018
15,1	0,3762								
		21,2	0,3037	32,2	0,2148	48,0	0,1337	91,0	0,016
15,2	0,3750	21,4	0,3013	32,4	0,2137	48,5	0,1317	92,0	0,014
15,3	0,3738	21,6	0,2988	32,6	0,2123	49,0	0,1297	93,0	0,012
15,4	0,3723	21,8	0,2963	32,8	0,2110	49,5	0,1277	94,0	0,010
15,5	0,3707	22,0	0,2948	33,0	0,2093	50,0	0,1257	95,0	0,0090
15,6	0,3690	22,2	0,2930	33,2	0,2083	57,5	0,1237	96,0	0,0073
15,7	0,3677	22,4	0,2913	33,4	0,2070	51,0	0,1220	97,0	0,0053
15,8	0,3662	22,6	0,2888	33,6	0,2060	51,5	0,1203	98,0	0,0033
15,9	0,3648	22,8	0,2875	33,8	0,2048	52,0	0,1185	99,0	0,001
16,0	0,3637	23,0	0,2862	34,0	0,2037	52,5	0,1165	100,0	0,0000
16,1	0,3625	23,2	0,2838	34,2	0,2023	53,0	0,1147		0,000

TABELLA IV.

Valori delle letture al tamburo e delle corrispondenti quantità di As in mmg ottenuti adoperando le vaschette da 5 cm ed il filtro S 61. D = valori letti al tamburo A = As in mmg

							A - As in ming			
D	. A	D	A	D	A	D	A	D	A	
10.7	0.9770	16.0	0.0160	99.4	0.1000	0.4.4				
10,7	0,2770	16,2	0,2168	23,4	0,1688	34,4	0,1207	53,5	0,0677	
10,8	0,2758	16,3	0,2160	23,6	0,1680	34,6	0,1200	54,0	0,0667	
10,9	0.2746	16,4	0,2153	23,8	0,1672	34,8	0,1193	54,5	0,0656	
11,0	0,2730	16,5	0,2145	24,0	0,1661	35,0	0,1185	55,0	0,0645	
11,1	0,2717	16,6	0,2137	24,2	0,1648	35,2	0,1178	55,5	0,0634	
11,2	0,2700	16,7	0,2129	21,4	0,1642	35,4	0,1170	55,0	4,0624	
11,3	0,2685	16,8	0,2120	24,6	0,1631	35'6	0,1163	56,5	0,0615	
11,4	0,2670	16,9	0,2112	24,8	0,1618	35,8	0,1156	57,0	0,0605	
11,5	0,2659	17,0	0,2106	25,0	0,1606	36,0	0,1150	57,5	0,0594	
11,6	0,2646	17,1	0,2097	25,2	0,1598	36,2	0,1143	58,0	0,0585	
11,7	0,2630	17,2	0,2091	25,4	0,1589	36,4	0,1137	58,5	0,0576	
11,8	0,2618	17,3	0,2082	25,6	0,1576	36,6	0,1131	59,0	0,0566	
11,9	0,2610	17,4	0,2076	25,8	0,1567	36,8	0,1125	59,5	0,0556	
12,0	0,2590	17,5	0,2067	26,0	0,1559	37,0	0,1118	60,0	0,0546	
12,1	0,8587	17,6	0,2061	26,2	0,1546	37,2	0,1112	61,0	0,0528	
12,2	0,2573	17,7	0,2054	26,4	0,1538	37,4	0,1104	62,0	0,0510	
12,3	0,2553	17,8	0,2047	26,6	0,1530	37,6	0,1096	63,0	0,0492	
12,4	0,2536	17,9	0,2039	26,8	0,1520	37,8	0.1090	64,0	0,0475	
12,5	0,2528	18,0	0,2031	27,0	0,1513	38,0	0,1085	65,0	0,0458	
12,6	0,2519	18,1	0,2024	27,2	0,1500	38,2	0,1079	66,0	0,0442	
12,7	0,2501	18,2	0,2017	27,4	0,1492	38,4	0,1073	67,0	0,0426	
12,8	0,2493	18,3	0,2010	27,6	0,1484	38,6	0,1067	68,0	0,0410	
12,9	0,2483	18,4	0,2002	27,8	0,1472	38,8	0,1060	69,0	0,0394	
13,0	0,2468	18,5	0,1995	28,0	0,1463	39,0	0,1054	70,0	0,0379	
13,1	0,2461	18,6	0,1988	28,2	0,1456	39,2	0,1048	71,0	0,0363	
13,2	0,2449	18,7	0,1980	28,4	0,1447	39,4	0,1042	72,0	0,0347	
13,3	0,2432	18,8	0,1973	28,6	0,1439	39,6	0,1035	73,0	0,0331	
13,4	0,2418	18,9	0,1966	28,8	0,1429	39,8	0,1028	74,0	0,0315	
13,5	0,2412	19,0	0,1958	29,0	0,1422	40,0	0,1021	75,0	0,0313	
13,6	0,2400	19,1	0,1951	29,2	0,1412	40,5	0,1005	76,0	0,0301	
13,7	0,2392	18,2	0,1944	29,4	0,1403	41,0	0,0990	77,0	0,0274	
13,8	0,2384	19,3	0,1939	29,6	0,1395	41,5	0,0975	78,0	0,0274	
13,9	0,2369	19,4	0,1934	29,8	0,1387	42,0	0,0962	79,0	0,0246	
14,0	0,2365	19,5	0,1928	30,0	0,1380	42,5	0,0948	80,0	0,0232	
14,1	0,2351	19,6	0,1921	30,2	0,1369	43,0	0,0934			
14,2	0,2342	19,7	0,1914	30,4	0,1358	43,5	0,0920	81,0	0,0218	
14,3	0,2332	19,8	0,1907	30,6	0,1348	44,0	0,0920	82,0	0,0206	
14,4	0,2323	19,9	0,1899	30,8	0,1340	44,5	0,0892	83,0	0,0194	
14,5	0,2313	20,0	0,1894	31,0	0,1334	45,0	0,0879	81,0	0,0182	
14,6	0,2303	20,2	0,1882	31,2	0,1327	45,5	0,0866	85,0	0,016)	
14,7	0,2294	20,4	0,1864	31,4	0,1320	46,0	0,0853	86,0	0,0157	
14,8	0,2284	20,6	0,1853	31,6	0,1312	46,5	0,0840	87,0	0,0144	
14,9	0,2272	20,8	0,1838	31,8	0,1305	47,0	0,0840	88,0	0,0132	
15,0	0,2264	21,0	0,1830	32,0	0,1297	47,5		89,0	0,0120	
15,1	0,2257	21,2	0,1822	32,2	0,1289	48,0	0,0814 0,0802	90,0	0,0109	
15,2	0,2250	21,4	0,1808	33,4	0,1289	48,5		91,0	0,0098	
15,3	0,2243	21,6	0,1793	32,6	0,1274		0,0790	92,0	0,0087	
15,4	0,2234	21,8	0,1778	32,8	0,1274	49,0	0,0778	93,0	0,0076	
15,5	0,2224	22,0	0,1769	33,0	0,1266	49,5	0,0766	94,0	0,0065	
15,6	0,2214	22,2	0,1758			50,0	0,0754	95,0	0,0054	
15,7	0,2214	22,4	0,1748	33,2	0,1250	50,5	0,0742	96,0	0,0043	
15,8	0,2197	22,6	0,1733	32,4	0,1242	51,0	0,0732	97,0	0,0032	
15,9	0,2189	2 2, 8	0,1735	33,6	0,1236	51,5	0,0722	98,0	0,0020	
16,0	0,2189	23,0	0,1725	33,8	0'1229	52,0	0,5711	89,0	0,0010	
16,1	0,2175	23,2	0,1717	34,0	0,1222	52,5	0,0699	100,0	0,0000	
# V9 1	0,4110	الكولالك	0,1100	3 4,	0,1214	53,0	0,0688			

si riempie la vaschetta e si esamina al fotometro, adoperando il filtro S 61.

Essendo così noti il valore della lettura eseguita al fotometro, cioè la trasparenza (D), e lo spessore della vaschetta adoperata, si può risalire direttamente al valore dell'arsenico (A) contenuto nei 100 cm³ di soluzione colorata servendosi delle tabelle II, III e IV.

Il procedimento del metodo su descritto permette di determinare con precisione quantità di arsenico comprese tra mg 0,7 e mg 0,01.

Per una conveniente determinazione delle letture entro detti limiti, abbiamo riscontrato l'opportunità di impiegare la vaschetta da 2 cm per quantità di arsenico comprese tra mg 0,7 e mg 0,002; quella da 3 cm per quantità di arsenico comprese tra mg 0,46 e mg 0,015; e la vaschetta da 5 cm per quantità di arsenico comprese tra mg 0,28 e mg 0,01.

Roma - Istituto superiore di Sanità - Laboratorio di chimica

RIASSUNTO

Allo scopo di permettere una più larga applicazione del metodo fotometrico per la determinazione di piccole quantità di arsenico, gli AA. hanno ritenuto opportuno isolare l'arsenico da quegli elementi che possono intralciarne la ricerca.

Essi, perciò, lo distillano sotto forma di tricloruro, ed ossidano quest'ultimo ad acido arsenico mediante perossido di idrogeno.

Viene anche descritto un apparecchio di distillazione particolarmente adatto allo scopo e vengono fissate le condizioni di esperienza.

RESUMÉ

Pour permettre une plus large application de la méthode photométrique pour la determination de petites quantités d'arsenic les AA. ont consideré opportun d'isoler l'arsenic des autres éléments qui peuvent mettre obstacles à la recherche. Ainsi ils les distillent sous forme de trichlorure, ils oxident ce dernier à acide arsénique au moyen du péroxyde d'hydrogène. Ils décrivent aussi un appareil de distillation particulièrement adapte à ce but et ils fixent les conditions de l'expérience.

SUMMARY

In order to make possible a wider application of the photometric method for the determination of small quantities of arsenic, the authors have found it advisable to isolate arsenic from the elements which can entangle the research of it.

Therefore, they distillate it under the form of trichloride, and oxidize the latter into arsenic acid by means of hydrogen peroxide.

An apparatus for distillation, particularly fit for the purpose, is also described, and the conditions for the experiment are fixed.

ZUSAMMENFASSUNG

In der Absicht eine weitgehendere Anwendung des photomterischen Verfahrens zur Bestimmung kleiner Arsenmengen zu ermöglichen, haben die Verfasser es für zweckmässig erachtet das Arsen von denjenigen Elementen zu isolieren die seine Auffindung erschweren könnten.

Sie haben daher das Arsen als Trichlorür destilliert und haben dieses sodann durch Verwendung von Wasserstoff Peroxyd oxydiert.

Die Verfasser beschreiben noch einem zu diesem Zweck besonders geeigneten Destillierapparat und legen die für den Versuch massgebenden Bedingungen fest.