

9th external quality assurance (EQA-9) scheme for typing of STEC in 2018-2019

The EQA-9 includes four parts

- O and H Serotyping
- Virulence gene determination (stx1, stx2, eae, aaiC, aggR)
- stx subtyping
- Cluster-EQA: Molecular typing-based cluster analyses
- DATES TO REMEMBER
- 8th of January 2019
- 5th of February 2019
- 15th of April 2019

Deadline to respond to the invitation online Shipment of test strains Deadline for submission of results

TECHNICAL REPORT

Ninth external quality assessment scheme for typing of Shiga toxin-producing *Escherichia coli*

https://www.ecdc.europa.eu/sites/default/files/documents/shiga-toxin-producingescherichia-coli-ninth-external-quality-assessment.pdf

Table 1. Characterisation of test isolates

Parts	Number of test isolates	Characterisation
Serotyping	12#	O55:H7, O76:H7/H-, O91:H14, O91:H21, O111;H8/H-, O121:H19, O126:H27/H-, O128:H2, O145:H28/H-, O154:H31, O157:H7/H-, O187:H28
Virulence profile determination	12#	eae stx1a, eae stx2a, stx1a stx2b, stx2d, eae stx1a stx2a, eae stx2a, aaiC aggR (x1), stx1c stx2b, eae stx2a, stx1d, eae stx2c, stx2g
Cluster analysis	12	ST17 (x9) (O103:H2 stx1a), ST20 (x2) and ST386

#: same 12 isolates.

24 Participants

Austria **Belgium Czech Republic** Denmark **Estonia Finland** France Germany Greece Iceland Ireland Italy

Latvia Lithuania Luxembourg Macedonia Norway Poland Portugal Romania Slovenia Sweden **The Netherlands United Kingdom**

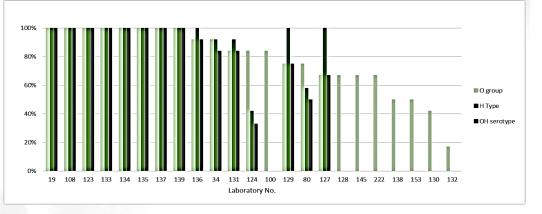
Number and percentage of laboratories submitting results for each part in EQA-9

Table 2. Number and percentage of laboratories submitting results for each part

	Serotyping ¹	Virulence profile determination ²	Cluster analysis ³
Number of participants	20	23	17
% of participants	83*	96*	71*

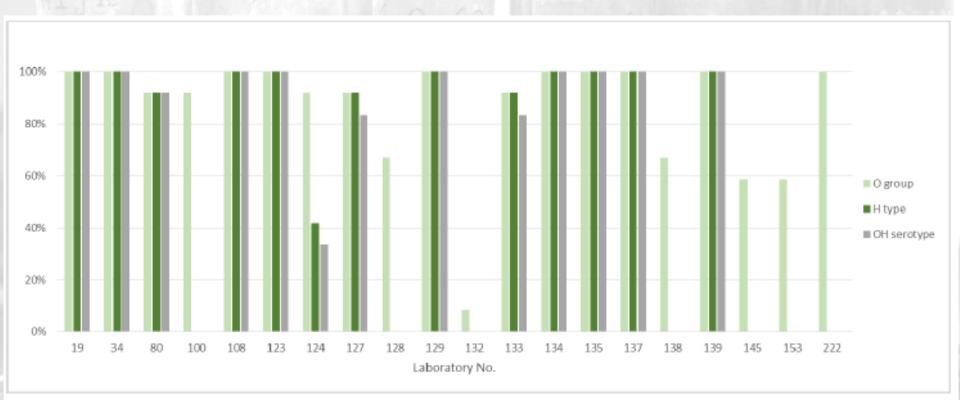
1: O grouping and/or H typing

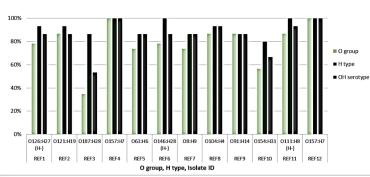
²: detection of at least one gene (aaiC, aggR, eae, stx1 and stx2) and/or subtyping of stx1 and stx2.


³: molecular typing-based cluster analyses based on PFGE or WGS-derived data

*: percentage of the total number (24) of participating laboratories.

Table 3. Detailed participation information for the parts of serotyping, virulence profile determination and molecular typing-based cluster analysis


		typing	Virulence profile determination n=23						Cluster analysis n=17		
	n=	-17									
	O group	H type	aaiC	aggR	eae	<i>stx1</i> and <i>stx2</i>	<i>stx</i> subtyping	PFGE WGS Both		Both	
Number of participants	20#	13∆	18	19	22	23	19	5	9	3	
Percentage of participants^	100%	65%	78%	83%	96%	100%	83%	30%	53%	18%	
Percentage of participants *	83%	54%	75%	79%	92%	96%	79%	21%	38%	13%	

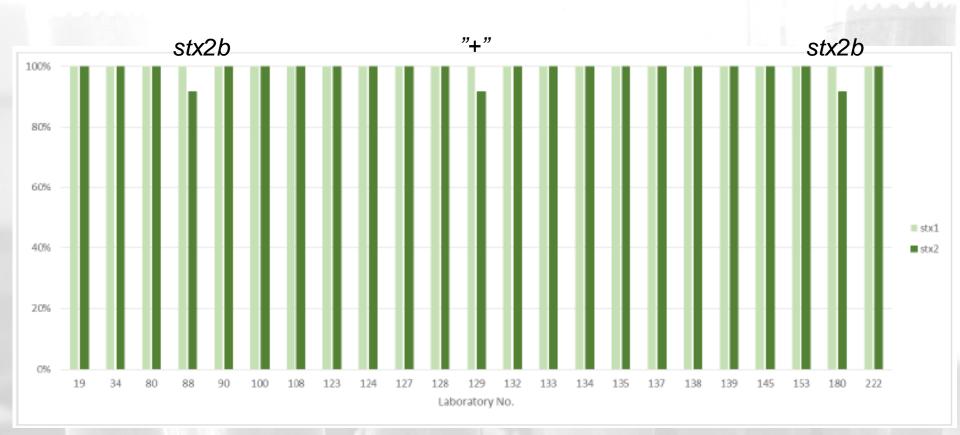

#Phenotypic: N=9 (13)/PCR based N=1(4)/WGS based N=10(6) ΔPhenotypic: N=2/PCR based N=1/WGS based N=10

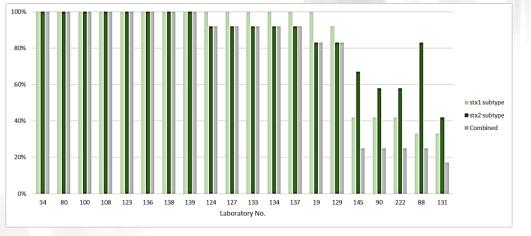
Participant percentage scores for O grouping and H typing



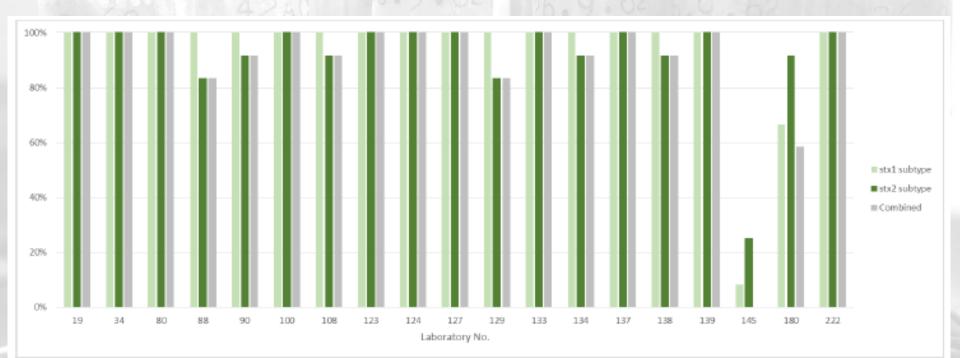
O groups reported from humans The selected O groups:

> 40.6% in 2019 31% in 2020

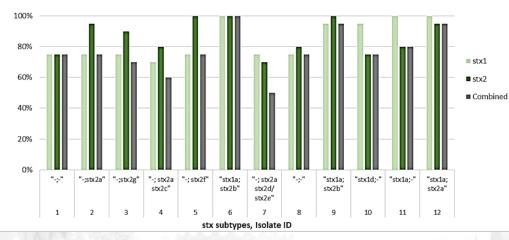

Average percentage test isolate score for serotyping of O and H

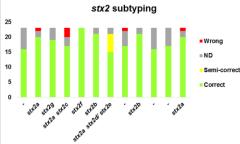


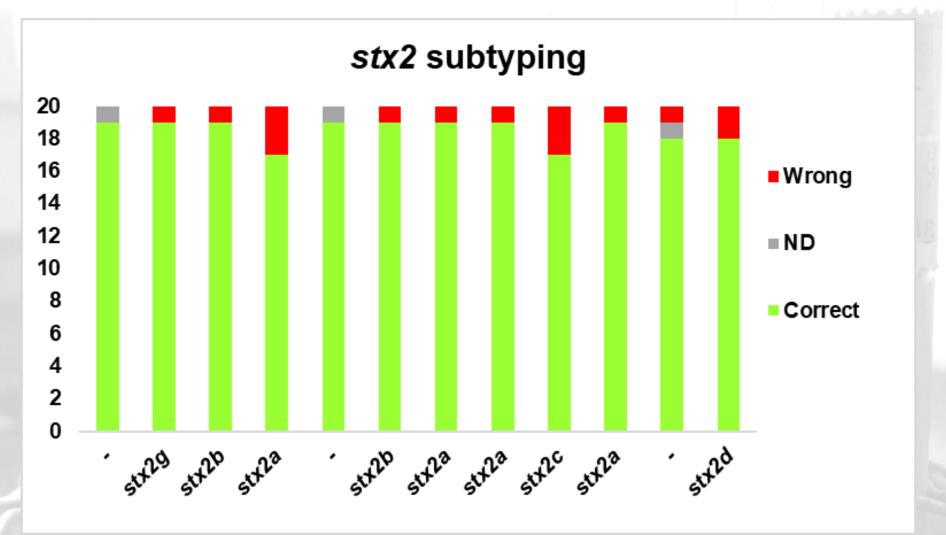

O group, H type, Isolate ID

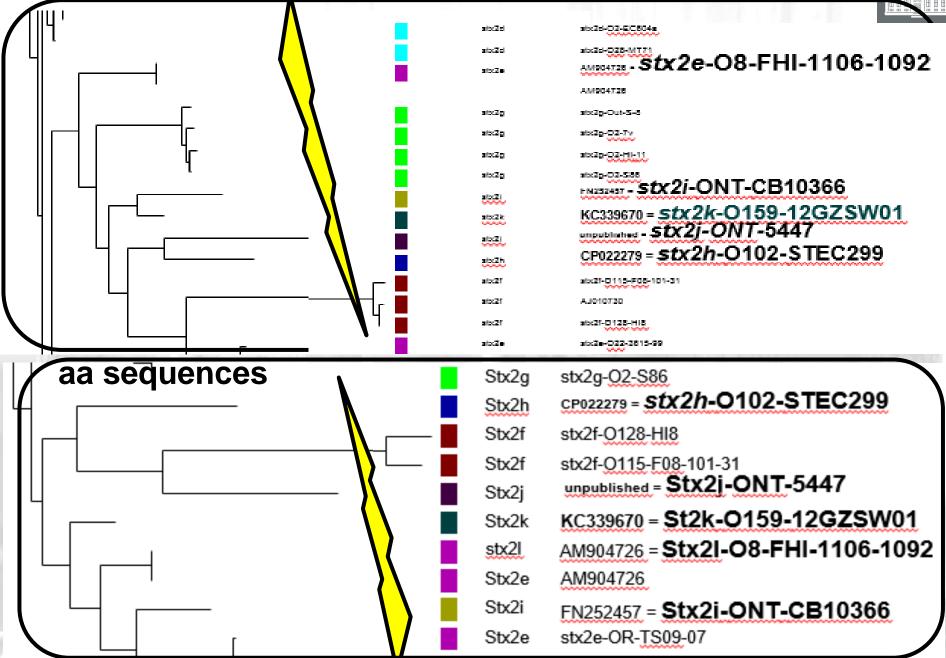


Participant (n=23) percentage scores for detection of *stx1* and *stx2*

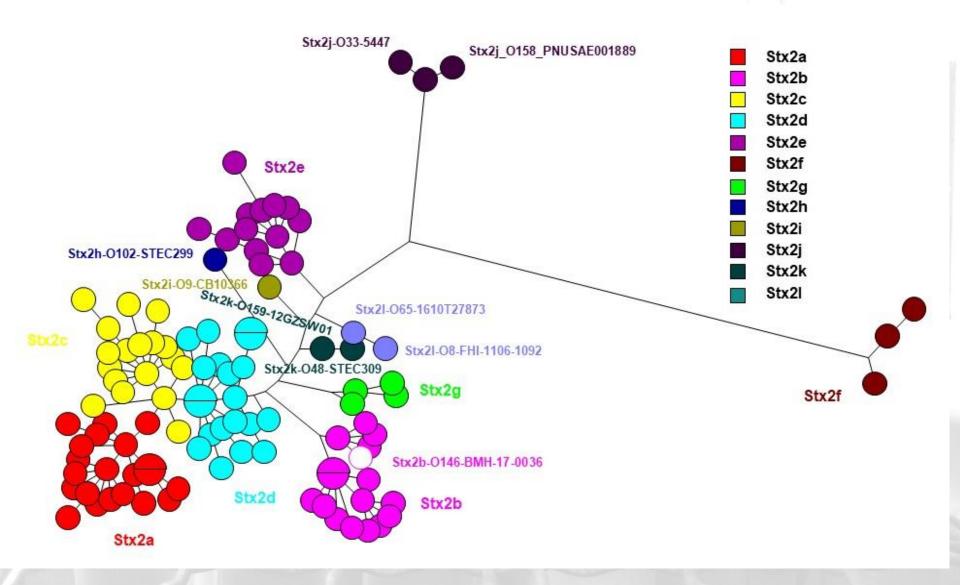


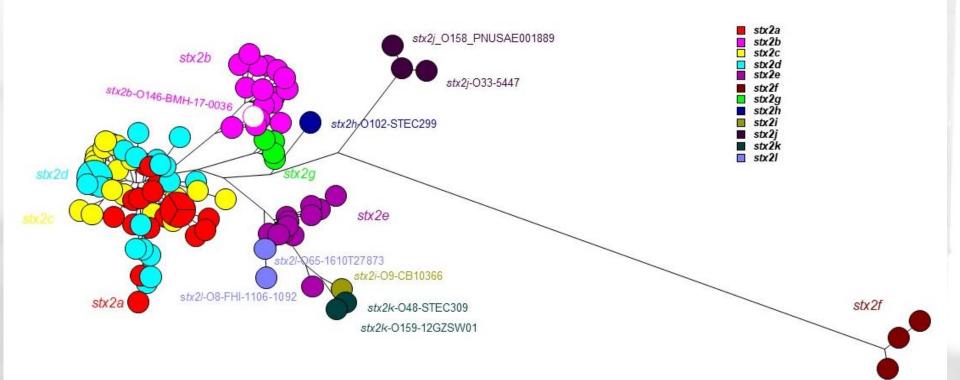



Average percentage test isolate score for subtyping of stx1 and stx2

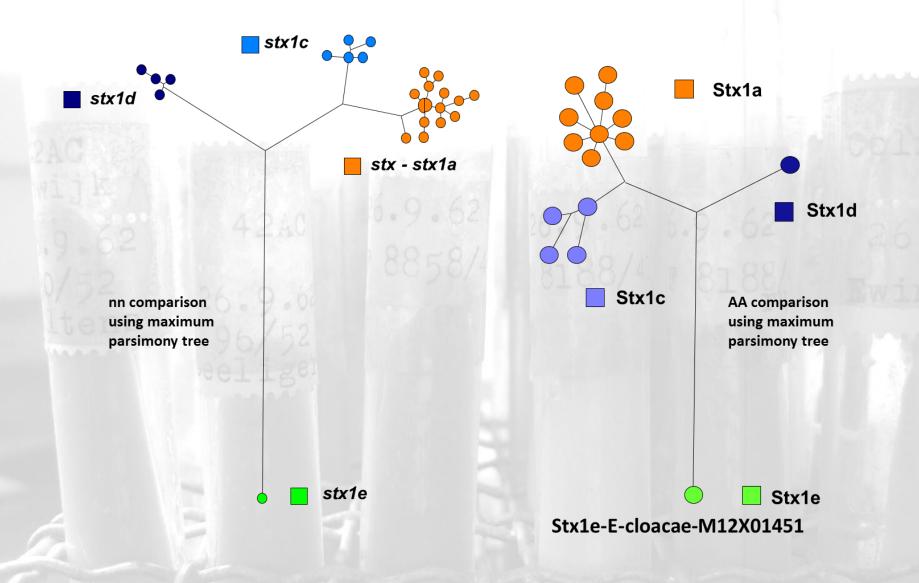


Test isolate score for subtyping of stx2

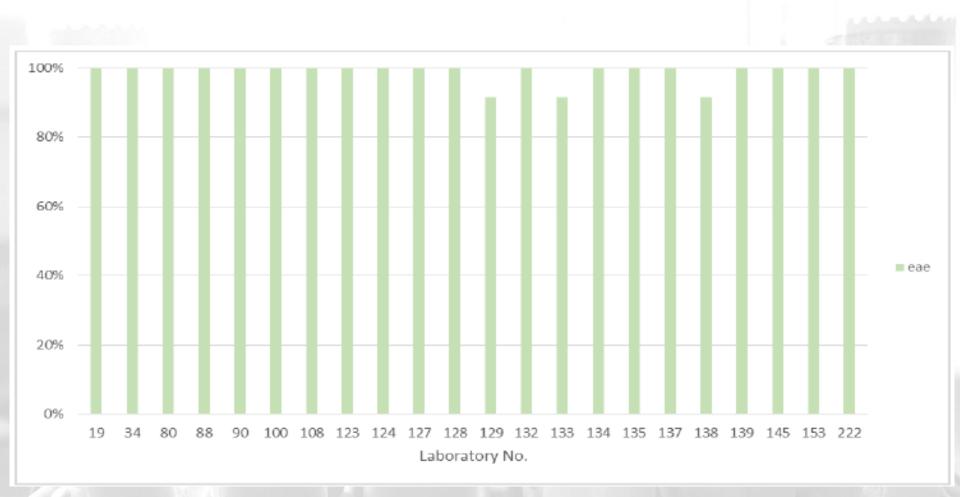




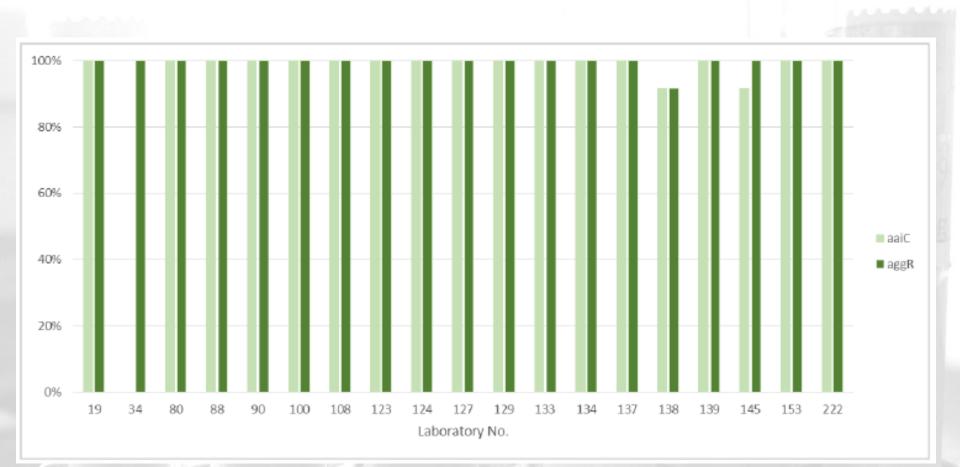
Stx2 subtype amino acid comparison using maximum parsimony tree


stx2 subtype nucleotide comparison using maximum parsimony tree

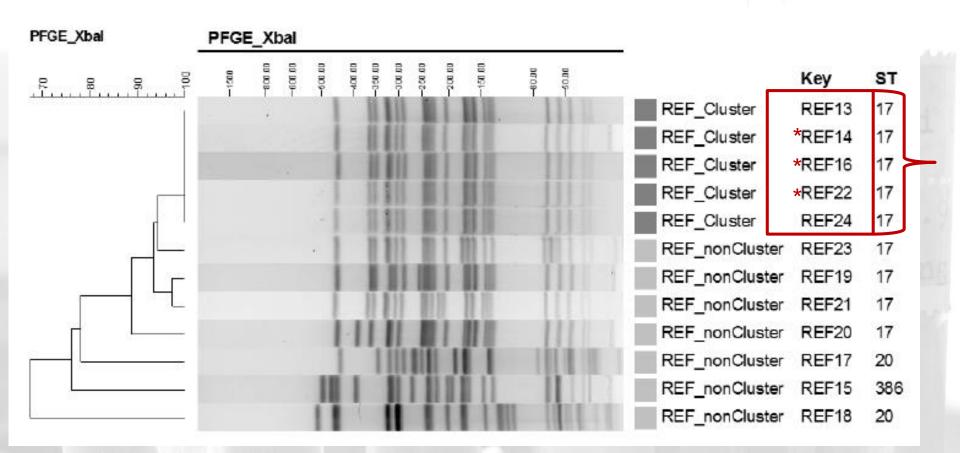
Two more in the pipeline: stx2n and stx2o subtypes; unpublished



Stx – stx1 family tree

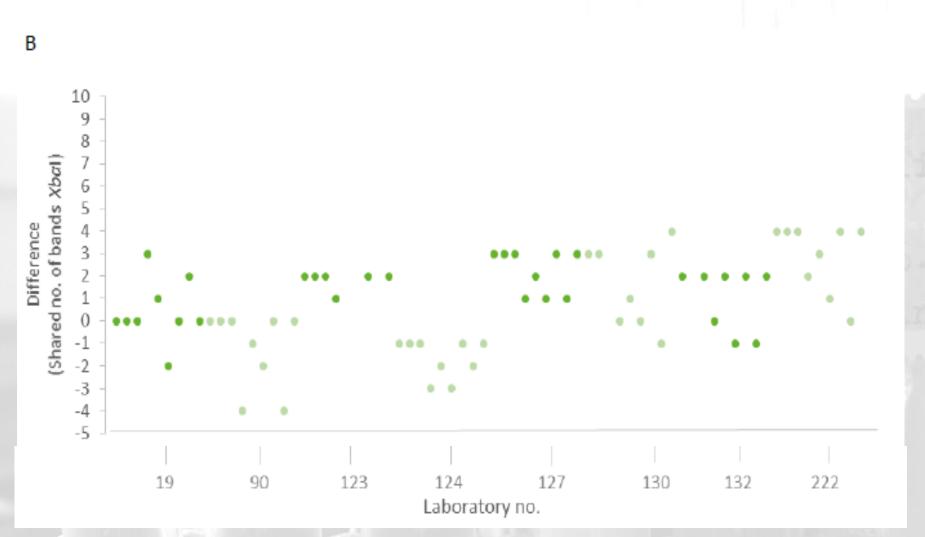


Participant percentage scores for genotyping of eae



Participant percentage scores for genotyping of *aaiC* and *aggR*

Cluster analysis based on PFGE-derived data


Cluster of closely related isolates: REF13, REF14, REF16, REF22 and REF24 *REF14, REF16 and REF22 are technical duplicates.

PFGE total number of bands

Data from all nine ST17 isolates

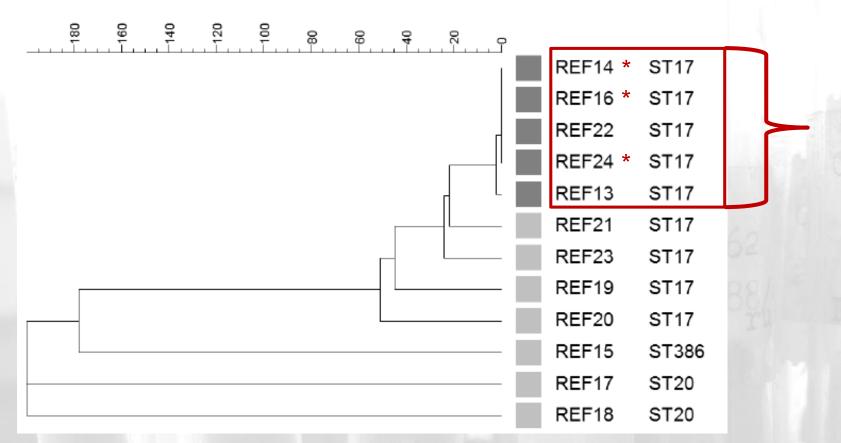
PFGE number of shared bands

Data from all nine ST17 isolates

Reported cluster of closely related isolates based on PFGE-derived data

Lab	Reported cluster	Corresponding REF isolates	Correct
Lau		REF13, REF14, REF16, REF22, REF24	
19	9281, 9431, 9487, 9770, 9837	REF24, REF22, REF16, REF13, REF14	Yes
90	9098, 9369, 9390, 9647, 9717	REF22, REF13, REF24, REF16, REF14	Yes
123	9100, 9120, 9207, 9470, 9555	REF14, REF13, REF22, REF16, REF24	Yes
124	9038, 9211, 9886, 9950, 9999	REF14, REF16, REF13, REF24, REF22	Yes
127	9088, 9159, 9191, 9844, 9934	REF24, REF13, REF16, REF22, REF14	Yes
130	9171, 9624, 9062, 9347, 9383, 9052, 9067, 9060	REF19, REF24, REF20, REF22, REF21, REF14, REF13, REF23	No
132	9193, 9194, 9257*, 9290, 9345, 9525, 9759, 9896, 9900	REF24, REF14, REF13, REF21, REF20, REF23, REF16, REF22, REF19	No
222	9077, 9155, 9395, 9423, 9631, 9648	REF24, REF16, REF22, REF13, REF14, REF21	No

REF14, REF16 and REF24 are technical triplicates.


Incorrect ID: should have been 9275

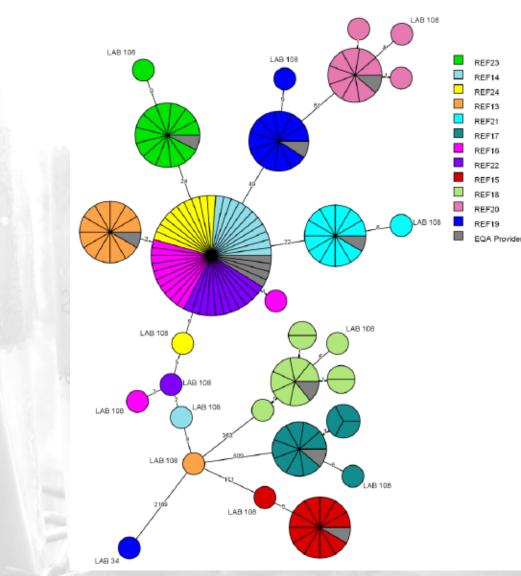
Cluster analysis based on WGS-derived data

wgMLST (Core Enterobase)

Single linked dendrogram of core genome multi-locus sequence typing (cgMLST) profiles of STEC EQA-9 isolates (cgMLST, EnteroBase,

https://enterobase.warwick.ac.uk)

Analysed in BioNumerics: Maximum distance of 200 has been exceeded; results were clipped. Cluster isolates dark grey, outside cluster isolates light grey REF14, REF16 and REF24 are technical duplicates.



Cluster identification based on WGS-derived data

	ST		Laboratory number										
Isolate ID	ST	19	34	80	100	108	123	133	134	135	137	139	222
REF13*	17	Yes	Yes	Yes	Yes	(No)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
REF14**	17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
REF15	386	No	No	No	No	No	No	No	No	No	No	No	No
REF16*#	17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
REF17	20	No	No	No	No	No	No	No	No	No	No	No	No
REF18	20	No	No	No	No	No	No	No	No	No	No	No	No
REF19	17	No	No	No	No	No	No	No	No	No	No	No	No
REF20	17	No	No	No	No	No	No	No	No	No	No	No	No
REF21	17	No	No	No	No	No	No	No	No	No	No	No	No
REF22*#	17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
REF23	17	No	No	No	No	No	No	No	No	No	No	No	No
REF24'	17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Main analysis		Allele (cgMLST)	Allele (cgMLST)	Allele (cgMLST)	Allele (cgMLST)	SNP	Allele (cgMLST)	Allele (cgMLST)	Allele (cgMLST)	Allele (cgMLST)	SNP	Allele (cgMLST)	Allele (cgMLST)
Additional an	alysis												
Cluster-identified		Yes	Yes	Yes	Yes	(Yes)	Yes	Yes	Yes	Yes	Yes	Yes	No

Minimum spanning tree of core genome multi locus sequence typing (cgMLST) participant FASTQ files

Minimum spanning tree (MST) in log scale of core genome multi-locus sequence typing (cgMLST) based on submitted raw reads (FASTQ files)

											,∔-∔∔-i,
Strain no.	O group	H type	eae geneH	<i>stx1</i> gene	<i>stx2</i> gene	stx1 subtypes	<i>stx2</i> subtypes	aggR gene	<i>aaiC</i> gene	Additional virulence genes	Pathotype
REF1	O55	H7	+	+	-	stx1a	-	-	-	astA efa1 espABFJ etpD iss nleABC tir	STEC
REF2	0187	H28	-	-	+	-	stx2g	-	-	estAp of A katP astA celb ehxA hlyD	STEC- ETEC
REF3	O128	H2	-	+	+	stx1c	stx2b	-	-	Cvi-cvaC espl hlvF iha ireA iroN iss iutA lpfA nichBF OmpT subA traT	STEC
REF4	076	H7/H-	+	-	+	-	stx2a	-	-	astA cha cma ehxA hlyD iha katR lpfA n eABC tir traT	STEC
REF5	O154	H31	-	+	-	stx1d	-	-	-	air eilA hra mchBF mcmA traT	STEC
REF6	O91	H14	-	+	+	stx1a	stx2b	-	-	celb ehxA espP ireA iha iss IpfA blyD	STEC
REF7	0121	H19	+	-	+	-	stx2a	-	-	efa1 ehxA espABFJR lpfA hlyD nleABC tir traT	STEC
REF8	0111	H8/H-	+	+	+	-	stx2a	-	-	astA cba celb cif efa1 ehxA espAFJ iha lpfA nleBC PAI(MaIX) tir traT	STEC
REF9	0157	H7	+	-	+	-	stx2c	-	-	astA ehxA espABFJP etpD hlyD iha iss katP nleAC tccP tir	STEC
REF10	O145	H28/H-	+	-	+	-	stx2a	-	-	astA cif ehxA espABFIP hlyD iha iss katP nleABC <u>tcc</u> P tir	STEC
REF11	O126	H27/H-	-	-	-	-	-	+	+	AAFII aap aar fyuA lpfA pet pic astA capU	"EAEC "
REF12	O91	H21	-	-	+	-	stx2d	-	-	cdtB illa iss lpfA	STEC

Conclusions EQA-9

O grouping:

- O187 has strong cross-reactions with both O74, O103, and O175
- PCR does not react with O187.

However: Improved O grouping of O187 from 35% to 65%

stx subtyping:

- High participation: 79% Scores high: stx1: 93%; stx2: 93%
- Incorrect results were mainly due to reporting two subtypes in the same isolate
- Revision of nomenclature and development of refined PCR protocol for the detection of one new stx1- and six new stx2 subtypes.

Conclusions EQA-9

PFGE-derived data:

- Eight 33% (Nine 36%) performed cluster analysis using PFGE
- Five participants (63%) identified the cluster.

WGS cluster analyses:

- Twelve 50% (Eleven 44%) performed cluster analysis using WGSderived data
- Ten (83%) correctly identified the cluster
- Ten reported an allele-based method (0-5 allele difference cgMLST)
- Two reported a SNP analysis (0-4 SNPs).

Recommendations EQA-9

- Meet the deadline *i.e.* assign sufficient ressources
- perform test on ALL isolates regardless of results obtained in the screening and detection or any other test *i.e.* the NDs!!
- standard cgMLST scheme (e.g. Enterobase) gives a very high degree of homogeneity in the results
- allele-based methods seem to be useful for interlaboratory comparability and communication about cluster definitions