Acid treatment for improved recovery of STEC from enrichment broths Gro S. Johannessen Section for food bacteriology Norwegian Veterinary Institute, Oslo, Norway 10th Annual Workshop of the National Reference Laboratories for *E. coli* Rome, 5-6 November 2015 #### Background and introduction - Current ISO/TS 13136:2012 is based on screening with PCR for specific genes followed by attempts of isolation - Isolation from PCR positive samples picking of 50 colonies - Low isolation rate from PCR positive samples challenge for food industry, competent authorities and research - An isolate is still needed for most characterization purposes, comparisons and tracing of contamination - Significance and consequence of detection of a gene? #### Some examples (from our lab) Meat imported from 3rd countries, project | | Bovine | Ovine | |------------------------|--------|-------| | No. consignments | 177 | 13 | | Total stx positive | 42 | 12 | | Total eae positive | 27 | 9 | | Stx and eae positive | 10 | 8 | | Positive for serotype* | 6 | 8 | | Only stx positive | 32 | 4 | | Only eae positive | 17 | 1 | | eae and O26 positive | 6 | 0 | ^{*}stx and eae positive samples also PCR positive for O26, O103, O111, O145 or O157 | Meat type | E. coli | Virulence
factors | Comments | |-------------|---------|----------------------|-----------------------------------| | Bovine | O26 | stx-, eae+ | | | Bovine | O26 | stx-, eae+ | Two samples from same consignment | | Bovine | O26 | stx-, eae+ | | | Bovine | O26 | stx-, eae+ | | | Bovine | O26 | stx-, eae+ | | | Mutton/lamb | 0103 | stx1+, eae+ | | | Mutton/lamb | O103 | stx-, eae+ | | ### Veg-i-Trade project - Samples analysed with GeneDisc and ISO method - 64 samples positive for stx/eae and one or more serotypes - 9 samples were culture confirmed, isolation rate 14% - STEC 026, 0103, 0111 and 0157 were confirmed by cultures - Poster presented at VTEC 2015 | | No. of samples | Pres. pos. by PCR | Culture
confirmed | |-----------------------------|----------------|-------------------|----------------------| | Leafy greens | 277 | 0 | - | | Water leafy greens | 222 | 12 | 2 | | Soil leafy greens | 371 | 28 | 3 | | Strawberries | 152 | 0 | - | | Water strawberries | 94 | 21 | 2 | | Soil/substrate strawberries | 128 | 3 | 2 | | Sample type | N* | stx
pos | eae pos | stx+eae
pos | stx+eae+
serotype
pos | Culture
confirmed | |--------------------|-----|------------|---------|----------------|-----------------------------|----------------------| | Leafy greens | 189 | 3 | 7 | 0 | 0 | - | | Soil leafy greens | 256 | 25 | 91 | 23 | 23 | 0 | | Water leafy greens | 101 | 9 | 19 | 6 | 6 | 0 | | Strawberries | 80 | 0 | 6 | 0 | 0 | - | | Soil strawberries | 80 | 1 | 48 | 1 | 1 | 0 | | Water strawberries | 16 | 10 | 13 | 10 | 10 | 0 | ^{*} Detailed results from two partners #### Challenge How to increase the recovery of isolates from PCR positive enrichments? Or how to look for a needle in the haystack when the needle looks like the straw...... #### Potential ways of increasing recovery - Phenotypical traits - Different selective enrichments and plating media - strain variety - Plating of dilutions - Acid treatment we started the work because of revision of *Shigella* methods - Immunological approaches - (A)IMS immunomagnetic separation beads for a limited number of serotypes - Immunoblot - DNA hybridization #### Why acid treatment? - E. coli effective in resisting acid stress, may survive pH 2 for hours, depending on growth phase and growth medium - 3 acid resistance systems (AR1, 2 and 3) collectively protect strains from different acid stress conditions in different environments - Strain variations - Link between Stx phage carriage and E. coli acid resistance? (Veses-Garcia et al, 2015) - Reduce background #### Different approaches - Different ways of doing acidification, but all includes treatment at pH2-3 for a variable period of time - Acidification of produce rinsate prior to enrichment - Exposure of enrichment broth to acid followed by plating (with or without a centrifugation step and with or without further enrichment) - Acid treatments of beads after IMS #### Acidification after IMS - Treat bead-bacteria suspension with acid - Variations over a theme - Incubation @room temperature with or without shaking for 1hr - Dilute the sample (increase pH again) - Plate on usual plates (Rainbow, ChromAgar STEC and others depending on serotype) Thanks to Catarina (NRL Sweden) and Saija (NRL Finland) for information © ## Acid treatment - two options from literature tested in our lab Centrifugation and direct plating Enrichment Centrifuge 1 ml, 12000 x g, 3 min Resuspend in TSB (pH2), incubate 30 min, room temp Centrifuge 12000 x g, 3 min, resuspend in TSBYE, plating Acid treatment and ON incubation **Enrichment in TSBYE** Acid treatment (1 ml in 9 ml TSB, pH 2, 30 min, room temp 1 ml acidified enrichment to 9 ml TSBYE, 37°C, 24 hrs, plating Veterinærinstituttet Centrifug resuspen Fedio et al. Food Microbiol, 2012, 83-90 Grant, AEM, 2004, 1226-1230 #### Testing in our laboratory | Isolate | Strain ID | Virulence genes | Source | |-----------------|-----------|------------------|-----------------| | E. coli 08:H9 | VI50863 | LT1, ST1b | Clinical | | E. coli 0113 | VI51033 | stx2+, eae- | Minced meat | | E. coli 091 | VI51051 | stx1+, eae- | EURL ring trial | | E. coli O26 | VI51052 | eae+ | EURL ring trial | | E. coli 0174 | VI51074 | stx1 and 2+,eae- | Sheep feces | | E. coli | VI51276 | Control strain | CCUG 17620 | | E. coli 0157:H7 | VI51277 | stx2:cat | | | E. coli O55 | VI51296 | | CCUG 32968 | | E. coli O111:H8 | VI51317 | stx-, eae+ | From NIPH | | E. coli 0111:H- | VI51318 | stx-, eae+ | From NIPH | | E. coli 0145:H8 | VI51320 | stx-, eae+ | From NIPH | | E. coli 0145:H- | VI51321 | stx-, eae+ | From NIPH | | E. coli 0104 | VI51653 | | From NIPH | #### Testing on pure cultures - Grown pure cultures in TSBYE ON (stationary phase) - Diluted to approx 100 and 1000 cfu/ml (used different diluents) - 1 ml of dilution to 9 ml TSB (pH2), 30 min@ room temp. - 1 ml of acidified TSB to 9 ml fresh TSBYE, 37°C over night - Plating on Blood agar - Calculated cfu/ml before and after acidification Variation between strains E. coli 0104 does not survive Control strain survives in 2/3 rounds #### EU RL PT 15 Detection of VTEC in sprouts - ISO TS 13136 was followed as described - Enrichment in BPW, 37°C approx 18 hrs, - PCR positive for O111, eae and stx2 on 2/3 samples - AIMS for O111 followed by plating on SMAC, Chrom Agar O157 and Chrom Agar STEC - Picked and pooled and PCR-ed 50 colonies all negative! - Picked and pooled and PCR-ed another 50 colonies - still all negative ® - Agglutinated all 100 colonies with 0111 antiserum, 1 positive, but negative when re-PCRed (probably Morganella?) ## Veterinærinstituttet #### We test the acid treatment! Enrichment broth from fridge was resuscitated (1 ml enrichment - 9 ml fresh BPW, 37°C for 5 hrs) **Enrichment** Centrifuge 1 ml, 12000 x g, 3 min AIMS for O111 Resuspend in TSB (pH2), incubate 30 min, room temp Plating on SMAC, Chrom 0157 and Chrom STEC Centrifuge 12000 x g, 3 min, resuspend in TSBYE #### Results #### Results cont. #### Results - cont. Sample 5729 #### Confirmation from plates Acid treatment **AIMS 0111** | | Prøve 1 (6769) | | | | | | |--------------|----------------|-------|-------|-------|-------|--| | Opprinnelse | | 0111 | eae | stx1 | stx2 | | | | 1_pool 11 | 21,33 | 20,6 | 24 | 22,67 | | | | 1_Pool-12 | 21,27 | 20,19 | 21,96 | 22,3 | | | | 1_Pool-13 | 20,62 | 19,61 | 21,6 | 21,79 | | | Pooler av | 1_Pool-14 | 19,37 | 18,37 | No Ct | 20,64 | | | kolonier | 1_Pool-15 | 20,27 | 18,73 | No Ct | 21,11 | | | plukket fra | 1_pool 11_1:10 | 24,21 | 23,87 | 39,77 | 26,02 | | | syrebehandle | 1_Pool-12_1:10 | 24,06 | 23,07 | 23,79 | 25,73 | | | t oppformert | 1_Pool-13_1:10 | 24,08 | 22,55 | 23,45 | 24,86 | | | buljong | 1_Pool-14_1:10 | No Ct | 21,27 | 22,79 | 23,57 | | | | 1_Pool-15_1:10 | 22,63 | 21,94 | 23,34 | 24,12 | | | | 1_kol 145 | No Ct | 20,46 | 21,5 | 22,54 | | | | 1_kol 145_1:10 | 24,29 | 23,74 | 25,26 | 25,78 | | | | 1_Pool-16 | No Ct | No Ct | No Ct | No Ct | | | Pooler av | 1_Pool-17 | No Ct | No Ct | No Ct | No Ct | | | kolonier | 1_Pool-18 | No Ct | No Ct | No Ct | No Ct | | | plukket fra | 1_pool 19 | No Ct | 42,04 | No Ct | 39,42 | | | IMS 0111 | 1_Pool-20 | 27,67 | 25,92 | 27,89 | 26,14 | | | oppkonsentr | 1_Pool-16_1:10 | No Ct | No Ct | No Ct | No Ct | | | ert fra | 1_Pool-17_1:10 | No Ct | No Ct | No Ct | No Ct | | | oppformert | 1_Pool-18_1:10 | No Ct | No Ct | No Ct | No Ct | | | buljong | 1_pool 19_1:10 | No Ct | 41,31 | No Ct | 44,16 | | | | 1_Pool-20_1:10 | 31,33 | 29,72 | 43,96 | 29,84 | | # Veterinærinstituttet #### Confirmation from plates cont. Acid treatment **AIMS 0111** | | Prøve 1 (6769) | | | | | | | |---------------------------|----------------|-------|-------|-------|------|-------|-------| | Opprinnelse | Well Name | 0111 | eae | stx1 | 9 | stx2 | | | | 1_kol101_0111 | 22,41 | 21,6 | No Ct | | | 23,72 | | | 1_kol103_0111 | 25,43 | 23,79 | No Ct | | | 23,98 | | Kolonier plukket | 1_kol102_0111 | 25,18 | 24,28 | No Ct | | | 24,84 | | fra | 1_kol104_0111 | 24,07 | 23,19 | No Ct | | | 23,81 | | syrebehandlet | 1_kol105_0111 | 24,54 | 23,16 | No Ct | | | 24,06 | | oppformert | 1_kol106_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | buljong | 1_kol107_0111 | 23 | 21,41 | No Ct | | | 23,08 | | buijong | 1_kol108_0111 | 25,8 | 23,95 | No Ct | | | 24,78 | | | 1_kol109_0111 | 21,13 | 20,82 | 2 | 2,84 | | 22,89 | | | 1_kol110_0111 | 22,32 | 21,99 | 2 | 4,52 | | 23,34 | | | 1_kol191_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | | 1_kol192_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | Kolonier plukket | 1_kol193_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | fra IMS 0111 | 1_kol194_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | oppkonsentrert | 1_kol195_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | fra oppformert
buljong | 1_kol196_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | | 1_kol197_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | | 1_kol198_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | | 1_kol199_0111 | No Ct | No Ct | No Ct | 1 | No Ct | | | | 1_kol200_0111 | 42,83 | No Ct | No Ct | | | 35,92 | #### Conclusion - summary - No miracle treatment, but may be an option for some sample types? - Cheap, easy and not too time and labour consuming (depending on which approach) - Strain variations and matrix effects - Option that should be looked into - Part of the tool box #### Aknowledgement Tone Mathisen Fagereng at section for food bacteriology ■ To you - for listening