

WHO collaborating centre for research on zoonosis

European Union reference Laboratory for rabies

MINISTRA POR PROPERTY OF PROPE

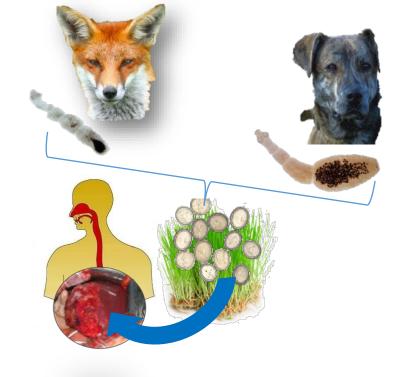
From field to fork: contamination of lettuces and berries by Echinococcus multilocularis,

Echinococcus multilocularis, Echinococcus granulosus sensu lato and other Taenidae species eggs in Europe and beyond

Gérald Umhang¹, Fanny Bastien¹, Alexandra Cartet¹, Haroon Ahmad², Kees van der Ark³, Rebecca Berg⁴, Piero Bonelli⁵, Rebecca K. Davidson⁶, Peter Deplazes⁷, Gunita Deksne⁸, Maria João Gargate⁹, Joke Van der Giessen³, Naila Jamil², Pikka Jokelainen⁴, Jacek Karamon¹⁰, Selim M'Rad¹¹, Pavlo Maksimov¹², Myriam Oudni-M'Rad¹¹, Gillian Muchaamba⁷, Laura Rinaldi¹³, Małgorzata Samorek-Pieróg¹⁰, Federica Santolamazza¹⁴, Azzurra Santoro¹⁴, Cinzia Santucciu⁵, Marion Wassermann¹⁵, Isabelle Villena¹⁶, Marie-Lazarine Poulle¹⁶, Adriano Casulli¹⁴, **Franck Boué¹**

¹ Anses LRFS Nancy, France; ² CUI, Pakistan; ³ RIVM, Netherlands; ⁴ SSI, Denmark; ⁵ IZS, Italy; ⁶ NVI, Norway; ⁷ University of Zurich, Switzerland; ⁸ BIOR, Latvia; ⁹ INSA, Portugal; ¹⁰
PIWET, Poland; ¹¹ University of Monastir, Tunisia; ¹² FLI, Germany; ¹³ University of Naples Federico II, Italy; ¹⁴ ISS, European Union Reference Laboratory for Parasites, Italy; ¹⁵
University of Hohenheim, Germany; ¹⁶ University of Reims Champagne-Ardenne, France

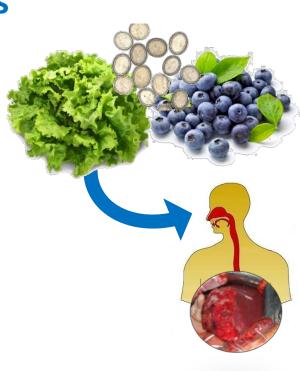
Introduction


Alveolar and Cystic Echinococcosis:

- Due to accidental ingestion of eggs (30μm) in the environment
- Routes of human infection difficult to identify
 - Food, hand-to-mouth, ...
 - long asymptomatic period (up to 15 years)

Foodborne transmission: most important

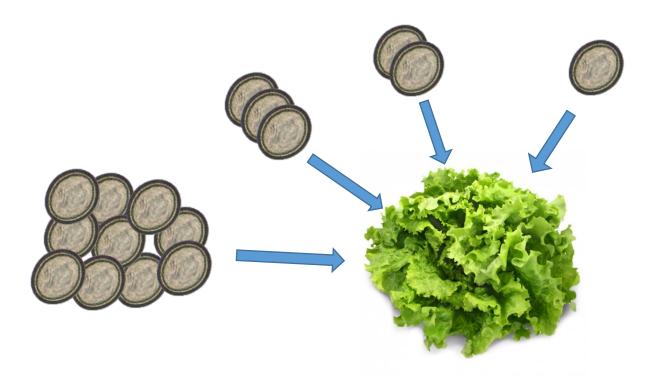
- But scarce data available on hand-to-mouth route
- Great need of data from food: especially from fruits and vegetables
- Cultivated areas (private, professional):
 hotspots for both fox and cat defecation
 (Bastien et al. 2018)


Aims of the study:

 Produce data to evaluate proportion of lettuces and berries with *Echinococcus* and others Taenidae species eggs

Methods

- > Transfer of a newly developed method (Guggisberg et al. 2020)
- > Evaluation of the limit of detection
- > Sampling Lettuces in Europe in the context of **EJP MEME**



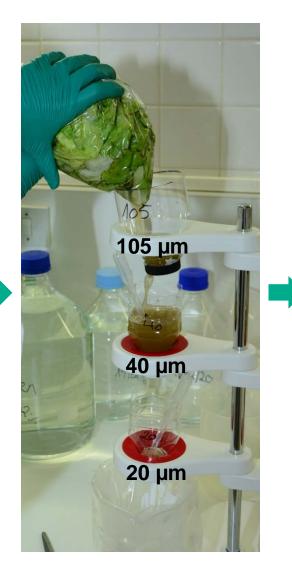
Materials and methods

Estimation of the limit of detection

- Lettuces from supermarket
- Spiked with known number of Em eggs
 - > Produced by experimental infection of fox (EJP MEME)

Materials and methods

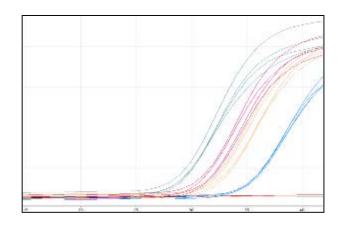
Concentration of eggs


• Sequential sieving from Guggisberg et al. 2020

300g max by lettuce

Washing 500ml of Tween

Tween washing filter mesh 20µm

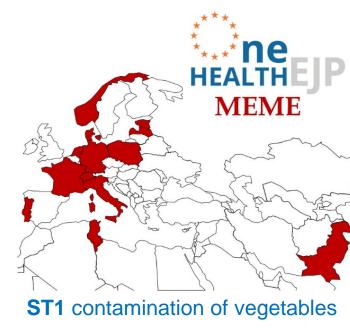

Sequential sieving

Materials and methods

- DNA extraction
 - kit for tissue (Qiagen)
- Molecular detection
 - E. multilocularis:
 - > specific qPCR (Knapp et al. 2014)

Results

- Limit of detection
 - determinded by testing 24 lettuces spikes with known eggs number



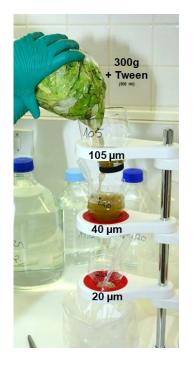
WP3-T6. Contamination of vegetables for human consumption by Em/Eg

- Lettuces sampling from local markets and supermarkets
 - High Em and Eg endemic areas from EJP MEME partners
 - Vegetables were collected during summers 2021-2022
 - 50/100 vegetables samples collected by each partner
 - The first washing step of the method perform by partners
 - Standard Operating Procedure provides instructions for washing step
 - Pellets were frozen and transferred to Nancy for filtration and molecular analyses

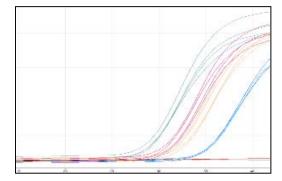
- > 15 labs from 12 countries
- 1,034 lettuces (~50-100 by country)

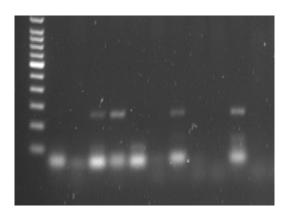
Methods perform in Nancy

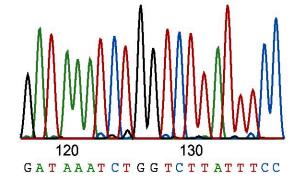
Sequential sieving


Pellets received from partners

DNA extraction


kit for tissue (Qiagen)


Molecular detection of taeniid eggs


- Echinococcus specific real-time PCR
 - ✓ E. multilocularis (Knapp et al. 2014)
 - ✓ E. granulsous sl multiplex (Maksimov et al. 2021)
- End point PCR for others taenias (Trachsel et al. 2007)

Results

√ 1%: n=7 (1 case: FR, SW, LV; 2 cases: DK, PK)

E. granulosus sl: all countries are endemic

✓ 2.2%: n=23 *E. granulosus ss*: IT (3.5%), PK (3%), *E. canadensis*: 1 in LV, PK, CH

Others Taenidae species:

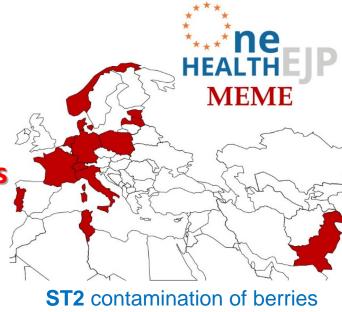
✓ 2.5%: n=26 mainly *Hydatigera sp*. in Europe (FR, CH, DE, IT, NO, LV+PK)

T. hydatigena in E. granulosus ss high endemic areas (IT, PK)

but also T. saginata, T. multiceps, T. krabbei/serialis, ...

WP3-T6. Contamination of vegetables for human consumption by Em/Eg

- Detection of Echinococcus spp. eggs in strawberries and blueberries sampled from local markets and supermarkets
 - Filtration method validation on strawberries with **95% probability** of detection of **three eggs** in 200g sample


5%

88%

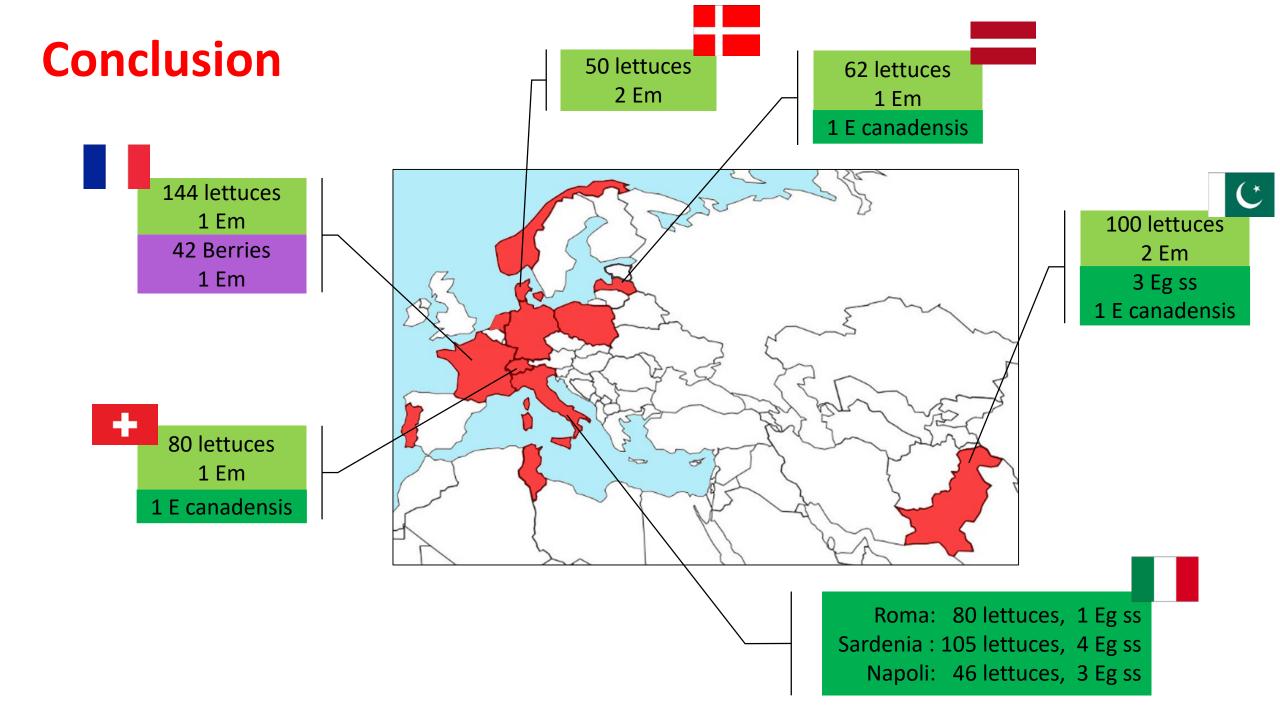
- From 20 to 30 samples per country
- The first washing step of the method perform by partners
- Standard Operating Procedure provides instructions
- Pellets were frozen and transferred to Nancy for filtration and molecular analyses
 - 11 labs from 11 countries
 - 42 berries samples (ongoing ~20 to 30 by country)

Results (preliminary)

- E. multilocularis: from France
- ✓ Strawberries: 0 %, n=0 (11)
- ✓ Blueberries: 3.2%, n=1 (31)

• E. granulosus sl:

Ongoing



• Others Taenidae species:

Ongoing

Discussion

High proportion of lettuces with taenid eggs (5.7%)

- ✓ Including zoonotic *Echinococcus* species
- ✓ Coherent with known high endemic areas
- ✓ Potential source of human infection
 - But egg's viability remain uncertain
 - More data required (others vegetables: parsley, spinach, chard ...)

- ✓ France 1 Em / 42 samples
- ✓ Including zoonotic *Echinococcus* species

Ongoing

- ✓ Berries: 12 countries, sampling to be finished
- ✓ Lettuces & berries: detection of *T. gondi, Crypto, Giardia*

This largest epidemiological study ever conducted on contamination of vegetables by Em and Eg which will contribute to the understanding of foodborne transmission.

Thank you for your attention

