

12TH ANNUAL WORKSHOP OF THE REFERENCE LABORATORIES FOR E. COLI IN THE EU. ROME, 12-13 OCTOBER 2017

Genetic Diversity of Shiga toxin producing Escherichia coli O26:H11

Sabine DELANNOY, Patricia MARIANI, Hattie WEBB, Stephane BONACORSI, Patrick FACH

Platform IdentyPath

French Agency for Food, Environmental and Occupational Heath & Safety (Anses)

Food Research Laboratory

14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France

Background STEC O26:H11/H-

 Escherichia coli O26:H11 is the most common serotype in human infections after O157:H7

Main reservoir is cattle :

- Meat and dairy products are frequently contaminated with O26 strains
- Adulterant in non-intact beef and components (FSIS Notice 47-13; www.fsis.usda.gov)
- Not all E. coli O26 are the same :
 - Non virulent, ETEC, EPEC, STEC / EHEC (+ EHEC-like)

Phylogenetic analysis:

Extensive investigation into relatedness of STEC O26:H11 isolated in humans in France

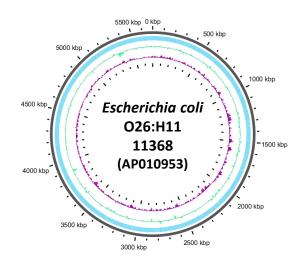
Characterization of EHEC 026:H11/H-

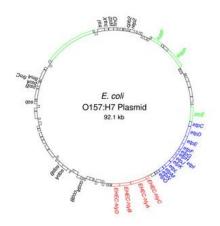
EHEC 026:H11 can be distinguished from other related strains using a set of specific genetic markers

- wzx₀₂₆, fliC_{H11}
- Stx1a or stx1a + stx2a
- eae-beta
- arcA allele 14
- espK (OI-50)
- CRISPR₀₂₆
- Plasmid genes combination ehxA+/KatP+/espP+/etpD-
- MLST ST21

Zhang WL et al. JCM 2000.

Leomil L et al. FEMS Microbiol. Lett. 2005.

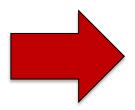

Miko A et al. FEMS Microbiol. Lett. 2010.


Bugarel M et al. AEM 2011.

Delannoy S et al. JCM 2012.

Bielaszewska M et al. CID 2013

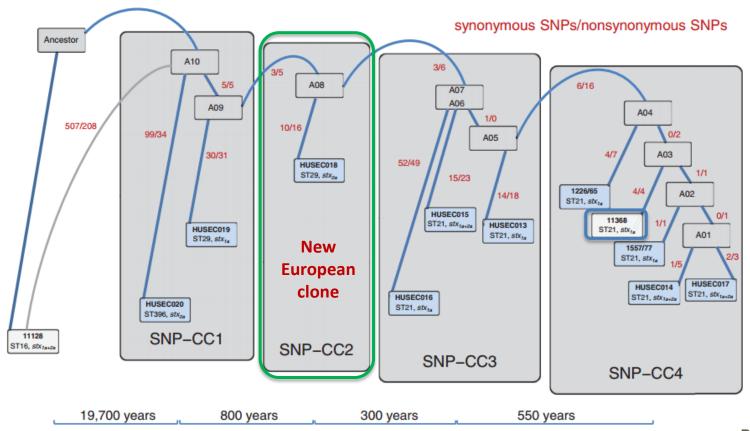
Delannoy S et al. JCM 2015



Emergence of a new stx2a O26:H11 clone in Europe

"New European" clone: --> different genetic characteristics

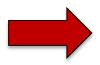
- wzx_{O26}, fliC_{H11}
- Stx2a only
- eae-beta



- Plasmid genes combination
 ehxA+/KatP-/esP-/etpD+
- MLST ST29
- More virulent
- Other genetic markers?

Evolutionary phylogenetic relationship of EHEC 026:H11 based on SNPs

- Identification of <u>48 phylogenetically informative SNPs</u> that cluster EHEC
 O26:H11 in <u>4 Clonal Complexes (CC)</u>
- The "New European" clone belongs to the SNP-CC2



Is the new stx2a O26:H11 clone (The New European clone) circulating in France?

We collected French clinical isolates of EHEC O26:H11 which are positive for **stx2 only.**

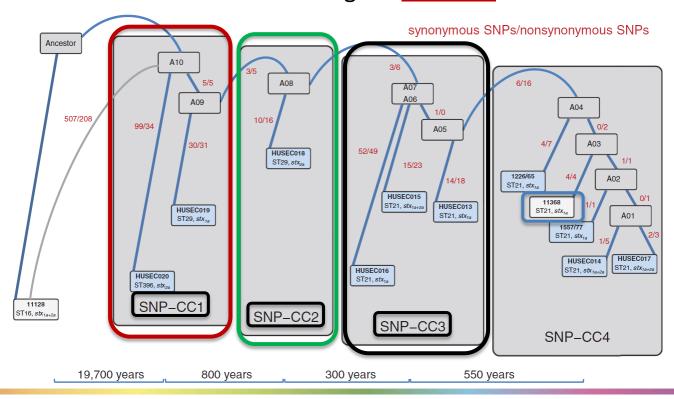
The new, highly pathogenic, European EHEC 026:H11 clone (stx2a+, ST29) is circulating in France

- EHEC O26:H11 positive for stx2 alone (n=23) were isolated from pediatric patients with HUS between 2010 and 2013 in France.
- 7 / 23 strains belong to ST21
- 16 / 23 strains belong to ST29 --> some strains are characteristic of the 'New European clone'

MLST and CRISPR typing of the O26:H11 French clinical isolates

Strain	ST	CRISPR1		CRISPR1 Allele	CRISPR2a			CF	RISPR	2a alle	ele		CRISPR Type (CT)
30993	21	A 7 A 26 A 21 A 20 A 10 E 4 F	113		C7C8C9C10C11C12D13D14A15E	4							4
32876	21	A 7 A 26 A 21 A 20 A 10 E 4 F	113		C7C8C9C10C11C12D13D14A15E	4		0					4
31493	21	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 F	11 🔲 🔲		C7C8C9C10C11C12D13D14A15E	4							1
33116	21	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 F	11 🔲 🔲		C7C8C9C10C11C12D13D14A15E	4							1
34195	21	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 Y	11 🔲 🗓		C7C8C9C10C11C12D13D14A15E	4							1
36079	21	A7A11A8A9A10E4F	114 🔲 🔲		C7C8C9C10C11C12D13D14A15E	4							6
36084	21	A 7 A 11 A 8 A 9 A 10 E 4 F	114		C7C8C9C10C14A15E	119							7
33344	29	A 7 A 11 A 8 A 9 A 21 A 20 A 10 E 4 F	69		C7C8C9C10C11C12D13D14A15E	4							5
31131	29	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 F	11 🔲 🔲		C7C8C9C10C11C12D13D14A15E	4							1
34130	29	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 F	11 🔲 🖽		C7C8C9C10C11C12D13D14A15E	4							1
36708	29	A 7 A 11 A 8 A 9 A 26 A 21 A 20 A 10 E 4 F	11 🔲 🔲		C7C8C9C10C11C12D13D14A15E	4							1
33618*	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 8 C 11 C 211 C 212 C 12 D 13 D 14 A 15 E	71	ø						3
34586*	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 8 C 11 C 211 C 212 C 12 D 13 D 14 A 15 E	71	ø						3
34629*	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 8 C 11 C 211 C 212 C 12 D 13 D 14 A 15 E	71	Ø						3
36293*	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 8 C 11 C 211 C 212 C 12 D 13 D 14 A 15 E	71	ø						3
36348*	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 8 C 11 C 211 C 212 C 12 D 13 D 14 A 15 E	71	ø						3
32802*	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	ø						2
36493*	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	ø						2
31132	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	ø						2
34620	29	A 7 A 21 A 20 A 10 E 4 F	29		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	ø						2
34760	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	Ø						2
34827	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	ø						2
34870	29	A 7 A 21 A 20 A 10 E 4 F	29 🔲		W 210 C 211 C 212 C 12 D 13 D 14 A 15 E	67	Ø						2

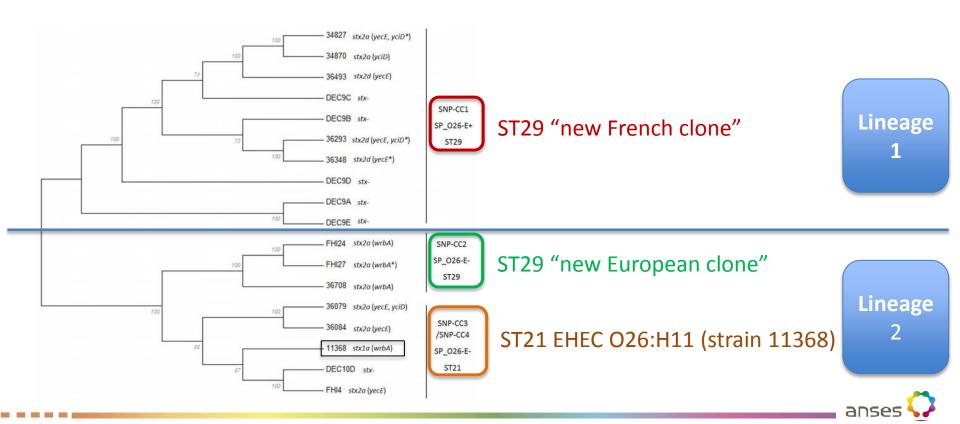
12 strains = "New French clone" significantly different from the previously described "European clone"

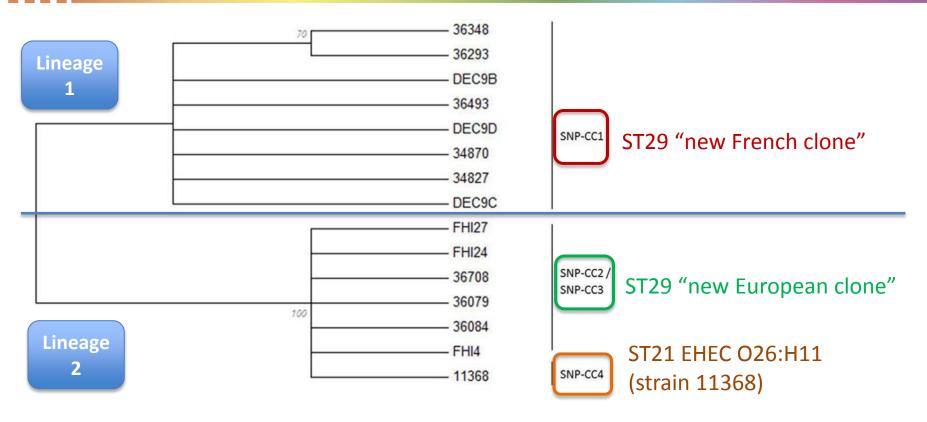

Plasmid and virulence gene profiles of the O26:H11 French clinical isolates

Designation	MLST	Strain	;	stx2 subtype	ehxA	katP	espP	etpD	arcA- allele2	Z2098	espK	espV	SP_O26_C	SP_O26_D	SP_O26_E
	ST21	30993		stx2a	+	+	+	-	+	+	+	+	+	+	-
	ST21	32876		stx2a	+	+	+	-	+	+	+	+	+	+	-
	ST21	31493		stx2a	+	+	+	-	+	+	+	+	+	+	-
EHEC 026:H11	ST21	33116		stx2a	+	+	+	-	+	+	+	+	+	+	-
	ST21	34195		stx2a	+	+	+	-	+	+	+	+	+	+	-
	ST21	36079		stx2a	+	+	+	-	+	+	+	+	+	+	-
	ST21	36084		stx2a	+	+	+	-	+	+	+	+	-	+	-
	ST29	33344		stx2a	+	-	-	+	+	+	+	+	+	+	-
New European	ST29	31131		stx2a	+	-	-	+	+	+	+	+	+	+	-
clone (Bielazewska et	ST29	34130		stx2a	+	-	-	+	+	+	+	+	+	+	-
al. 2013)	ST29	36708		stx2a	+	-	-	+	+	+	+	+	+	+	-
	ST29	33618		stx2d	-	-	-	-	-	-	-	-	-	+	+
	ST29	34586		stx2d	-	-	-	-	-	-	-	-	-	+	+
	ST29	34629		stx2d	-	-	-	-	-	-	-	-	-	+	+
	ST29	36293		stx2d	-	-	-	-	-	-	-	-	-	+	+
New French clone	ST29	36348		stx2d	-	-	-	-	-	-	-	-	-	+	+
(Delannoy et al.	ST29	32802		stx2d	-	-	-	-	-	-	-	-	-	-	+
2015)	ST29	36493		stx2d	-	-	-	-	-	-	-	-	-	-	+
,	ST29	31132		stx2a	-	-	-	-	-	-	-	-	-	-	+
	ST29	34620		stx2a	-	-	-	-	-	-	-	-	-	-	+
	ST29	34760		stx2a	-	-	-	-	-	-	-	-	-	-	+
	ST29	34827		stx2a	-	-	-	-	-	-	-	-	-	-	+
	ST29	34870		stx2a	-	-	-	-	-	-	-	-	-	-	+

The New French clone (CC1, ST29, SP_O26-EPOS) The European clone (CC2, ST29, SP_O26-ENEG)

- Identification of <u>48 phylogenetically informative SNPs</u> that cluster EHEC O26:H11 in <u>4 clonal complexes (CC)</u>:
 - The French strains belong to CC1, CC2, CC3
 - The new European clone belongs to **SNP-CC2**
 - The new French clone belongs to SNP-CC1

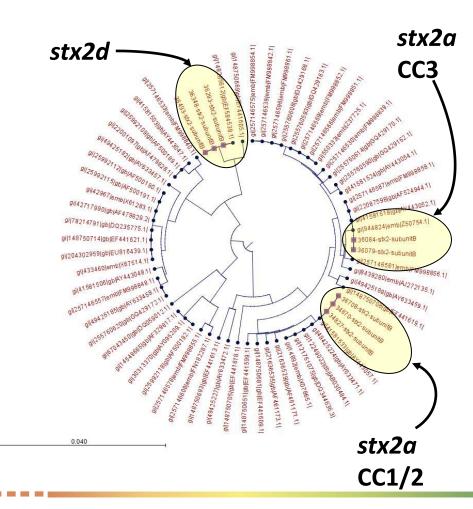



Whole-genome SNPs (wgSNP) analysis using CSI Phylogeny 1.2 on the CGE server.

A phylogenic analysis distributed the strains in two lineages:

- Both the ST21 strains (SNP-CC3 and SNP-CC4) and the ST29 "new European clone" (SNP-CC2) were found to belong to the same lineage.
- The ST29 "new French clone" (SNP-CC1) was found to belong to a distinct lineage.

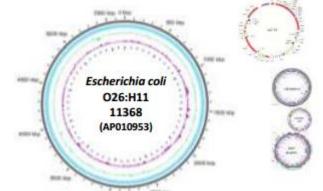
Evolutionary relationships of the O26:H11 strains based on the concatenated ORFs of the eight *cas* genes.



- The cas gene tree is congruent with the wgSNP analysis.
- It is not however congruent with the MLST phylogeny (as ST29 is split between the two branches).
- Interestingly, a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages.

The stx2a gene sequence of ST21 (CC3) and ST29 (CC1/2) are different suggesting separate acquisition events

Sequence analysis of the stx2 subunits


- *stx2d* sequences identical to strain 06-5231 (O55:H7).
- *stx2a* sequences from CC3 ST21 identical to O157:H- strain 258/98.
- stx2a sequences from CC1/2 ST29 identical to the 2011 O104:H4 epidemic strain.

The 'Mobilome' accounts for 20% of the genome of E. coli

Reference Genome O26:H11 - 11368 (accession AP010953) :

- Total size of the Genome (chromosome + plasmids) = 5 855 531 bp including :
 - 21 prophages (810 311 bp)
 - 9 Integrated elements (292 371 bp)
 - 4 plasmids (158 291 bp)

Genetic Mobile Elements ("mobilome")

- = 1 260 973 bp
- = 21.5% of the Genome

'Short reads' sequencing technologies may be problematic to access the complete 'mobilome':

Repeated elements

difficulties to perform the assembly

Human strains of EHEC O26:H11, stx2 Positive, circulating in France

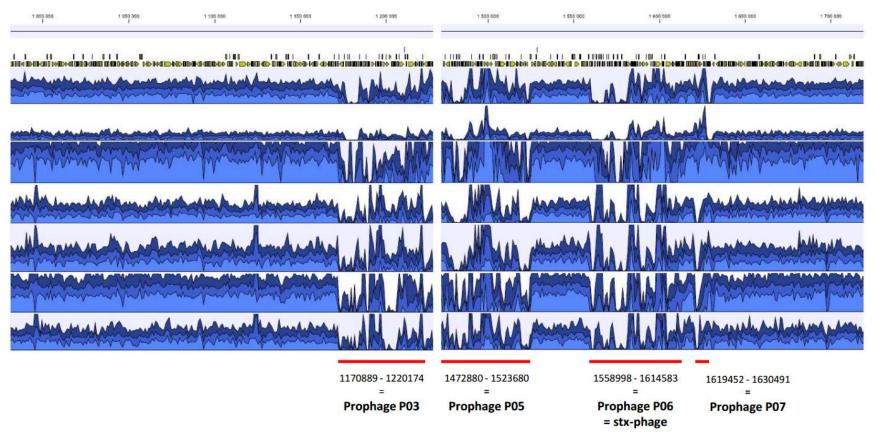
Whole Genome Sequencing of 8 clinical isolates representative of the O26:H11 stx2+ circulating in France :

- Libraries prepared with the Nextera XT kit
- Illumina Sequencing with the MiSeq (paired-end 2x150bp or 2x300 bp)
- Assembly with the CLC Genomic workbench

TABLE 1 NCBI accession numbers and assembly metrics of the O26:H11 E. coli draft genomes

Isolate	ST	<i>stx</i> subtype	No. of contigs	Genome size (bp)	N ₅₀ (bp)	Median read depth (\times)	No. of coding sequences (per PGAAP)
36084	ST21	stx _{2a}	205	5,235,007	96,218	45	5,209
36708	ST29	stx_{2a}	192	5,526,827	114,644	84	5,579
34827	ST29	stx_{2a}	223	5,604,044	73,150	38	5,674
34870	ST29	stx_{2a}	196	5,498,010	65,024	38	5,524
36348	ST29	stx_{2d}	208	5,570,467	94,008	71	5,573
36293	ST29	stx_{2d}	207	5,458,923	75,621	45	5,460
36493	ST29	stx_{2d}	204	5,422,929	78,448	47	5,389

Delannoy et al. Genome Announc. 2015, 3(4): 00852-15

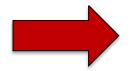


Data fragmentation:
About 200 contigs for a genome of 5.5 Mbp

Data Fragmentation = Mobilome

Short reads mapping on O26:H11 reference genome 11368

- Mapping the short reads of the French isolates to the reference strain 11368 genome sequence indicated a
 high degree of conservation across the chromosomal backbones of all isolates. In fact, 92–98% of the
 reference genome was conserved
- Most of the divergence appears to be concentrated in mobile genetic elements (MGEs) such as prophages, integrated elements, and plasmids

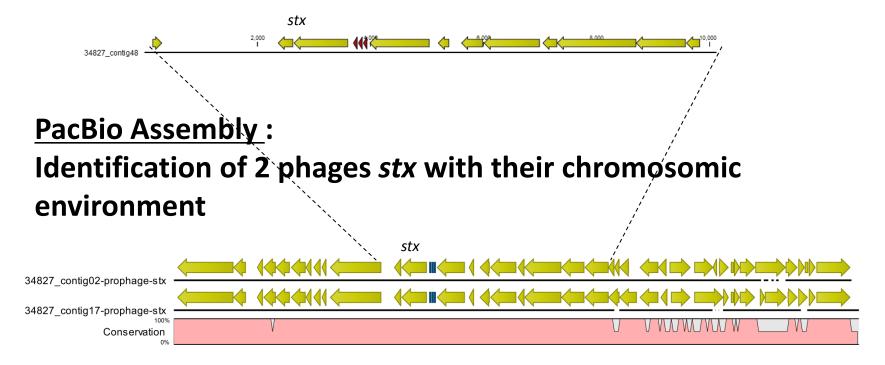

Long Reads sequencing with the PacBio

Whole Genome Sequencing of 8 clinical isolates representative of the O26:H11 stx2a+circulating in France:

- PacBio RSII Sequencing (Get PlaGe Platform INRA Toulouse)
- Reads length = 10 kbp
- Assembly with the CLC Genomic workbench + genome finishing module (long reads *de novo* assembly, mapping Illumina short reads, consensus extraction)

Isolate	Genome size (bp)	Nb de contigs	N 50 (bp)
34827	5,933,672	34	785311
34870	5,798,318	27	649134
36079	5,735,195	23	468179
36084	5,849,490	39	482424
36293	5,790,328	33	727839
36493	5,758,521	29	446336
36708	5,894,762	39	634585
36348	5,978,287	41	424063

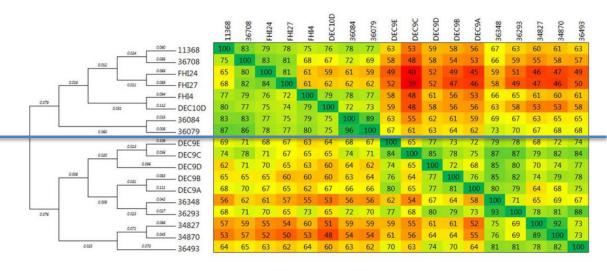
About 30 contigs for a genome of 5.8 Mbp



Identification of the duplication of the phage stx

Example: Strain 34827 (O26:H11, stx2a, ST29, CC1)

Illumina Assembly:


One portion of the phage stx (10 kb) is on an isolated contig

The PacBio sequencing allowed a detailed analysis of the Mobile Genetic Elements (MGEs) of the strains.

- Many MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7–19.8% of the total genome size.
- Analysis of the prophage pool of the strains shows a great diversity with a complex history of recombination.
- Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including the stx-prophages, suggesting evolution through separate acquisition events.

Phylogenetic relationships of the phageome of O26:H11/H- strains.

The phage regions of the isolates as determined with PHASTER were compared using Gegenees 2.1 and Mega 6.06.

Conclusions

- The new, highly pathogenic, European EHEC O26:H11 clone (stx2+, ST29, CC2) is circulating in France.
- 12 French EHEC O26:H11 strains differ significantly from the European clone and belong to a different lineage and CC = The 'New French' clone (stx2+, ST29, CC1)
- There is a congruence between the CRISPR sequence (SP_O26-E) and the phylogenetic background (CC1).
- The PCR test SP_O26-E could be a useful addition for rapid investigation of the new French O26:H11 clone.
- First description of the association of stx2d and eae in the same O26:H11 clinical strains
- Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.

anses 🗘

The Mobilome; A Major Contributor to *Escherichia coli stx2*-Positive O26:H11 Strains Intra-Serotype Diversity

Sabine Delannoy^{1*}, Patricia Mariani-Kurkdjian^{2,3,4}, Hattie E. Webb⁵, Stephane Bonacorsi^{2,3,4} and Patrick Fach¹

¹ Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPath, Maisons-Alfort, France, ² Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coli, Paris, France, ³ Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche Médicale, Paris, France, ¹ Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France, ⁵ Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States

Thanks!

Anses, Laboratoire de Sécurité des Aliments plateforme IdentyPath

14 Rue Piere Curie, 94700 Maisons-Alfort, France

