

Surveillance and outbreak investigation of Shiga toxin-producing *Escherichia coli* using whole genome sequencing- time for a change!

Dr Marie Anne Chattaway Deputy Head STEC Laboratory Gastrointestinal Bacteria Reference Unit, UK

- Role of Gastrointestinal Bacteria Reference Unit
- Current methodology of non-O157 STEC detection and surveillance
- New high-throughput WGS work stream
- Impact on public health
- Overview of comparison data 2014
- Understanding trends in epidemiology
- Improved surveillance and outbreak detection
- Changing the way we view data
- Conclusions

Gastrointestinal Bacteria Reference Unit

•National reference service for gastrointestinal bacterial pathogens

•Specialist diagnostic tests for rare infections/intoxications

•National surveillance, outbreak detection and investigation

Research and development

•Expert advice, training and education

•Responsible for setting up EU wide standards for routine microbiological procedures and testing methods at a national level

Identification, typing

STEC, Salmonella Listeria monocytogenes Campylobacter, Shigella, Yersinia, Vibrio, Clostridia, Bacillus, Helicobacter,

Specialist diagnostic services

Botulism Serodiagnostics Toxin detection All diarrhoeagenic *E. coli* pathotypes

Current Identification Methods for STEC

Public Health England

Gene Detection Day 1

Identification

Day 3

Day 4-8

Real time TaqMan® PCR assays - target four different genes

PCR targeting: *stx1, stx2 eae* (intimin), O157

OmniLog® ID System (Biolog)

- phenotypic microarray

Differentiation from *Shigella* spp. and other Enterobacteriaceae

Agglutination with specific antisera against LPS & flagella (O & H antigens)

- Slide agglutination
- Microtitre plates
- H typing can take up to 14 days

e.g. PT8 and PT21/28 most common in the UK

5

Both techniques useful in outbreak detection but not available for non-O157 STEC

Sub-typing Methods for STEC

Pulsed-field gel electrophoresis (PFGE) Day 4-7

stx subtyping Day 2

Block based multiple PCRs – time consuming and not practical for routine use

Whole Genome Sequencing

Laborious, technically demanding, validation needed for each serogroup

Introduced in 2012 for outbreak analysis, now used routinely on all STEC

Sequencing

Bioinformatics

Impact on Public Health Improved Data – Example 2014

Traditional versus WGS data for 2014 - 141 non-O157 strains tested

Test	Traditional	WGS	Mismatches
O antigen/ <i>rfb</i>	102 identified 26 untypable 13 Rough	138 identified 1 untypable 1 O153/O178 1 O123/O186	10 (7%)
H antigen / <i>fliC</i>	69 identified 42 untypable 30 not motile	139 identified 2 untypable	3 (2%)
<i>stx</i> subtyping	141 identified8 double positives (2 stx)2 triple positives (2 stx)	141 identified 1 double positive due to recombination (2b/d)	14 (9%)
Outbreak analysis	Serotyping <i>stx</i> subtype	rfb/fliC <i>stx</i> subtype Core SNP phylogeny SNP address	-

Impact on Public Health Understanding trends in Epidemiology

Most common Non-O157 STEC – 2014 (142 isolates)

Implementation of PCR at the hospitals has improved isolation of Non-O157 STEC

WGS is helping to understanding the data.

Common groups isolated in 2014 are O146, O26, O55, O103, O91, O117, O128ac & O80

O104 does not appear to be circulating in the community

Impact on Public Health Understanding trends in Epidemiology

stx sub-type in non-O157 - 2014

Table of strains associated with HUS

7% (10/141) associated with HUS

80% (8/10) are eae positive

70% (7/10) are *stx2* only of which 70% (5/7) are *stx2a*

- stx1b and stx2f not associated with clinical non-O157 isolates
- 38% associated with stx1 only
- stx1a and stx2b are most common sub-types
- All stx1a (only) are eae negative
- Majority (16/17) of O146 (ST442/738) are eae negative and not associated with severe disease

Serogroup	ST	ST1	ST2	EAE	stx1	stx2
O103:H2	386	+	-	-	stx1a	-
O145:H28	SLV-137	-	+	+	-	stx2a
O26:H11	21	-	+	+	-	stx2a
O26:H11	21	+	+	+	stx1a	stx2a
O54:H45	491	-	+	-	-	stx2b
O55:H7	335	-	+	+	-	stx2a
O55:H7	335	+	+	-	stx1c	stx2d
O55:H7	335	-	+	+	-	stx2a
O55:H7	335	-	+	+	-	stx2a
O75:H5	550	-	+	+	-	-

Impact on Public Health Higher resolution in outbreak analysis

Dallman et al. 2014. Epidemiol infect.

Table 1. Molecular and epidemiological data associated with strains of E. coli O26: H11 isolated at GBRU between 2009 and 2013

Reference no.	Stx profile	MLST	Date culture isolated	Sex/ age	Travel	Additional information*
181/09	1&2	21	Feb. 2009	F/2	No travel	Outbreak 2009
461/09	1&2	21	Feb. 2009	M/14	No travel	Outbreak 2009
460/09	1&2	21	Feb. 2009	F/0	No travel	Outbreak 2009
259/10	1&2	21	Sept. 2010	M/3	No travel	HUS
605/10	1&2	21	Sept. 2010	F/3	France	HUS
467/10	2	21	Nov. 2010	M/13	Turkey	HUS
519/11	1&2	21	July 2011	M/4	No travel	
624/12	2	21	Apr. 2012	F/13	Egypt	HUS
165/12	1&2	21	May 2012	F/42	No travel	Fatal case
483/12	2	21	July 2012	M/35	Ireland and Switzerland	Outbreak 2012
482/12	2	21	July 2012	M/4	No travel	Outbreak 2012
626/12	2	21	July 2012	M/4	No travel	Outbreak 2012
627/12	2	21	July 2012	M/2	No travel	Outbreak 2012
2270-502/12	2	21	July 2012	F/1	Ireland	
2290-502/12		29	July 2012	M/40	No data	
670/13		29	Aug. 2013	F/0	Egypt	HUS
680/13	_	29	Sept. 2013	F/3	Italy	Hospitalized with severe bloody diarrhoea
075/13	2	21	Sept. 2013	M/ 0	Albania	
637/13	2	21	Sept. 2013	F/7	No data	

MLST, Multilocus sequence typing; HUS, haemolytic uraemic syndrome.

* Additional information includes whether or not cases were associated with an outbreak and clinical symptoms.

Fig. 2. Phylogenetic relationship of 19 strains of *E. coli* O26 isolated at GBRU between 2009 and 2013. Outbreak strains of STEC O26 from 2009 and 2012 are highlighted in grey. The scale represents number of nucleotide substitutions per site. * Strains negative for the *stx* genes.

- Only main local outbreaks are picked up epidemiologically where there is either an increase of HUS or where PCR is available at the hospital
- SNP address will pick up national outbreaks that may not have obvious epidemiological link.
- This still relies on initial PCR detection.

October 2015 Switching to WGS for routine testing of E. coli

Web-based Gasto database available to Public Health Team

Molis ID NGS LIMS ID NGS RUN ID Sequencing Date Date	flow Yield	Postive Control	i D	Mixed	ST	MLST PROFILE	0	H	s. flexneri Serotype	EAE	BFPA	IPAH	Aggr	AAIC	LTCA	STA1	STB	STX	SNAPPERDE Flag	SNP Address
H153360699 147826 AHKYLVADXX 2015-08-26			Escherichia coli EC1848 89.58358	nothing	335	29,12,8,12,15,2,2	O55	5 H7		÷							-	st⁄2a		71.730.1046.1948.2205.2254.2457
H153360699147826AHK3FNADXX2015-08-24			Escherichia coli EC1848 89.207489	nothing	335	29,12,8,12,15,2,2	O55	5 H7		+				-			-	st⁄2a		71.730.1046.1948.2205.2254.2457
H153020735 136729 Ahjwtjadx 2015-07-28			Escherichia coli EC1848 89.076042	nothing	335	29,12,8,12,15,2,2	O55	5 H7	-	+							-	st⁄2a		71.730.1046.1948.2205.2254.2457
H152720005 129383 AHJV27ADXX 2015-07-13			Escherichia coli EC1848 89.641296	nothing	335	29,12,8,12,15,2,2	O55	5H7	-	÷				-			-	st⁄2a		71.730.1046.1948.2205.2254.2457
H152720004 129382 AHJV27ADXX 2015-07-13			Escherichia coli EC1848 89.459167	nothing	335	29,12,8,12,15,2,2	O55	5 H7	-	+				-			-	st⁄2a		71.730.1046.1948.2205.2254.2457
ID by Kme	ər	/	<i>⊐</i>	/	7	/	1							(\uparrow		\bigwedge
	ML	ST								,	<i>i</i> rı,	مار	E.c	col	í Nor					
Inouye 2012 Se					/ Serotype				Doumith									SnapperDb Dallman		
				Jo	en	sen 201	15						S	stx A	su Ash	ibt <u>y</u> nto	yp n	e		

- WGS Reference typing of all *E.coli* will be implemented October 2015
- All typing information will be available to public health team via a web based Gastrointestinal database.
- Cost should be reduced to the NHS customer from £120
- Turnaround time reduced from 14 days to 7 days
- PHE will proactively detect local and national non-O157 outbreaks in real time.
- Additional data gathered will be assessed to understand genetic associations with severe disease.
- Improvement of isolation is still needed, only a fraction of hospitals (<10%) use PCR to detect STEC and isolated is carried out at GBRU.
- Ideally the detection and isolation of non-O157 STEC will be implemented at the regional laboratories for an accurate number of non-O57 STEC infections.

Acknowledgements

Microbiologists

Sophie Long, Amy Gentle, Claire Jenkins, Neil Perry, Vivienne do Nascimento, Michael Wright, Yoshini Taylor, Dawn Hedges Bioinformatics Tim Dallman, Phil Ashton

Bioinformatics Unit

Sequencing

Cath Arnold

Genomic Service Unit

Epidemiologists

Lisa Byrne, Richard Elson, Jeremy Hawker

