Acid treatment for improved recovery of STEC from enrichment broths

Gro S. Johannessen
Section for food bacteriology
Norwegian Veterinary Institute, Oslo, Norway

10th Annual Workshop of the National Reference Laboratories for *E. coli* Rome, 5-6 November 2015

Background and introduction

- Current ISO/TS 13136:2012 is based on screening with PCR for specific genes followed by attempts of isolation
- Isolation from PCR positive samples picking of 50 colonies
- Low isolation rate from PCR positive samples challenge for food industry, competent authorities and research
- An isolate is still needed for most characterization purposes, comparisons and tracing of contamination
- Significance and consequence of detection of a gene?

Some examples (from our lab)

Meat imported from 3rd countries, project

	Bovine	Ovine
No. consignments	177	13
Total stx positive	42	12
Total eae positive	27	9
Stx and eae positive	10	8
Positive for serotype*	6	8
Only stx positive	32	4
Only eae positive	17	1
eae and O26 positive	6	0

^{*}stx and eae positive samples also PCR positive for O26, O103, O111, O145 or O157

Meat type	E. coli	Virulence factors	Comments
Bovine	O26	stx-, eae+	
Bovine	O26	stx-, eae+	Two samples from same consignment
Bovine	O26	stx-, eae+	
Bovine	O26	stx-, eae+	
Bovine	O26	stx-, eae+	
Mutton/lamb	0103	stx1+, eae+	
Mutton/lamb	O103	stx-, eae+	

Veg-i-Trade project

- Samples analysed with GeneDisc and ISO method
- 64 samples positive for stx/eae and one or more serotypes
- 9 samples were culture confirmed, isolation rate 14%
- STEC 026, 0103, 0111 and 0157 were confirmed by cultures
- Poster presented at VTEC 2015

	No. of samples	Pres. pos. by PCR	Culture confirmed
Leafy greens	277	0	-
Water leafy greens	222	12	2
Soil leafy greens	371	28	3
Strawberries	152	0	-
Water strawberries	94	21	2
Soil/substrate strawberries	128	3	2

Sample type	N*	stx pos	eae pos	stx+eae pos	stx+eae+ serotype pos	Culture confirmed
Leafy greens	189	3	7	0	0	-
Soil leafy greens	256	25	91	23	23	0
Water leafy greens	101	9	19	6	6	0
Strawberries	80	0	6	0	0	-
Soil strawberries	80	1	48	1	1	0
Water strawberries	16	10	13	10	10	0

^{*} Detailed results from two partners

Challenge

How to increase the recovery of isolates from PCR positive enrichments?

Or how to look for a needle in the haystack when the needle looks like the straw......

Potential ways of increasing recovery

- Phenotypical traits
 - Different selective enrichments and plating media - strain variety
 - Plating of dilutions
 - Acid treatment we started the work because of revision of *Shigella* methods
- Immunological approaches
 - (A)IMS immunomagnetic separation beads for a limited number of serotypes
 - Immunoblot
- DNA hybridization

Why acid treatment?

- E. coli effective in resisting acid stress, may survive pH 2 for hours, depending on growth phase and growth medium
 - 3 acid resistance systems (AR1, 2 and 3) collectively protect strains from different acid stress conditions in different environments
 - Strain variations
 - Link between Stx phage carriage and E. coli acid resistance? (Veses-Garcia et al, 2015)
- Reduce background

Different approaches

- Different ways of doing acidification, but all includes treatment at pH2-3 for a variable period of time
 - Acidification of produce rinsate prior to enrichment
 - Exposure of enrichment broth to acid followed by plating (with or without a centrifugation step and with or without further enrichment)
 - Acid treatments of beads after IMS

Acidification after IMS

- Treat bead-bacteria suspension with acid
 - Variations over a theme
 - Incubation @room temperature with or without shaking for 1hr
 - Dilute the sample (increase pH again)
 - Plate on usual plates (Rainbow, ChromAgar STEC and others depending on serotype)

Thanks to Catarina (NRL Sweden) and Saija (NRL Finland) for information ©

Acid treatment - two options from literature tested in our lab

Centrifugation and direct plating

Enrichment

Centrifuge 1 ml, 12000 x g, 3 min

Resuspend in TSB (pH2), incubate 30 min, room temp

Centrifuge 12000 x g, 3 min, resuspend in TSBYE, plating

Acid treatment and ON incubation

Enrichment in TSBYE

Acid treatment (1 ml in 9 ml TSB, pH 2, 30 min, room temp

1 ml acidified enrichment to 9 ml TSBYE, 37°C, 24 hrs, plating

Veterinærinstituttet Centrifug resuspen

Fedio et al. Food Microbiol, 2012, 83-90

Grant, AEM, 2004, 1226-1230

Testing in our laboratory

Isolate	Strain ID	Virulence genes	Source
E. coli 08:H9	VI50863	LT1, ST1b	Clinical
E. coli 0113	VI51033	stx2+, eae-	Minced meat
E. coli 091	VI51051	stx1+, eae-	EURL ring trial
E. coli O26	VI51052	eae+	EURL ring trial
E. coli 0174	VI51074	stx1 and 2+,eae-	Sheep feces
E. coli	VI51276	Control strain	CCUG 17620
E. coli 0157:H7	VI51277	stx2:cat	
E. coli O55	VI51296		CCUG 32968
E. coli O111:H8	VI51317	stx-, eae+	From NIPH
E. coli 0111:H-	VI51318	stx-, eae+	From NIPH
E. coli 0145:H8	VI51320	stx-, eae+	From NIPH
E. coli 0145:H-	VI51321	stx-, eae+	From NIPH
E. coli 0104	VI51653		From NIPH

Testing on pure cultures

- Grown pure cultures in TSBYE ON (stationary phase)
- Diluted to approx 100 and 1000 cfu/ml (used different diluents)
- 1 ml of dilution to 9 ml TSB (pH2), 30 min@ room temp.
- 1 ml of acidified TSB to 9 ml fresh TSBYE, 37°C over night
- Plating on Blood agar
- Calculated cfu/ml before and after acidification

Variation between strains E. coli 0104 does not survive Control strain survives in 2/3 rounds

EU RL PT 15 Detection of VTEC in sprouts

- ISO TS 13136 was followed as described
 - Enrichment in BPW, 37°C approx 18 hrs,
 - PCR positive for O111, eae and stx2 on 2/3 samples
 - AIMS for O111 followed by plating on SMAC, Chrom Agar O157 and Chrom Agar STEC
 - Picked and pooled and PCR-ed 50 colonies all negative!
 - Picked and pooled and PCR-ed another 50 colonies - still all negative ®
 - Agglutinated all 100 colonies with 0111 antiserum, 1 positive, but negative when re-PCRed (probably Morganella?)

Veterinærinstituttet

We test the acid treatment!

Enrichment broth from fridge was resuscitated (1 ml enrichment - 9 ml fresh BPW, 37°C for 5 hrs)

Enrichment

Centrifuge 1 ml, 12000 x g, 3 min

AIMS for O111

Resuspend in TSB (pH2), incubate 30 min, room temp Plating on SMAC, Chrom 0157 and Chrom STEC

Centrifuge 12000 x g, 3 min, resuspend in TSBYE

Results

Results cont.

Results - cont.

Sample 5729

Confirmation from plates

Acid treatment

AIMS 0111

	Prøve 1 (6769)					
Opprinnelse		0111	eae	stx1	stx2	
	1_pool 11	21,33	20,6	24	22,67	
	1_Pool-12	21,27	20,19	21,96	22,3	
	1_Pool-13	20,62	19,61	21,6	21,79	
Pooler av	1_Pool-14	19,37	18,37	No Ct	20,64	
kolonier	1_Pool-15	20,27	18,73	No Ct	21,11	
plukket fra	1_pool 11_1:10	24,21	23,87	39,77	26,02	
syrebehandle	1_Pool-12_1:10	24,06	23,07	23,79	25,73	
t oppformert	1_Pool-13_1:10	24,08	22,55	23,45	24,86	
buljong	1_Pool-14_1:10	No Ct	21,27	22,79	23,57	
	1_Pool-15_1:10	22,63	21,94	23,34	24,12	
	1_kol 145	No Ct	20,46	21,5	22,54	
	1_kol 145_1:10	24,29	23,74	25,26	25,78	
	1_Pool-16	No Ct	No Ct	No Ct	No Ct	
Pooler av	1_Pool-17	No Ct	No Ct	No Ct	No Ct	
kolonier	1_Pool-18	No Ct	No Ct	No Ct	No Ct	
plukket fra	1_pool 19	No Ct	42,04	No Ct	39,42	
IMS 0111	1_Pool-20	27,67	25,92	27,89	26,14	
oppkonsentr	1_Pool-16_1:10	No Ct	No Ct	No Ct	No Ct	
ert fra	1_Pool-17_1:10	No Ct	No Ct	No Ct	No Ct	
oppformert	1_Pool-18_1:10	No Ct	No Ct	No Ct	No Ct	
buljong	1_pool 19_1:10	No Ct	41,31	No Ct	44,16	
	1_Pool-20_1:10	31,33	29,72	43,96	29,84	

Veterinærinstituttet

Confirmation from plates cont.

Acid treatment

AIMS 0111

	Prøve 1 (6769)						
Opprinnelse	Well Name	0111	eae	stx1	9	stx2	
	1_kol101_0111	22,41	21,6	No Ct			23,72
	1_kol103_0111	25,43	23,79	No Ct			23,98
Kolonier plukket	1_kol102_0111	25,18	24,28	No Ct			24,84
fra	1_kol104_0111	24,07	23,19	No Ct			23,81
syrebehandlet	1_kol105_0111	24,54	23,16	No Ct			24,06
oppformert	1_kol106_0111	No Ct	No Ct	No Ct	1	No Ct	
buljong	1_kol107_0111	23	21,41	No Ct			23,08
buijong	1_kol108_0111	25,8	23,95	No Ct			24,78
	1_kol109_0111	21,13	20,82	2	2,84		22,89
	1_kol110_0111	22,32	21,99	2	4,52		23,34
	1_kol191_0111	No Ct	No Ct	No Ct	1	No Ct	
	1_kol192_0111	No Ct	No Ct	No Ct	1	No Ct	
Kolonier plukket	1_kol193_0111	No Ct	No Ct	No Ct	1	No Ct	
fra IMS 0111	1_kol194_0111	No Ct	No Ct	No Ct	1	No Ct	
oppkonsentrert	1_kol195_0111	No Ct	No Ct	No Ct	1	No Ct	
fra oppformert buljong	1_kol196_0111	No Ct	No Ct	No Ct	1	No Ct	
	1_kol197_0111	No Ct	No Ct	No Ct	1	No Ct	
	1_kol198_0111	No Ct	No Ct	No Ct	1	No Ct	
	1_kol199_0111	No Ct	No Ct	No Ct	1	No Ct	
	1_kol200_0111	42,83	No Ct	No Ct			35,92

Conclusion - summary

- No miracle treatment, but may be an option for some sample types?
- Cheap, easy and not too time and labour consuming (depending on which approach)
- Strain variations and matrix effects
- Option that should be looked into
- Part of the tool box

Aknowledgement

Tone Mathisen Fagereng at section for food bacteriology

■ To you - for listening

