

French NRL activities: Results 2008- 2009 and future works

French NRL activities: Results 2008- 2009 and future works

Plan

1- Results 2008- 2009

- Official controls
- Development of diagnostic methods

2- Future works

French NRL activities: Results 2008- 2009 Official controls (1/3)

Year	Matrix	Nb of samples screened	Nb of strains isolated	STEC prevalence
2007	Ground beef batch (+4°C)	batch (5 e		11/3605 0,3% CI ₉₅ [0,2 – 0,5%]
	Raw milk cheese	392	0	0/392 ≤ 0,9%
2008	Ground beef trimming (-20°C)	992 (4 units/samples)	10 STEC (13 eae+ E. coli)	10/992 1% CI ₉₅ [0,6 – 1,8%]
2009	Ground beef batch (+4°C)	480 out of 2000		
	Minced beef at retail	711 out of 1520	2 STEC (0 eae+ E. coli)	2/711
	Raw milk cheese	1334 out of 2000	14 STEC (9 eae+ <i>E. coli</i>)	14/1334

French NRL activities: Results 2008- 2009 Official controls (2/3)

Ground beef

Serotype	Nb of <i>E. coli</i> strains isolated								
		STEC		eae+ E. coli					
	2007	2008 2009		2007	2008	2009			
O157:H7	5	2	1	ND	ND	0			
O26:H11	2	5	0	4	11	0			
O103:H2	3	3	1	0	2	0			
O111:H8	1	0	0	0	0	0			
O145:H28	0	0	0	1	0	0			
Total	11	10	2	5	13	0			

French NRL activities: Results 2008- 2009 Official controls (3/3)

Raw milk cheese

Serotype	Nb of <i>E. coli</i> strains isolated								
		STEC		eae+ E. coli					
	2007	2008	2009	2007	2008	2009			
O157:H7	0	ND	1	ND	ND	0			
O26:H11	0	ND	9	0	ND	3			
O103:H2	0	ND	4	0	ND	4			
O111:H8	0	ND	0	0	ND	0			
O145:H28	0	ND	0	0	ND	2			
Total	0	ND	14	0	ND	9			

French NRL activities: Results 2008- 2009 Development of diagnostic method (1/11)

Optimization of raw milk and raw milk products enrichment step before O26 detection (1/6)

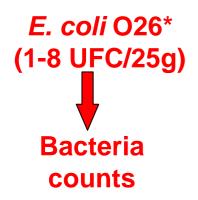
Nb of HUS cases in France

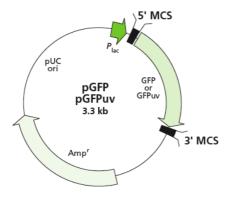
100 cases of HUS/year (sporadic cases)

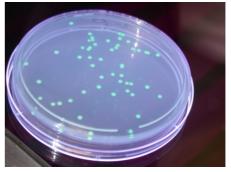
2005:

122 cases of HUS

(including a major O26 outbreaks)






French NRL activities: Results 2008- 2009 Development of diagnostic method (2/11)

Optimization of raw milk and raw milk products enrichment step before O26 detection: material and method (2/6)

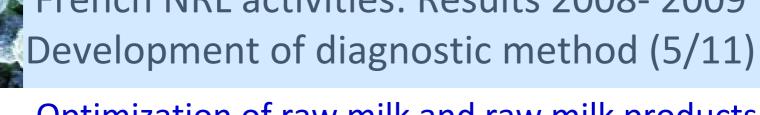
3 of *E. coli* O26 strains (isolated from faeces) were experimentally inoculated (1-8 CFU/25g) in triplicate and in random.

In 12 different raw milk and raw milk products

French NRL activities: Results 2008- 2009 Development of diagnostic method (3/11)

Enrichment Parameters tested							
Temperature	Broth	Duration					
	BPW						
	BPW+acriflavin						
	BPW+acriflavin+CT						
	BPW+acriflavin+tween						
	BPW+acriflavin+tween+CT						
37°C and 41.5°C	BPW+CT	4, 8, 12 and 24					
37 6 and 41.5 6	BPW+C	hours					
	BPW+T						
	BPW+vancomycin						
	BPW+CT transfered in Mc conkey+CT						
	mTSB+acriflavin transfered in Mc conkey+CT						


French NRL activities: Results 2008- 2009 Development of diagnostic method (4/11)



Optimization of raw milk and raw milk products enrichment step before O26 detection: Results (4/6)

BPW+acriflavin
E. coli O26
counts (UFC/ml

	Matrices	Enrichissement duration (41.5°C)				
า	wati ices	4 hours	8 hours	12 hours	24 hours	
I)	Raw cow's milk (day+1)	< 10	2 10 ⁴	7.3 104	1.1 10 ⁵	
	Raw cow's milk (day+3)	< 10	1.2 10 ⁴	8.6 10 ⁴	2.3 10 ⁶	
	Raw goat's milk (day+1)	< 10	3.6 10 ⁴	1.5 10 ⁵	1.7 10 ⁵	
	Raw goat's milk (day+3)	< 10	1.5 10 ⁴	5.9 10 ⁵	6.2 10 ⁵	
	White mould rinded soft cheese type I	< 10	1.1 10 ⁴	5.5 10 ⁴	2.5 10 ⁵	
	Blue mould cheese	< 10	4.7 104	3.3 10 ⁵	4.2 10 ⁵	
	Cooked hard cheese	< 10	1.1 104	7.1 10 ⁵	1.2 10 ⁶	
	Washed rinded soft cheese type I	> 10	2.6 10 ⁴	7.6 10 ⁴	4.3 10 ⁵	
	Uncooked hard cheese	89	5.1 10 ⁴	8.7 10 ⁴	1.4 10 ⁵	
	Fresh cheese	< 10	1 104	1.2 104	2 104	
	White mould rinded soft cheese type II	10	2 10 ³	4.7 10 ³	3 10 ³	
	Washed rinded soft cheese type II	69	2.1 10 ²	2.1 10 ³	3.6 10 ³	

Optimization of raw milk and raw milk products enrichment step before O26 detection: Results (5/6)

BPW+acriflavin+CT

		Enrichment duration at 41,5°C				
Raw milk	Strains	8 hours	24 hours			
cheeses	S trains	O26 (UFC/ml)	O26 (UFC/ml)			
White mould rinded soft	1	5.1 10 ²	5.2 10 ⁴			
	2	3.9 10 ²	6 10 ⁴			
cheese type II	3	1.2 10 ³	7.6 10 ⁴			
Washed rinded soft	1	1.2 10 ⁴	1.6 10⁴			
	2	3 10 ⁴	7.4 10 ⁴			
cheese type II	3	2.7 10 ⁴	5.3 10 ⁴			

French NRL activities: Results 2008- 2009 Development of diagnostic method (6/11)

Optimization of raw milk and raw milk products enrichment step before O26 detection: Results and discussion (6/6)

Optimal enrichment in dairy complex products:

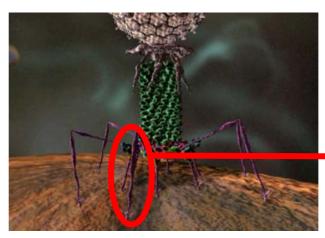
24 hours at 41,5°C in BPW supplemented with acriflavin (10mg/ml) and CT (C 0,05mg/ml; T 2.5mg/ml)

Different technologies (milk composition, nature of the starters cultures, characteristics of fermentation and ripening) + different background microflora

Key step before detection and confirmation

- Optimization of raw milk and raw milk products enrichment step before *E. coli* O26 detection.
 - F. Savoye. C. Vernozy-Rozand, M. Bouvier, A. Gleizal, D. Thevenot. Submitted in *Letters in Applied Microbiology*

French NRL activities: Results 2008- 2009 Development of diagnostic method (7/11)



Evaluation of different methods including a novel recombinant phage protein ligand assay for *E. coli* O157:H7 in ground beef and trimmings: (1/4)

Objectives

- improve the sampling strategy by testing up to 375g of ground beef
- decrease the incubation period

Long Tail Fibers:
Recombinant receptor
used in the VIDAS
phage method

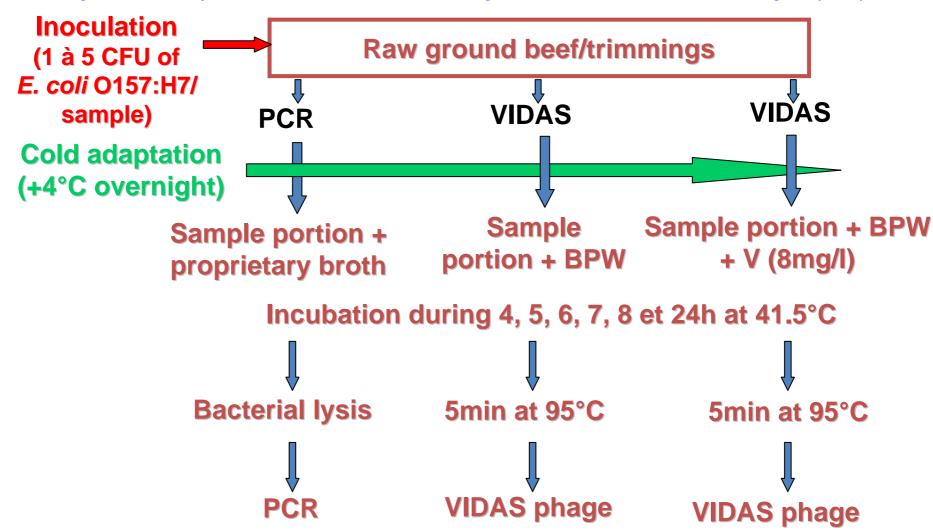
From: www.justseyet.com

French NRL activities: Results 2008- 2009 Development of diagnostic method (8/11)

Evaluation of different methods including a novel recombinant phage protein ligand assay for *E. coli* O157:H7 in ground beef and trimmings: (2/4)

<u>Material and methods</u>

Sample	Inocula	Sample size	Enrichment broth volum	Sample to broth ratio
	3-7 CFU/25g	25 g	225ml	1/10 ^{ème}
Raw ground beef	1-8 CFU/75g	75g	225ml	1/4 ^{ème}
	2-8 CFU/375g	375g	1125ml	1/4 ^{ème}
Trimmings	3-6 CFU/75g	75g	225ml	1/4 ^{ème}


5 E. coli O157:H7 strains were inoculated separately in triplicate and in a random fashion (15 tests)

French NRL activities: Results 2008- 2009 Development of diagnostic method (9/11)

Evaluation of different methods including a novel recombinant phage protein ligand assay for *E. coli* O157:H7 in ground beef and trimmings: (3/4)

French NRL activities: Results 2008- 2009 Development of diagnostic method (10/11)

Evaluation of different methods for *E. coli* O157:H7 in ground beef and trimmings: (4/4) Results

Sample portion		Detection	Broth	Enrichissement duration at 41,5°C (hours)					
		Detection	Brotti	4	5	6	7	8	24
		PCR	PCR broth	1/15	8/15	11/15	15/15	15/15	15/15
	25g	VIDAS	BPW	6/15	15/15	15/15	15/15	15/15	15/15
		PHAGE	BPW+Vanco	3/15	14/15	15/15	15/15	15/15	15/15
Raw		PCR	PCR broth	0/15	0/15	1/15	0/15	1/15	2/15
ground	75g	VIDAS PHAGE	BPW	2/15	8/15	14/15	15/15	15/15	15/15
beef			BPW+Vanco	1/15	12/15	15/15	15/15	15/15	15/15
	375g	PCR	PCR broth	ND	ND	0/15	2/15	0/15	6/15
		VIDAS PHAGE	BPW	ND	ND	0/15	0/15	8/15	15/15
			BPW+Vanco	ND	ND	0/15	4/15	8/15	15/15
		PCR	PCR broth	ND	ND	5/15	ND	8/15	6/15
Trimmings	75g	VIDAS PHAGE	BPW	ND	ND	5/15	ND	8/15	15/15
			BPW+Vanco	ND	ND	5/15	ND	8/15	15/15

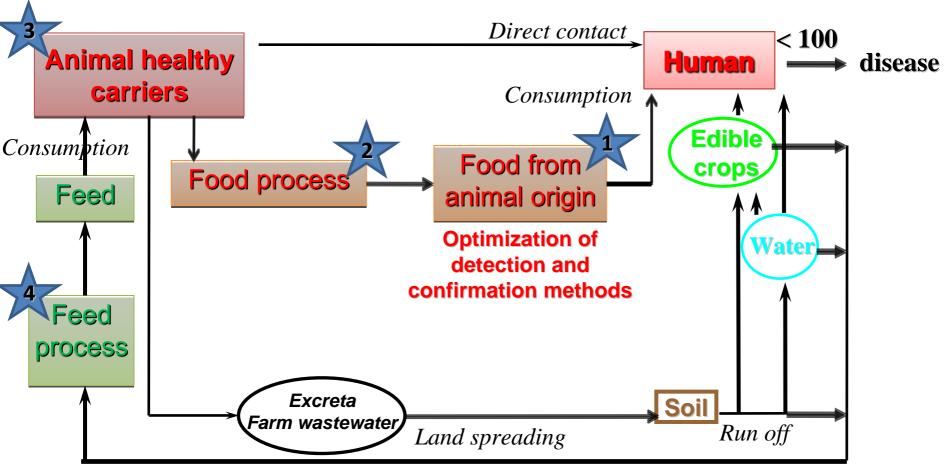
French NRL activities: Results 2008- 2009 Development of diagnostic method (11/11)

Evaluation of different methods including a novel recombinant phage protein ligand assay for *E. coli* O157:H7 in ground beef and trimmings: Results and discussion

Shortest incubation period with the VIDAS phage assay

for 25 g samples, 6 h enrichment was sufficient

Recovery of *E. coli* O157:H7 in samples up to 375g with the VIDAS phage assay


but...incubation time is still of 24h for 375g! (improve the enrichment step)

Novel phage ligand based enzyme linked fluorescent assay (ELFA) for same day detection of *E. coli* O157:H7 in composite samples of raw ground beef and trimmings.
 F. Savoye C. Vernozy-Rozand, M. Bouvier, A. Gleizal, D. Thevenot.
 Submitted in Journal of Food Microbiology

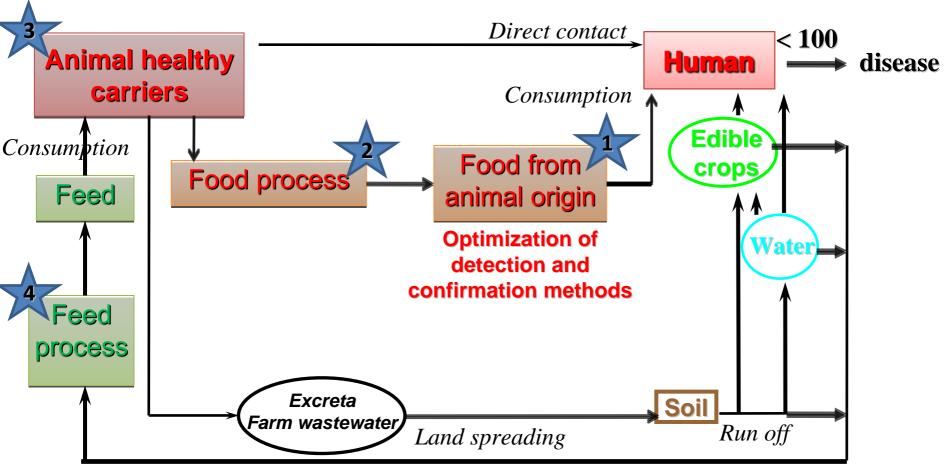
French NRL activities: Future works

French NRL activities: Future works Project 1

Prevalence and characterization of STEC strains in food in France and optimization of the detection method

Objectives:

- Provide updated data on prevalence of STEC strains in food of animal origins in France (Gang of 5 + others)
- Optimize enrichment steps for O103, O111, and O145 strains
- Optimize isolation and confirmation step (automated immunoconcentration/selective media..)


Partners:

French Ministry of Agriculture
Professionnals (meat and dairy products producers)
Kits manufacturers and media providers
AFSSA LERQAP Maisons- Alfort
Others?...

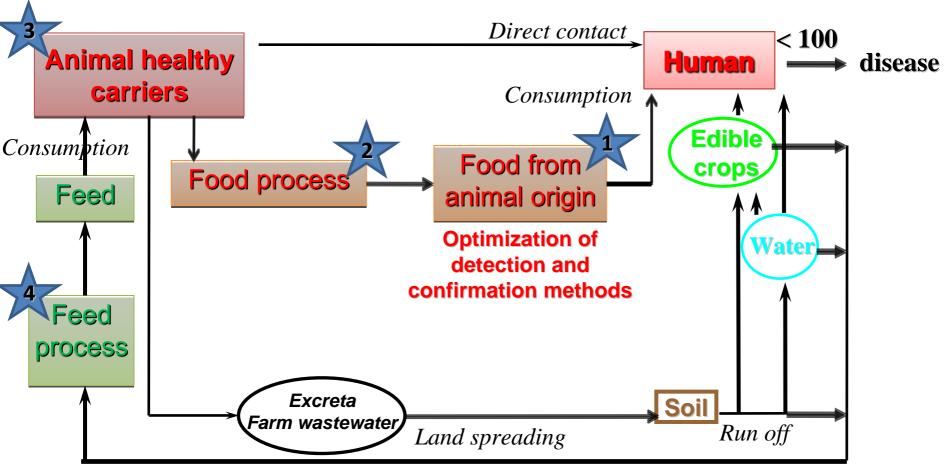
French NRL activities: Future works

French NRL activities: Future works Project 2

Growth and survival of STEC during raw milk cheese processing

Objectives:

- Study growth and survival of different STEC strains in different types of cheese during the process (different process types, nature of stater cultures, indigenous microflora, fermentation, ripening...)
- Study the impact of biotic and abiotic parameters on STEC growth
- Define a growth model for QRA


Partners:

French Ministry of Agriculture
Professionnals and professional associations (dairy products producers)
Kits manufacturers and media providers
INRA Aurillac

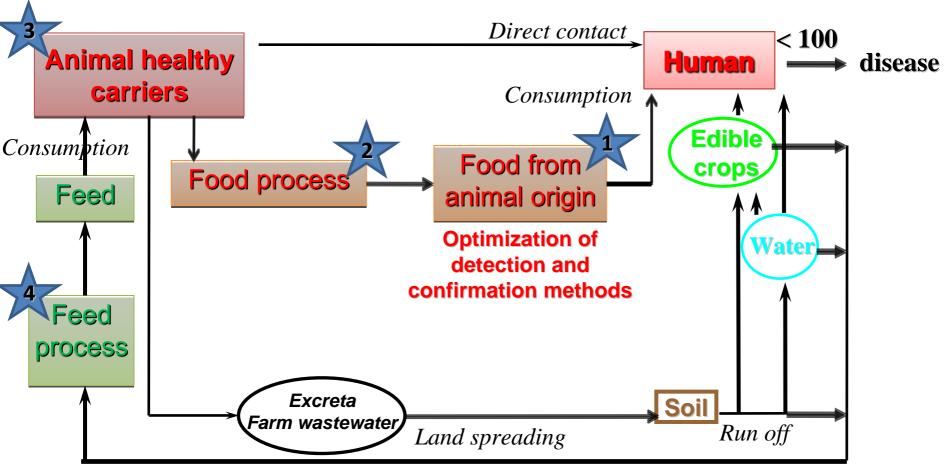
French NRL activities: Future works

French NRL activities: Future works Project 3

Carriage and excretion of EHEC strains in French livestock: Updated data for the meat producers

Objectives:

- Provide accurate data on bovine carriage of STEC strains belonging to the 5 major serogroups of EHEC strains (3200 animals, young cattle; suckler cows; young cattle, from different regions)
- Identify farms associated with a higher « risk »
- Optimize detection method in bovine faeces


Partners:

French association of professionals: « Institut de l'élevage » UMR INRA ENVT Toulouse AFSSA LERQAP Maisons- Alfort AFSSA LERPBVH Lyon

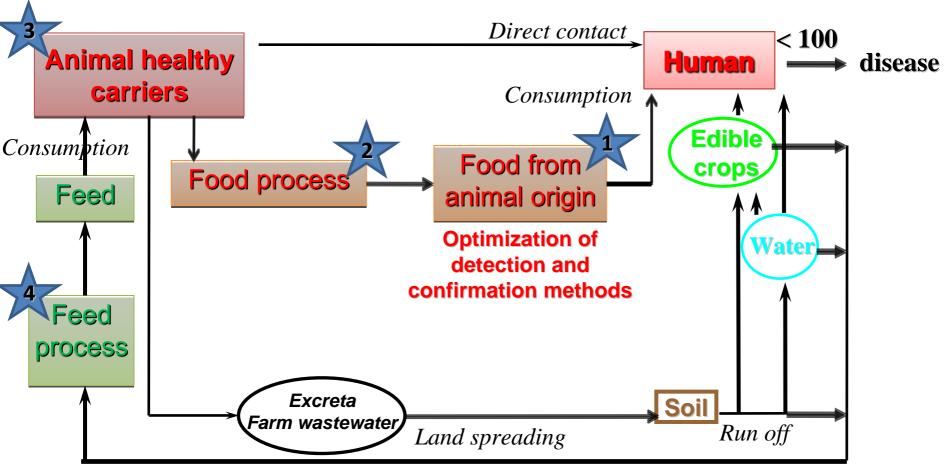
French NRL activities: Future works

French NRL activities: Future works Project 4

Antagonist interactions between STEC and lactic acid bacteria in silage: a way to reduce bovine carriage?

Objectives:

- Identify acid lactic bacteria that can reduce the growth or kill the STEC strains in vitro (268 lactic acid bacteria/ 10 O157:H7; 10 O26 and 10 O103/O111/O145 STEC strains/ inhibition mecanisms (nutritional competition, acid inhibition, bacterocin,...)
- Study the inhibition properties of selected lactic acid bacteria in silage
- Study the inhibition properties of selected lactic acid bacteria in bovine digestive tract


Partners:

INRA Theix
ENITAC Clermont-Ferrand
Stater culture producer

French NRL activities: Future works

French NRL activities: Results 2008- 2009 and future works

Delphine Thevenot

Christine Mazuy

Christine Bavai

Lysiane Dunière

Fanny Savoye

Stéphane Miszczycha

Marie-Pierre Montet

Sarah Ganet

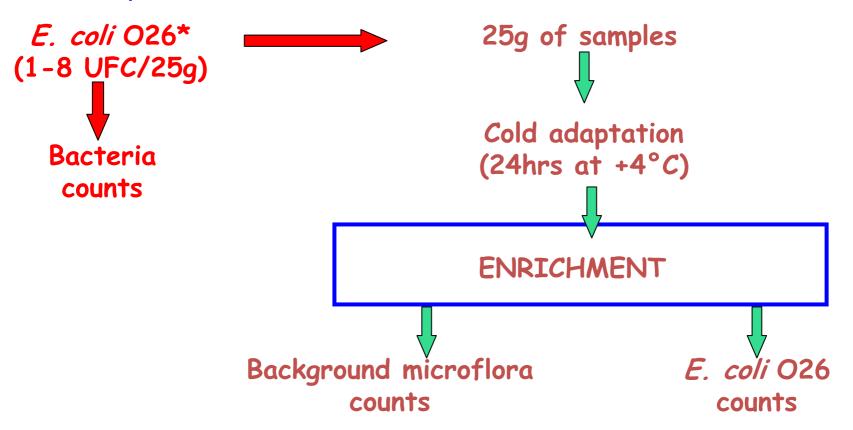
Marion Bouvier

Audrey Gleizal

Franck Ferre

And...Cécile Dutrieux and Marie Strub!

French NRL activities: Results 2008- 2009 and future works


Thank you for your attention!

French NRL activities: Results 2008- 2009 Development of diagnostic method

Optimization of raw milk and raw milk products enrichment step before O26 detection: material and method

French NRL activities: Results 2008- 2009 Development of diagnostic method (1/?)

Evaluation of different methods for *E. coli* O157:H7 in ground beef and trimmings: Results

				Trimmings					
Sample size	25g		75g		37	375g		75g	
Inoculation level	3-7 UF	3-7 UFC/25g 1-8 UFC/75g		2-8 UFC/375g		3-6 UFC/75g			
Incubation time	8 h	24 h	8 h	24 h	8 h	24 h	8 h	24 h	
VIDAS % positive results	100%	100%	100%	100%	100%	100%	100%	100%	
USDA validated PCR method results	100%	100%	6.8%	13.3%	0%	40%	53%	40%	

Calcul théorique de la probabilité de détecter *E. coli*O157:H7 en fonction de la prise d'essai effectuée

Selon la distribution de *Poisson* et en supposant une contamination homogène de la totalité de la mêlée :

 $P = 1 - e^{-(C^*M)}$ C, niveau de contamination et M, masse de steak haché

Niveau de contamination de	Probabilité de détection de <i>E. coli</i> O157:H7 selon la prise d'essai réalisée (%)					
la mêlée (UFC <i>E. coli</i> O157:H7.g ⁻¹)	25g	75g	125g	375g	750g	
4.10 ⁻³ (0,1 UFC/25g)	10	26	39	78	95	
0,04 (1 UFC/25g)	63	95	99	99,99	100	
0,1	92	99,9	99,99	100	100	
1	100	100	100	100	100	

French NRL activities: Future works

Growth and survival of STEC during raw milk cheese processing

Sampling strategy:

- Different types of raw milk cheese (blue mould cheese -roquefort-; white mould rinded soft cheese camembert- etc..)
- Different STEC strains (O157:H7; O26:H11; O103:H2)
- Different step during the process

Material and method: (Challenge tests)

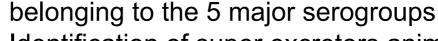
- Cold adapted strains
- Inocula: 100UFC/ml of raw milk
- Bacteria counts (classical counts / quantitative PCR)
- Detection after enrichment

Provide data on ecology of STEC in dairy complex products Define process associated with higher risk

French NRL activities: Future works Project 3

Carriage and excretion of EHEC strains in French livestock: Updated data for the meat producers

Sampling strategy:


- 3 different types of animals (young cattle; suckler cows; young cattle)
- 3200 animals
- Different production regions in France

Material and method:

- Detection: enrichment/DNA extraction/RT-PCR
- Confirmation: Isolation/genotypic and phenotypic characterization

Evaluation and comparison of carriage of STEC

Identification of super excretors animals and farms associated with a higher risk

French NRL activities: Future works Project 4

Antagonist interactions between STEC and lactic acid bacteria in silage: a way to reduce bovine carriage?

Materials and methods:

- 268 lactic acid bacteria tested
- 10 O157:H7; 10 O26 and 10 O103/O111/O145 STEC strains
- Inhibition activities in vitro: identification lactic acid bacteria (in solid and liquid media)
- Characterization of the inhibition mecanisms (nutritional competition, acid inhibition, bacterocin,...)
- Inhibition activities in silage: challenge tests in artificially contaminated silage
- Inhibition activities in bovine digestive tract: probiotic properties of selected lactic acid bacteria in digestive tract model

