

Characterizing the health risks of Shiga toxinproducing Escherichia coli (STEC)

FAO/WHO STEC Expert Group

FAO/WHO STEC Report - chronology

- 2015 request to FAO and WHO by the 47th session of Codex Committee on Food Hygiene
- 2016 1st FAO/WHO STEC Expert Group meeting, Geneva.
- 2017 2nd FAO/WHO STEC Expert Group meeting, Rome.
- 2018 "Shiga toxin-producing *Escherichia coli* (STEC)" Report of a Joint FAO/WHO Expert meeting.
- 2018 "Hazard identification and characterization: Criteria for categorizing Shiga toxin-producing *Escherichia coli* (STEC) on a risk basis", General Interest Paper – J. Food Protection.

STEC Expert Group & participants

Hiroshi Asakura (Japan)

Nadia Boisen (Denmark)

Isabel Chinen (Argentina)

Roger Cook* (New Zealand)

Tim Dallmann*(UK)

Alex Gill* (Canada)

Peter Feng* (USA)

Eelco Franz (the Netherlands)

Pina Fratamico (USA)

Patricia Griffin* (USA)

Karen Keddy* (South Africa)

Geoffrey Mainda (Zambia)

Shannon Majowicz*(Canada)

Sara Monteiro Pires* (Denmark)

Yemi Ogunrinola (Canada)

Flemming Scheutz (Denmark)

Potjanee Srimanote (Thailand)

Roberto Vidal (Chile)

Brecht Devleesschauwer* (Belgium)

^{*}Attended both sessions

JEMRA Secretariat

Sara Cahill (FAO) Patricia Desmarchelier (FAO)

Rei Nakagawa (WHO) Blaise Ouattara (FAO)

Resource Persons

Emilio Esteban (USA, Codex) Gillian Mylrea (France, OIE)

Jeffrey LeJeune (FAO) Verna Carolissen-Mackay (Codex)

Diego Moreira (Uruguay, Codex) William Shaw (USA, Codex)

2nd FAO/WHO STEC Expert Group meeting, Rome

FAO/WHO STEC Report summary is available

CODEX ALIMENTARIUS COMMISSION

Food and Agriculture Organization of the United Nations

Viale delle Terme di Caracalla, 00153 Rome, Italy - Tel: (+39) 06 57051 - E-mail: codex@fao.org - www.codexalimentarius.org

Agenda Item 3a

CX/FH 17/49/3 October 2017

JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX COMMITTEE ON FOOD HYGIENE

Forty-ninth Session

Chicago, Illinois, United States of America, 13 - 17 November 2017

PROGRESS REPORT ON THE JOINT FAO/WHO EXPERT MEETINGS ON MICROBIOLOGICAL RISK ASSESSMENT (JEMRA) AND RELATED MATTERS

Prepared by FAO and WHO

World Health Organization

ISSN 1726-5274

Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring

REPORT

Focus of FAO/WHO STEC report

- 1. Global burden of STEC foodborne disease
 - Poster P002
- 2. Criteria for hazard identification and characterization
- 3. Current monitoring programs and methodologies that are available.

Criteria for hazard identification and characterization

Complex pathogenicity –

- Many virulence & putative virulence factors; PAIs
- Key traits for pathogenesis adherence factor and Stx
- Adherence factors
 - Well recognized eae, aggR
 - Putative saa, sab, paa, efa1, ompA, lpfA, toxB and the LAA PAI.

Stx types and subtypes

- Stx1a, 1c, 1d, 1e; Stx2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l ... and more?
- All have risk & potential to cause diarrhea
- HUS Stx2a + eae or aggR
 Stx2d depending on phage type, insertion site, other factors
 Other Stx subtypes depending on host, antibiotics, other factors

Stx – Stx1 family tree

Stx2 family tree

Criteria for hazard identification and characterization

Serotypes and regional diversity

- *E. coli* ~184 O and 53 H types
- STEC ~470 serotypes; > 100 implicated in illness
- Geographic clustering? eg: SFO157, O45:H19
 - Global dissemination trade, travel, animal migration, etc.
- Change in toxin-profile eg: O26:H11 (Stx1 to Stx2 only)
- Same serotype but different virulence factors eg: O104:H4

Serotype

- useful in ID and epi investigations
- does not predict pathotype or health risk.

Criteria for hazard identification and characterization

- Other factors in virulence characterization
 - Horizontal gene transfer diversity
 - Stx-producing enterics
 - Hybrids EAEC/STEC (O59:H19, O104:H4, O111:H2/H21, O127:H4); EPEC/STEC (O26:H11, O55:H9, O55:H7)
 ExPEC/STEC (O80:H2, O2:H6)
 ETEC/STEC (O101:NM, O159:HUT, O15:H16)
 - Dose-response
 - Stx not produced in foods
 - Clinical outcome vary with dosage; vary with serotypes
 - Human factors
 - susceptibility, asymptomatic carriers, varying severity twins & family members
 - affects disease outcome

Conclusion points

- Adherence critical for STEC pathogenicity (eae & aggR)
- 16 or more Stx subtypes all have potential to cause D
- some may cause BD or HUS depending on strain/host factors
- stx_{2a} in eae or aggR (+) strains = HUS
- stx_{2d} may cause severe disease depends on many factors
- Serotype not = pathotype
- Horizontal gene transfer new and hybrid pathogens
- Dosage and host factors affects disease outcome

STEC virulence genes – potential for D, BD & HUS*

<u>Level</u>	<u>Trait</u>	Potential for:
1	stx2a + eae or aggR	D/BD/HUS
2	stx2d	D/BD/HUS**
3	stx2c + eae	D/BD
4	stx1a + eae	D/BD
5	Other stx subtypes	D^

^{*}Depending on other factors; eg: host, antibiotic, etc

^{**} Depend on Stx2d variant, strain background, other factors

[^] Some subtypes caused BD/HUS on rare occasions; depend on host

STEC - strategies/positions proposed by others

- U.S. National advisory committee for Microbiological Criteria for Foods (NACMCF).
 - Top priority: Stx2a + aggR or eae
- U.S. FDA STEC SOP (2018)
 - Top priority: Stx2a + aggR or eae (any serotype)
 - Process detect & isolate all STEC; characterize for health risk.
- **CEN TAG18** revision of ISO/TS 13136 method for STEC in food and feed.
 - Part 1 detect & isolate all STEC
 - Part 2 characterize

Thank you

Questions?

Contacts: peter.feng@fda.hhs.gov

FSC@ssi.dk

JEMRA Secretariat sarah.cahill@fao.org