## Trends and sources of STEC and of food-borne outbreaks due to STEC, in the EU

Frank Boelaert



12<sup>th</sup> Annual Workshop of the National Reference Laboratories for *E. coli* in the EU, Rome, 12-13 October 2017

www.efsa.europa.eu





## Annual monitoring of STEC in the EU

- EFSA activities for molecular typing data collection for food and animal isolates
- EFSA's activities on WGS (EC questionnaire on the availability of WGS )



## OUTLINE

## Annual monitoring of STEC in the EU

- EFSA activities for molecular typing data collection for food and animal isolates
- EFSA's activities on WGS (EC questionnaire on the availability of WGS)





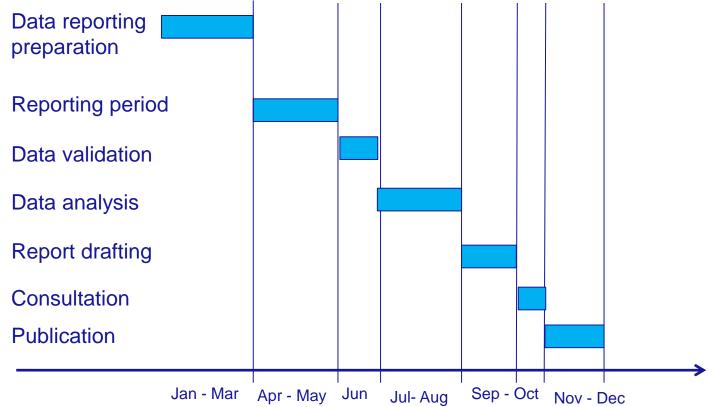
## Directive on the monitoring of zoonoses and zoonotic agents (2003/99/EC)

- Publication of the annual EU Summary Report
- MSs have an **obligation** to report each year

#### Data collection mandatory for 8 zoonotic agents

Salmonella (+ antimicrobial resistance (AMR)) Campylobacter (+ AMR) Listeria monocytogenes Brucella Tuberculosis due to Mycobacterium bovis Verotoxigenic Escherichia coli Trichinella Echinococcus

#### $\rightarrow$ and also for food-borne outbreaks (FBOs)

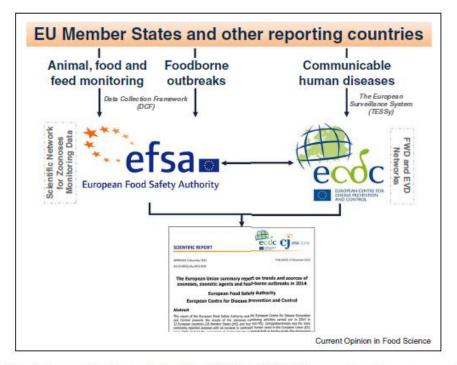

#### $\rightarrow$ and susceptible animal populations

In a number of cases, such as for Salmonella in poultry, more specific and harmonised requirements are laid down how to monitor and report these zoonoses.





## **EUSR, ANNUAL PRODUCTION CYCLE**




Resources : staff (EFSA, ECDC) , (BIOMO, DATA, AHAW, Risk Comm), contractors





#### DATA FLOW AND EFSA'S INTEGRATED APPROACH FOR THE PRODUCTION OF THE JOINT EFSA-ECDC EU SUMMARY REPORTS (EUSRS)



Data flow and EFSA's integrated approach for the production of the joint EFSA-ECDC EU Summary Report on zoonoses and food-borne outbreaks in the EU. Note: FWD Network: European Food and Waterborne Diseases and Zoonoses Network; EVD Network: European Emerging and Vector-borne Diseases Network.

### $\sim$ monitoring of trends and sources of zoonoses and FBO, $\,$ in EU $\,$

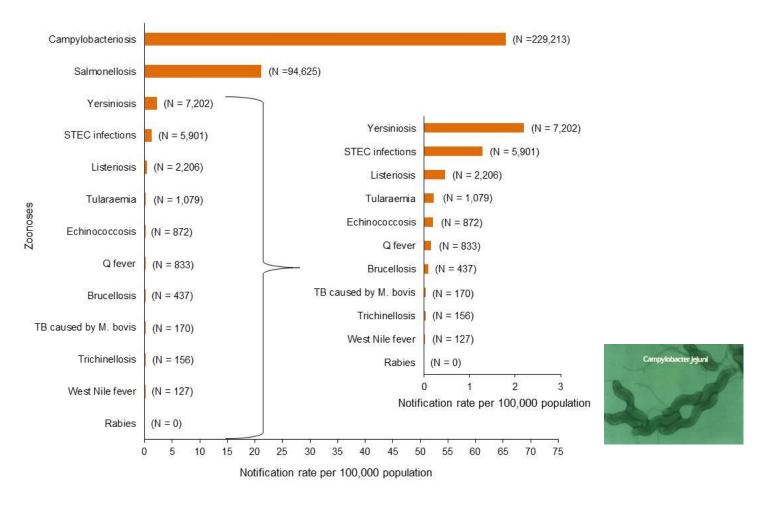




#### **EUSR ZOONOSES-FBO 2015 ON WILEY PLATFORM**

The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015

European Food Safety Authority, European Centre for Disease Prevention and Control




http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4634/festfur non-MS). Campylobacceriosis was the most commonly reported for the set of t





## HUMAN ZOONOSES CASES IN EU, 2015

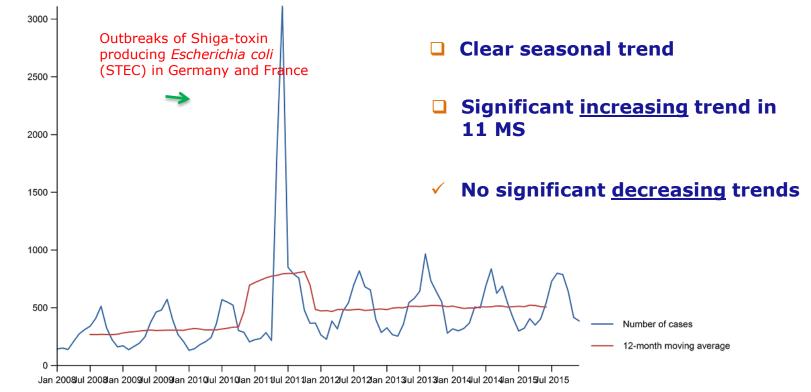


Reported notification rates of zoonoses in confirmed human cases in EU, 2015





#### REPORTED HUMAN CASES OF STEC INFECTIONS AND NOTIFICATION RATES PER 100,000 IN THE EU/EEA, BY COUNTRY AND YEAR, 2011–2015


|                            | 2015                    |                       |       |         |         |           | 14      | 20      | 13      | 20:     | 12      | 20      | 11      |
|----------------------------|-------------------------|-----------------------|-------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|
| Country                    | National                | Data                  | Total | Confi   | rmed    | Confirmed |         | Confi   | rmed    | Confi   | rmed    | Confi   | rmed    |
|                            |                         | format <sup>(a)</sup> | cases | cases 8 | & rates | cases 8   | & rates | cases 8 | k rates | cases 8 | k rates | cases 8 | k rates |
|                            | coverage <sup>(a)</sup> | format                | cases | Cases   | Rate    | Cases     | Rate    | Cases   | Rate    | Cases   | Rate    | Cases   | Rate    |
| Austria                    | Y                       | С                     | 107   | 107     | 1.27    | 131       | 1.54    | 130     | 1.54    | 130     | 1.55    | 120     | 1.43    |
| Belgium <sup>(a)</sup>     | Ν                       | А                     | 100   | 100     | -       | 85        | -       | 117     | -       | 105     | -       | 100     | -       |
| Bulgaria                   | Y                       | А                     | 0     | 0       | 0.00    | 0         | 0.00    | 1       | 0.01    | 0       | 0.00    | 1       | 0.01    |
| Croatia                    | Y                       | А                     | 0     | 0       | 0.00    | 4         | 0.09    | 0       | 0.00    | 0       | 0.00    | -       | -       |
| Cyprus                     | Y                       | С                     | 0     | 0       | 0.00    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00    | 0       | 0.00    |
| Czech Republic             | Y                       | С                     | 26    | 26      | 0.25    | 29        | 0.28    | 17      | 0.16    | 9       | 0.09    | 7       | 0.07    |
| Denmark                    | Y                       | С                     | 228   | 173     | 3.06    | ) 229     | 4.07    | 191     | 3.41    | 199     | 3.57    | 215     | 3.87    |
| Estonia                    | Y                       | С                     | 8     | 8       | 0.61    | 6         | 0.46    | 8       | 0.61    | 3       | 0.23    | 4       | 0.30    |
| Finland                    | Y                       | С                     | 74    | 74      | 1.35    | 64        | 1.17    | 98      | 1.81    | 32      | 0.59    | 27      | 0.50    |
| France <sup>(b,c)</sup>    | N                       | С                     | 262   | 262     | -       | 221       | -       | 218     | -       | 208     | -       | 221     | -       |
| Germany                    | Y                       | С                     | 1647  | 1616    | 1.99    | 1663      | 2.06    | 1,639   | 2.00    | 1,573   | 1.93    | 5,558   | 6.82    |
| Greece                     | Y                       | С                     | 1     | 1       | 0.01    | 1         | 0.01    | 2       | 0.02    | 0       | 0.00    | 1       | 0.01    |
| Hungary                    | Y                       | С                     | 15    | 15      | 0.15    | 18        | 0.18    | 13      | 0.13    | 3       | 0.03    | 11      | 0.11    |
| Ireland                    | Y                       | С                     | 625   | 598     | 12.92   | 572       | 12.42   | 564     | 12.29   | 412     | 8.99    | 275     | 6.02    |
| Italy <sup>(c)</sup>       | Y                       | С                     | 68    | 59      | )       | 68        | -       | 64      | -       | 50      | -       | 51      | -       |
| Latvia                     | Y                       | С                     | 4     | 4       | 0.20    | 0         | 0.00    | 0       | 0.00    | 0       | 0.00    | 0       | 0.00    |
| Lithuania                  | Y                       | С                     | 3     | 3       | 0.10    | 1         | 0.03    | 6       | 0.20    | 2       | 0.07    | 0       | 0.00    |
| Luxembourg                 | Y                       | С                     | 4     | 4       | 0.71    | 3         | 0.55    | 10      | 1.86    | 21      | 4.00    | 14      | 2.74    |
| Malta                      | Y                       | С                     | 4     | 4       | 0.93    | 5         | 1.18    | 2       | 0.48    | 1       | 0.24    | 2       | 0.48    |
| Netherlands                | Y                       | С                     | 858   | 858     | 5.08    | 919       | 5.46    | 1,184   | 7.06    | 1,049   | 6.27    | 845     | 5.07    |
| Poland                     | Y                       | С                     | 2     | 0       | 0.00    | 5         | 0.01    | 5       | 0.01    | 3       | 0.01    | 5       | 0.01    |
| Portugal                   | Y                       | С                     | 0     | 0       | 0.00    | -         | -       | -       | -       | -       | -       | -       | -       |
| Romania                    | Y                       | С                     | 0     | 0       | 0.00    | 2         | 0.01    | 6       | 0.03    | 1       | 0.01    | 2       | 0.01    |
| Slovakia                   | Y                       | С                     | 1     | 1       | 0.02    | 2         | 0.04    | 7       | 0.13    | 9       | 0.17    | 5       | 0.09    |
| Slovenia                   | Y                       | С                     | 23    | 23      | 1.11    | 29        | 1.41    | 17      | 0.83    | 29      | 1.41    | 25      | 1.22    |
| Spain                      | Y                       | С                     | 86    | 86      | 0.19    | 50        | 0.11    | 28      | 0.06    | 32      | 0.07    | 20      | 0.04    |
| Sweden                     | Y                       | С                     | 551   | 551     | 5.65    | 472       | 4.89    | 551     | 5.77    | 472     | 4.98    | 477     | 5.07    |
| United Kingdom             | Y                       | С                     | 1328  | 1328    | 2.05    | 1324      | 2.06    | 1,164   | 1.82    | 1,337   | 2.11    | 1,501   | 2.40    |
| EU Total                   | -                       | -                     | 6025  | 5901    | 1.27    | 5903      | 1.32    | 6,042   | 1.35    | 5,680   | 1.29    | 9,487   | 2.21    |
| Iceland                    | Y                       | С                     | 1     | 1       | 0.30    | 3         | 0.92    | 3       | 0.93    | 1       | 0.31    | 2       | 0.63    |
| Norway                     | Y                       | С                     | 221   | 221     | 4.28    | 151       | 2.96    | 103     | 2.04    | 75      | 1.50    | 47      | 0.96    |
| Switzerland <sup>(c)</sup> | Y                       | С                     | 308   | 308     | 3.72    | 125       | 1.51    | 82      | 1.00    | 66      | 0.82    | 76      | 0.97    |





#### TREND IN REPORTED CONFIRMED CASES OF HUMAN STEC INFECTIONS IN THE EU/EEA, 2008-2015

## In 2015, 6,005 cases of STEC infections, of which 5,901 confirmed reported in the EU







#### DISTRIBUTION OF REPORTED CONFIRMED CASES OF HUMAN STEC INFECTIONS IN THE EU/EEA, 2013–2015, BY THE 20 MOST FREQUENT SEROGROUPS

| Savagraum              |       | 2015 |      |       | 2014 |      |       | 2013 |      |
|------------------------|-------|------|------|-------|------|------|-------|------|------|
| Serogroup              | Cases | MSs  | %    | Cases | MSs  | %    | Cases | MSs  | %    |
| 0157                   | 1,510 | 21   | 41.7 | 1,692 | 23   | 46.3 | 1,828 | 23   | 48.9 |
| O26                    | 537   | 16   | 14.8 | 444   | 16   | 12.2 | 476   | 17   | 12.7 |
| NT <sup>(a)</sup>      | 430   | 10   | 11.9 | 315   | 9    | 8.6  | 298   | 10   | 8.0  |
| O103                   | 171   | 14   | 4.7  | 193   | 12   | 5.3  | 160   | 12   | 4.3  |
| 091                    | 114   | 12   | 3.1  | 105   | 11   | 2.9  | 94    | 11   | 2.5  |
| 0145                   | 95    | 12   | 2.6  | 105   | 11   | 2.9  | 96    | 11   | 2.6  |
| 0146                   | 74    | 10   | 2.0  | 83    | 9    | 2.3  | 75    | 9    | 2.0  |
| 0128                   | 49    | 12   | 1.4  | 47    | 11   | 1.3  | 41    | 8    | 1.1  |
| O-rough <sup>(b)</sup> | 45    | 8    | 1.2  | 55    | 7    | 1.5  | 41    | 5    | 1.1  |
| 0111                   | 42    | 11   | 1.2  | 54    | 11   | 1.5  | 78    | 13   | 2.1  |
| 076                    | 31    | 9    | 0.9  | 21    | 7    | 0.6  | 22    | 9    | 0.6  |
| 055                    | 29    | 8    | 0.8  | 42    | 11   | 1.1  | 12    | 6    | 0.3  |
| 0113                   | 28    | 7    | 0.8  | 37    | 10   | 1.0  | 36    | 6    | 1.0  |
| 0182                   | 25    | 5    | 0.7  | 13    | 5    | 0.4  | 18    | 5    | 0.5  |
| 080                    | 24    | 4    | 0.7  | 15    | 3    | 0.4  | 8     | 4    | 0.2  |
| 0117                   | 24    | 7    | 0.7  | 24    | 8    | 0.7  | 27    | 8    | 0.7  |
| 0177                   | 23    | 5    | 0.6  | 14    | 8    | 0.4  | 23    | 7    | 0.6  |
| 05                     | 23    | 6    | 0.6  | 16    | 7    | 0.4  | 15    | 5    | 0.4  |
| 078                    | 21    | 7    | 0.6  | 8     | 4    | 0.2  | 5     | 5    | 0.1  |
| 08                     | 21    | 9    | 0.6  | 15    | 7    | 0.4  | 11    | 5    | 0.3  |
| Other                  | 308   | -    | 8.5  | 356   | -    | 9.7  | 373   | -    | 10.0 |





The degree of harmonisation of the applied monitoring schemes and collected data limits the type of analysis that can be performed. Based on the obtained data, three main data categories can be distinguished:

| Sampling<br>Stage                               | Matrix                  | Zoonotic Agent<br>monitored                                                                                                                                                  | Harmonisation | Analysis in<br>EU Summary<br>reports |                               |
|-------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|-------------------------------|
| Primary<br>Production                           | Animals                 | Salmonella in poultry;<br>Tuberculosis due to<br>Mycobacterium bovis;<br>Brucella;<br>Trichinella and Echinococcus<br>granulosus                                             | $\odot$       | 📕 🧻 🧏 –                              | Harmonisation                 |
| Processing & Retail<br>Whole Food Chain         | Food<br>Animals         | Salmonella Process Hygiene an<br>Food Safety Criteria;<br>Listeria Food Safety Criteria;<br>Rabies;<br>Food-borne outbreaks                                                  | ₫ 🛄           | <u> </u>                             | EU Baseline<br>surveys (EFSA) |
| Primary<br>Production<br>Processing &<br>Retail | Feed<br>Animals<br>Food | Campylobacter; Yersinia; Shiga<br>toxin-producing Escherichia co<br>Q-Fever; West Nile Virus;<br>Toxoplasma; Francisella<br>tularensis; Other zoonotic agen<br>(Taenia spp.) | i; 💮          |                                      |                               |
| Descriptive Summar                              | ry; 📈 Trend w           | ratching; 🤷 Trend analysis                                                                                                                                                   |               |                                      |                               |
|                                                 |                         |                                                                                                                                                                              |               | Curr                                 | ent Opinion in Food Scient    |

Categorisation of the zoonoses monitoring data and possible analyses as evaluated by EFSA. The data obtained in the EFSA Data Collection Framework can vary according the level of data quality and harmonisation. EFSA consistently proposed and analysed well-designed EU-wide baseline surveys on the occurrence of zoonotic agents and contributed to improved harmonisation of monitoring in the MS. Data can be divided into three main categories according the sampling stage, the matrices collected and the zoonotic agent monitored. The types of data analyses suggested by EFSA strongly depend on this level of harmonisation and can either be a descriptive summary, or trend-watching, or a full trend analysis of the monitoring data.





## SUMMARY OF STEC STATISTICS RELATED TO HUMANS, MAJOR FOOD CATEGORIES AND MAJOR ANIMALS SPECIES, EU, 2012 - 2015

| Humans                                                   | 2015   | 2014  | 2013   | 2012    | Data<br>source |
|----------------------------------------------------------|--------|-------|--------|---------|----------------|
| Total number of confirmed cases                          | 5,929  | 5,900 | 6,042  | 5,680   | ECDC           |
| Total number of confirmed cases/100,000                  | ·      |       |        |         | ECDC           |
| population (notification rates)                          | 1.68   | 1.75  | 1.80   | 1.70    |                |
|                                                          |        |       |        |         | ECDC           |
| Number of reporting MS                                   | 28     | 27    | 27     | 27      | ECDC           |
| Infection acquired in the EU                             | 3,991  | 3,959 | 3,916  | 3,678   | ECDC           |
| Infection acquired outside the EU                        | 532    | 474   | 485    | 543     |                |
| Unknown travel status or unknown country<br>of infection | 1,406  | 1,467 | 1,641  | 1,459   | ECDC           |
| Number of outbreak-related cases*                        | 572    | 957   | 633    |         | EFSA           |
| Total number of outbreaks                                | 50     | 67    | 74     | 41      | EFSA           |
| Food                                                     | 2015   | 2014  | 2013   | 2012    |                |
| Meat and meat products                                   |        |       |        |         |                |
| Number of sampled units                                  | 10,385 | 8,576 | 11,024 | 11,876  | EFSA           |
| Proportion of positive units                             | 2.8%   | 2.9%  | 2.3%   | 3.3%    | EFSA           |
| Number of reporting MS                                   | 16     | 16    | 19     | 18      | EFSA           |
| Milk and milk products                                   | 10     | 10    | 15     | 10      |                |
| Number of sampled units                                  | 4,518  | 6,811 | 4,933  | 4,606   | EFSA           |
| Proportion of positive units                             | 1.4%   | 1.2%  | 2.7%   | 1.9 %   | EFSA           |
| Number of reporting MS                                   | 11     | 12    | 13     | 110 /10 | EFSA           |
| Fruits and vegetables (and juices)                       |        |       | 15     |         |                |
| Number of sampled units                                  | 2,052  | 2,054 | 3,250  | 2,025   | EFSA           |
| Proportion of positive units                             | 0.1%   | 0.1%  | 0.2%   | 0.1%    | EFSA           |
| Number of reporting MS                                   | 22     | 23    | 23     | 20      | EFSA           |
| Animals                                                  | 2015   | 2014  | 2013   | 2012    |                |
| Bovine animals                                           |        |       |        |         |                |
| Number of sampled herds                                  | 49     | 1,178 | 1,307  | 1,664   | EFSA           |
| Proportion of positive herds                             | 2%     | 2.1%  | 7%     | 7.1%    | EFSA           |
| Number of reporting MS                                   | 2      | 5     | 4      | 4       | EFSA           |
| Small ruminants                                          | -      |       |        |         |                |
| Number of sampled herds                                  | 109    | 44    | 11     | 58      | EFSA           |
| Proportion of positive herds                             | 14.7%  | 9.1%  | 9.1%   | 10.3%   | EFSA           |
| Number of reporting MS                                   | 7      | 7     | 7      | 6       | EFSA           |
|                                                          | ,      | ,     | ,      | 0       |                |





### **STEC IN FOOD: COMPLIANCE OF MONITORING WITH FSC**

STEC sprouted seeds monitoring results at retail, EU, 2013-2015

| Sprouted seeds | Number of reporting<br>MS | Sample units<br>tested | Sample units positive (percent) |
|----------------|---------------------------|------------------------|---------------------------------|
| 2013           | 6                         | 444                    | 0 (0.0%)                        |
| 2014           | 6                         | 481                    | 0 (0.0%)                        |
| 2015           | 7                         | 576                    | 1 (0.2%)                        |

The food safety criterion prescribes that sprout monitoring results must be compliant with "absence in 25 grams", of Shiga toxin producing *E. coli* (STEC) 0157, 026, 0111, 0103, 0145 and 0104:H4, at retail (Regulation (EC) 209/2013).

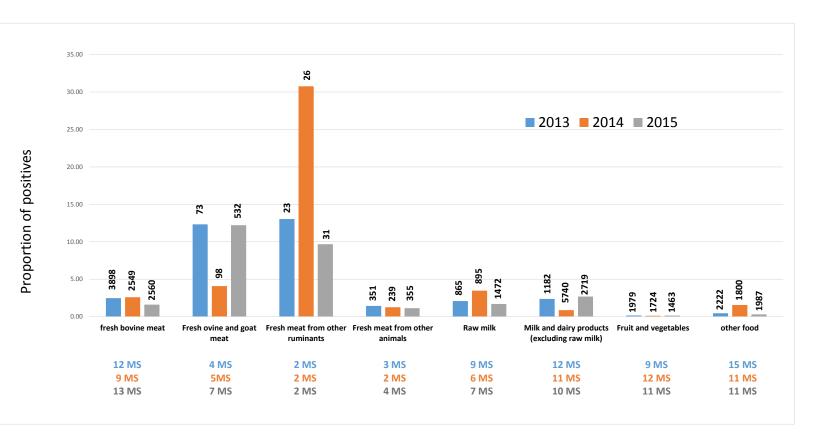




## **VEROTOXIGENIC** *ESCHERICHIA COLI*

## Important note for data analysis and interpretation:

Different investigations are **not necessarily directly comparable** owing to **differences in sampling strategies and the analytical methods applied** 


Two main categories of **analytical methods** used:

- **1. Aiming at detecting any VTEC**, regardless their serotype, including: ISO/TS 13136:2012, other PCR-based methods, and also methods based on the detection of verocytotoxin production by immunoassays.
- 2. Designed to detect only VTEC 0157, such as the method ISO 16654:2001 and the equivalent NMKL 164:2005. Focus has traditionally been on VTEC 0157 in many of the MS surveillance programmes → impact on prevalence and frequency distribution of VTEC serogroups



## **STEC IN FOOD, OCCURRENCE**

The proportion of STEC-positive samples in the main food categories, regardless the analytical method employed, in the reporting MSs, 2013-2015







## **VTEC IN FOOD**

## ANALYSIS OF VTEC SEROGROUPS IN FOOD (cont.)

Proportion of positive samples for any STEC and STEC belonging to the 'top-5' serogroups in food categories in Member States and non-Member States, 2015

|                                     | Samples tested by ISO 13136 |       |        |    |      |    | Samples p | ositive fo | r    | Samples positive for |      |   |      |  |  |  |  |  |  |  |  |
|-------------------------------------|-----------------------------|-------|--------|----|------|----|-----------|------------|------|----------------------|------|---|------|--|--|--|--|--|--|--|--|
| Food category <sup>(b)</sup>        | Samples tested by 150 15150 | any   | / STEC | 0′ | 157  | C  | 026       | 0          | 103  | 0                    | 145  | 0 | 0111 |  |  |  |  |  |  |  |  |
|                                     | n                           | n     | %      | n  | %    | n  | %         | n          | %    | n                    | %    | n | %    |  |  |  |  |  |  |  |  |
| bovine meat                         | 4,625                       | 82    | 1.77   | 11 | 0.24 | 13 | 0.28      | 3          | 0.06 | 4                    | 0.09 | 1 | 0.02 |  |  |  |  |  |  |  |  |
| ovine and goat meat                 | 621                         | 79    | 12.72  | 8  | 1.29 | 8  | 1.29      | 4          | 0.64 | 1                    | 0.16 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| other ruminants meat <sup>(c)</sup> | 45                          | 5     | 11.11  | 0  | 0.00 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| pig meat                            | 859                         | 22    | 2.56   | 1  | 0.12 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| other meat <sup>(d)</sup>           | 2,743                       | 43    | 1.57   | 2  | 0.07 | 2  | 0.07      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| mixed meat                          | 206                         | 13    | 6.31   | 0  | 0.00 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| milk and dairy products (e)         | 3,185                       | 41    | 1.29   | 4  | 0.13 | 4  | 0.13      | 1          | 0.03 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| raw milk <sup>(f)</sup>             | 1,312                       | 24    | 1.83   | 5  | 0.38 | 2  | 0.15      | 2          | 0.15 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| fruit and vegetable                 | 1,479                       | 2     | 0.14   | 0  | 0.00 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| seeds <sup>(g)</sup>                | 942                         | 2     | 0.21   | 0  | 0.00 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| other food                          | 1,274                       | 6     | 0.47   | 0  | 0.00 | 0  | 0.00      | 0          | 0.00 | 0                    | 0.00 | 0 | 0.00 |  |  |  |  |  |  |  |  |
| Total                               | 17,291                      | 319 ( | 1.84   | 31 | 0.18 | 29 | 0.17      | 10         | 0.06 | 5                    | 0.03 | 1 | 0.01 |  |  |  |  |  |  |  |  |



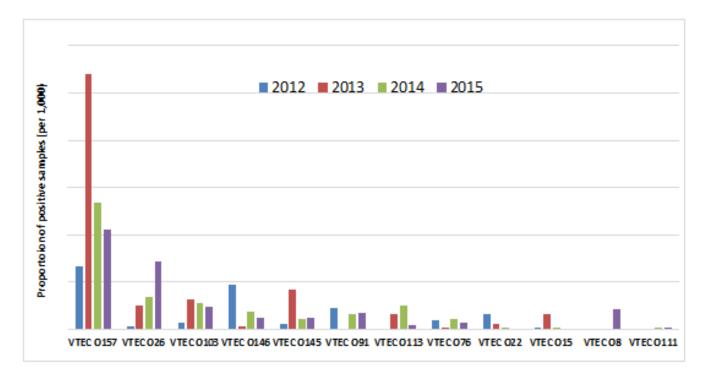


## **VTEC IN FOOD**

## ANALYSIS OF VTEC SEROGROUPS IN FOOD (cont.)

## Frequency distribution of non-O157 STEC serogroups in food categories in Member States, 2015

|                                     | STEC isolates with |                                                                                |      |      |      |      |      |      |      |     |      | ogroups |       |     |          |      |
|-------------------------------------|--------------------|--------------------------------------------------------------------------------|------|------|------|------|------|------|------|-----|------|---------|-------|-----|----------|------|
| Food category <sup>(b)</sup>        | serogroup reported | % of total STEC isolates with serogroup reported in the specific food category |      |      |      |      |      |      |      |     |      |         |       |     |          |      |
|                                     | n                  | O26                                                                            | 0103 | 0145 | 0111 | O146 | 091  | 076  | 0113 | 05  | 0174 | 087     | 0116  | 06  | Other se | erog |
| bovine meat                         | 53                 | 26.4                                                                           | 5.7  | 7.5  | 1.9  | 0.0  | 5.7  | 0.0  | 3.8  | 0.0 | 5.7  | 1.9     | 1.9   | 0.0 | 39.6     | (C   |
| ovine and goat meat                 | 27                 | 29.6                                                                           | 14.8 | 3.7  | 0.0  | 7.4  | 7.4  | 0.0  | 0.0  | 3.7 | 0.0  | 0.0     | 0.0   | 7.4 | 25.9     | (C   |
| other ruminants meat <sup>(c)</sup> | 5                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 40.0 | 0.0  | 20.0 | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 40.0     | (C   |
| pig meat                            | 3                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 100.0    | (C   |
| other meat <sup>(d)</sup>           | 16                 | 12.5                                                                           | 0.0  | 0.0  | 0.0  | 6.3  | 12.5 | 6.3  | 0.0  | 0.0 | 6.3  | 0.0     | 0.0   | 0.0 | 56.3     | (C   |
| mixed meat                          | 1                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 100.0 | 0.0 | 0.0      |      |
| milk and dairy products (e)         | 5                  | 80.0                                                                           | 20.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 0.0      |      |
| raw milk <sup>(f)</sup>             | 4                  | 50.0                                                                           | 50.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 0.0      |      |
| fruit and vegetable                 | 0                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 0.0      |      |
| seeds                               | 1                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 100.0    | (C   |
| other food                          | 2                  | 0.0                                                                            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 50.0 | 0.0  | 0.0 | 0.0  | 0.0     | 0.0   | 0.0 | 50.0     | (C   |
|                                     |                    |                                                                                |      |      |      |      |      |      |      |     |      |         |       |     |          | (C   |
| Total                               | 117                | 25.6                                                                           | 8.5  | 4.3  | 0.9  | 4.3  | 6.0  | 2.6  | 1.7  | 0.9 | 3.4  | 0.9     | 1.7   | 1.7 | 37.6     | 0    |
|                                     |                    |                                                                                |      |      |      |      |      |      |      |     |      |         |       |     |          | 0    |

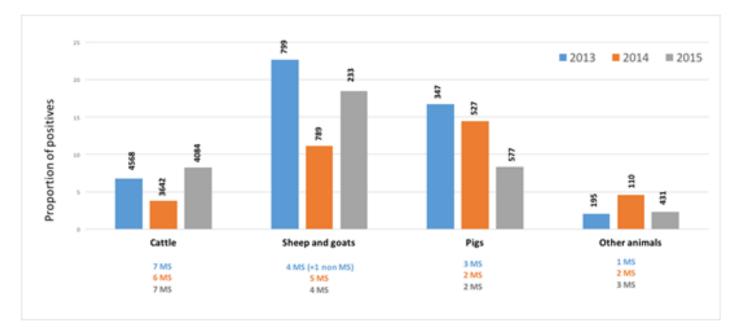





## **VTEC IN FOOD**

## ANALYSIS OF VTEC SEROGROUPS IN FOOD (cont.)

Proportion of food samples positive for the most frequent STEC serogroups (per 1,000 samples tested), reported by Member States and non-Member States, 2012–2015








## **VTEC IN ANIMALS**

Proportion of VTEC-positive samples in the main animal categories, regardless the analytical method employed, in the reporting MS, 2012-2015



Other animals' include: cats, dogs, horses, donkeys, turkeys, and other animals.





## SOME OBSERVATIONS

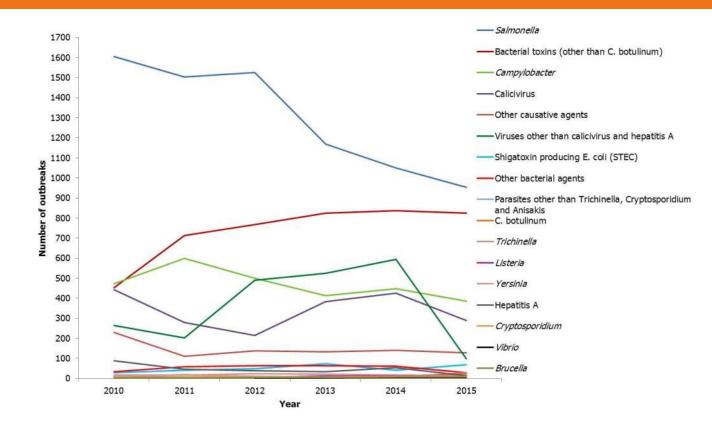
- **Analytical method** reported by most reporting countries. The standard method ISO TS 13136:2012 was used for testing 82.8% of the food samples in 2015.
- **Highly variability** in the **number of samples tested** by country for each food and animal category  $\rightarrow$  possible **bias** in the estimates of VTEC prevalence or VTEC serogroup distribution.
- In food, contamination reported for meat from other ruminants, fresh ovine and goat meat, milk, and fresh bovine meat. VTEC were also reported in cheese samples, in particular those made from sheep's and goats' milk
  - **Contamination was rare in ready-to eat food of vegetal origin**. **Few VTEC-positive** samples (2/925) reported for **sprouted seeds**, the sole food category for which microbiologic criteria for VTEC have been established in the EU.



## MAIN CONCLUSIONS (NEW ASPECTS)

A wide range of VTEC serogroups was reported, with VTEC O157 being the most frequent in both food and animal samples.

→ However, many of the MS' surveillance and monitoring programmes are traditionally focused on this serotype and this may have introduced a bias in the estimates of the frequency of VTEC serogroups → interesting to note that serogroups O26 and O103 were reported more frequently than O157 in food samples tested using the ISO/TS 13136:2012 standard method, which is able to detect any VTEC regardless its serotype


**VTEC O26** was the second most reported serogroup in both food and animal samples (as well as in humans), with an increasing trend between 2011 and 2015

VTEC serogroups most frequently found in **food** samples (**0157**, **026**, **0103**, **0113**, **0146**, **091**, **0145**) are those most commonly reported in human infections in the EU/EEA in 2014 and previous years





## FBO, OVERVIEW, EU, 2010-2015



Number of food-borne and water-borne outbreaks reported by causative agent in the EU Member States from 2010 to 2015. For the year 2015 no FBO data were reported by Malta and Spain .

Due to the degree of harmonisation of the applied monitoring schemes and collected data: these datasets allow for; **descriptive summaries** to be made, and **monitoring (trend watching)**, but are less suitable for trends analyses



## **STEC FOOD-BORNE DISEASE OUTBREAKS**

In 2015, 10 MS reported a total of **50 food-borne outbreaks** caused by Shiga toxin-producing *Escherichia coli* (STEC) (excluding 19 water-borne outbreaks) representing 1.6% of the reported food-borne outbreaks in the EU.

In total, 572 people were affected of which 52 were hospitalised, no deaths were reported. There was a 32% increase in the number of outbreaks compared with 2014, when 38 outbreaks were reported

involving 270 cases and 34 hospitalisations.

**Four STEC outbreaks were supported by strong evidence**; three of them were caused by STEC O157 and were reported by the United Kingdom. The implicated foods were <u>mixed leaf lettuce</u> and <u>raw minced lamb</u> (1 outbreak), '<u>chicken burgers and beef burgers</u>' (1 outbreak) and '<u>various meat products</u>'. All were general outbreaks with 'multiple places of exposure in one country' (2 outbreaks), and 'temporary mass catering (fairs or festivals)' as the outbreak setting. No information on the serogroup was available for the remaining STEC strong-evidence household outbreak which was associated with cheese consumption.

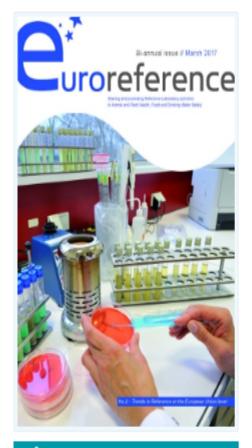


## OUTLINE

## Annual monioring of STEC in the EU

# **EFSA** activities for molecular typing data collection for food and animal isolates

EFSA's activities on WGS (EC questionnaire on the availability of WGS)




## **STATUS OF ENGAGEMENT OF LABORATORIES**

| Nominated users                                                           | <ul> <li>12 countries*: AT, BE, DK, DE,<br/>FI, IE, IT, LU, PT, SE, SK, UK</li> <li>19 users **</li> </ul> | * <i>Salmonella</i> and STEC: 11<br>MSs (all except FI)<br><i>Listeria</i> : all MSs                                           |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Signature of the<br>Collaboration<br>Agreement                            | • 10 MSs: AT, BE, DE, FI, IE, IT,<br>LU, PT, SE, SK                                                        | <ul><li>**3 different users for the 3 pathogens in AT, IE and IT</li><li>2 different users for the 3 pathogens in SK</li></ul> |
| Transmission from<br>EURL Lm database<br>to EFSA (on behalf<br>of the MS) | <ul> <li>5 MSs gave the permission:<br/>BE, DE, FI, IE, SE</li> </ul>                                      |                                                                                                                                |
| Direct transmission<br>to EFSA                                            | <ul> <li>1 MS submitted data: LU</li> <li>Process on-going with other<br/>laboratories (BE, IT)</li> </ul> | 26                                                                                                                             |



## **COORDINATION ACTIVITIES**



Download Issue

## TABLE OF CONTENTS

## EUROPEAN UNION COLLABORATIVE PROJECTS BETWEEN EUROPEAN UNION OR NATIONAL REFERENCE LABORATORIES

## III The ECDC-EFSA molecular typing database for European Union public health protection

Auteur : Valentina Rizzi, Teresa Da Silva Felicio, Benjamin Felix, Celine M. Gossner, Wilma Jacobs, Karin Johansson, Saara Kotila, Damien Michelon, Mario Monguidi, Kirsten Mooijman, Stefano Morabito, Luca Pasinato, Jonas Torgny Björkman, Mia Torpdahl, Rosangela Tozzoli, Ivo Van Walle

http://euroreference.mag.anses.fr/en





## Annual monitoring of STEC in the EU

EFSA activities for molecular typing data collection for food and animal isolates

## EFSA's activities on WGS (EC questionnaire on the availability of WGS)





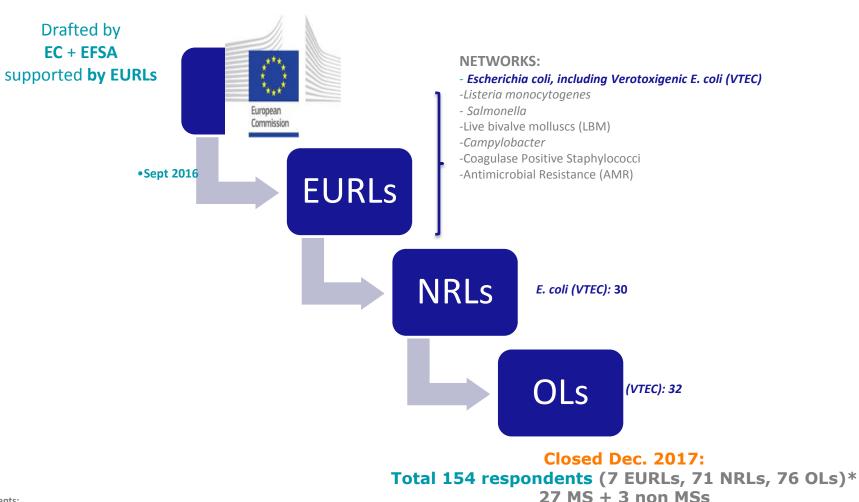
## **EFSA INTEREST ON WGS FOR FOOD SAFETY**

## EFSA is interested in using WGS for:

- Source attribution
- Outbreak detection and investigation
- Common source trace back investigations
- Detection and surveillance of emerging pathogens
- Monitoring of antimicrobial resistance

Our main interest is to use the data generated by new Sequencing technologies (WGS, Metagenomics) for Food Safety and Public Health Protection






## **ACTIVITIES ON WGS**

- Procurement: Closing data gaps for performing RA on L. monocytogenes in "Ready to Eat Foods" (RTE): "Molecular characterisation employing WGS of strains from different compartments along the food chain and from humans", LISEQ
- Grant: Comparative genomics of quinolone-resistant Campylobacter jejuni of poultry origin from major poultry producing European countries – GENCAMP
- Questionnaire on the availability of Whole Genome Sequencing (WGS) methods for food- and water-borne pathogens isolated from animals, food, feed and animal/ food/ feed environmental samples
- Advisory Board WGS EU funded project (COMPARE, Effort, ECDC's projects..)



## ONLINE 🛛 🛪 EUSurvey



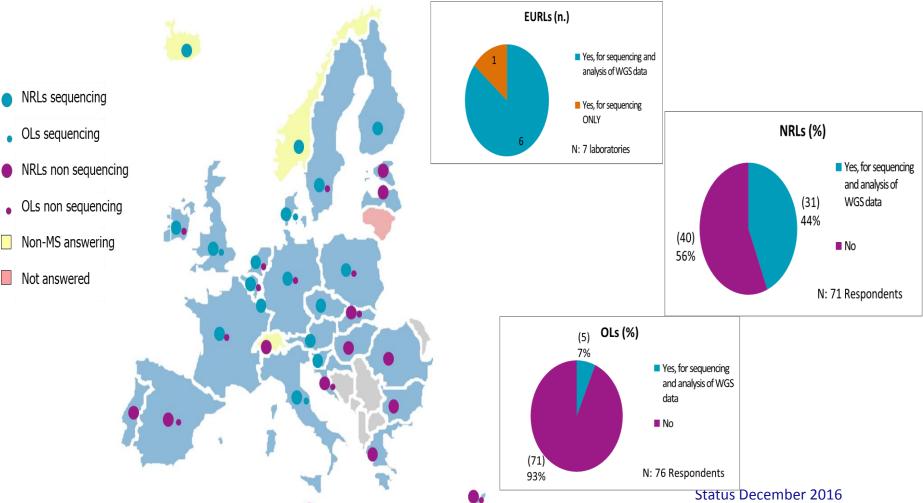
\*: Respondents:

Some labs have provided different answers for each NRL network they represent

Some labs have provided a single answer for all NRL networks they represent



## **QUESTIONNAIRE SECTIONS**

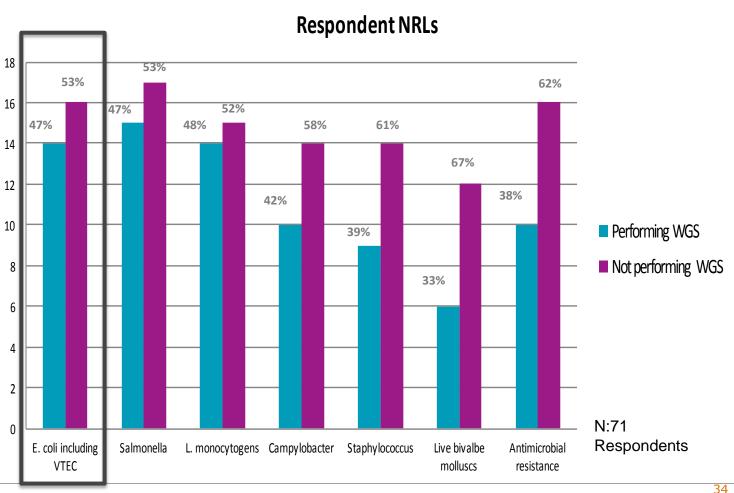

- General questions on use of WGS in the lab
- WGS projects on microorganisms
- WGS capacity (in-house, outsourcing)
  - General questions on objectives, strains and running in parallel with other methods
  - Laboratory methods
  - Bioinformatics analysis
- Collaboration and support by EURLs



## **EC SURVEY: WGS FOR FOOD/WATERBORNE PATHOGENS**

## Q1. DO YOU CARRY OUT WGS ACTIVITIES? 28% YES (N=154

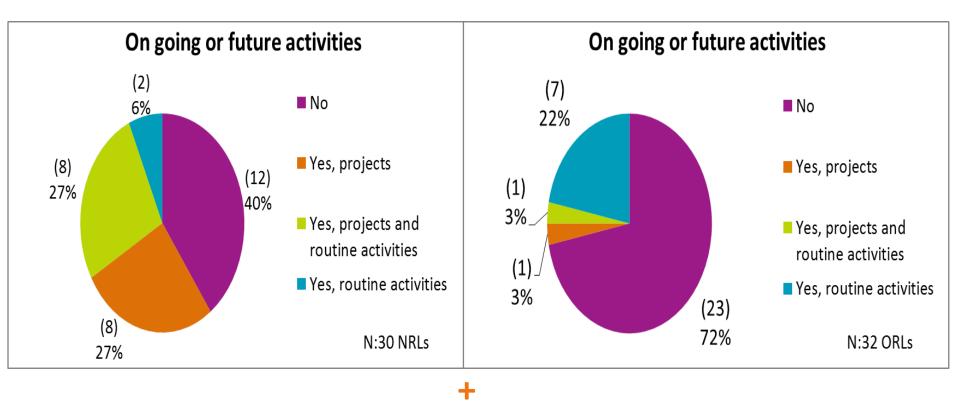
respondents)






## **EC SURVEY: WGS FOR FOOD/WATERBORNE PATHOGENS**

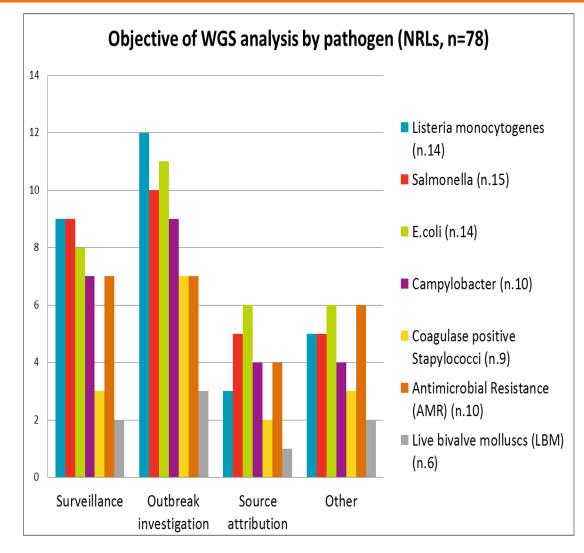
## Q1. DO YOU CARRY OUT WGS? BY RESPONDENT (N=71 respondents)\*


\*71 respondents corresponding to a total of 182 replies from pathogen specific laboratories acting as NRLs. Analyses of data by "respondents" or by "Network laboratories" provided a similar picture for the whole questionnaire.





## **EC SURVEY: WGS FOR FOOD/WATERBORNE PATHOGENS**


## **Q2. WGS, PROJECTS OR ROUTINE ACTIVITIES?**

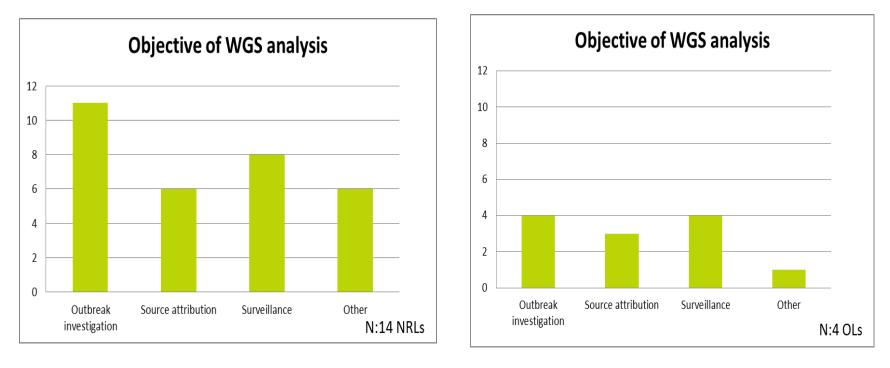


EURL-E.coli (VTEC)



## **Q4. WHAT IS THE OBJECTIVE OF THE WGS ANALYSIS**




## **BY PATHOGEN SPECIFIC NRLs**

(N=78 replies)\*

\*78 replies from pathogen specific laboratories acting as NRLs that perform WGS (information extracted from the 31 NRL respondent).



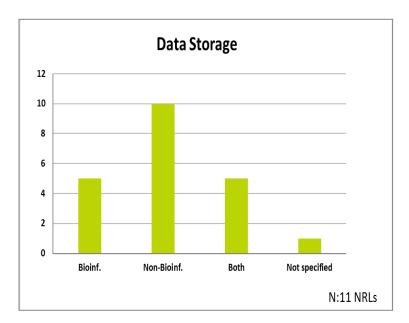
## Q4. WHAT IS THE OBJECTIVE OF THE WGS ANALYSIS? E.COLI LABS



Other: research, epidemiological markers (i.e. virulence, resistance, etc).

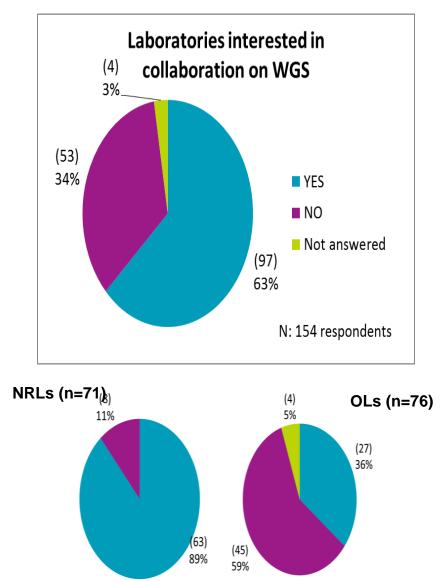
## EURL-E.coli (VTEC): outbreak investigation



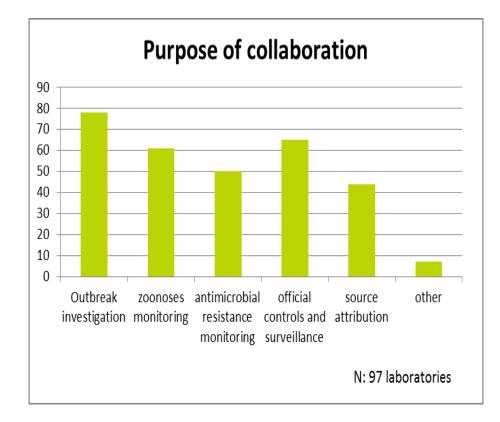

## WGS CAPACITY SECTION: BIONFORMATICS ANALYSIS, E.COLI

## Q12. WHICH ANALYSIS (N=14 NRLs)

A wide range of Commercial programs (Bionumerics, CLC-Bio, SeqSphere, etc), open source platforms (Galaxy, Enterobase, BIGSdb, etc), in house pipelines tools (CGE, PHE, ReMatCh, etc)


Q13. WHERE? 11/14 NRLs and 3/4 OLs "In house"

## Q13. IF "IN HOUSE...", WHO?






## SECTION ON COLLABORATION AND SUPPORT BY EURLS



## Q.14 INTEREST COLLABORATION WITH EURLS? (N=154 respondents)



#### Needs:

Technical support, protocols, training, workshops, PTs





## Thank you for your attention



Acknowledgements:

BIOCONTAM Unit DATA Unit ECDC EC – SANTE G4 Zoonoses Monitoring Data Network Steering Committee members **EFSA** is committed to:

Excellence, Independency, Responsiveness and Transparency

## www.efsa.europa.eu

Contacts in EFSA <u>Frank.Boelaert@efsa.europa.eu</u> <u>zoonoses@efsa.europa.eu</u>