# Internalization of STEC into protozoa: Impact on the food testing?

#### Margherita Montalbano Di Filippo

**Rome, 19th October 2021 (online)** 





#### **BACKGROUND**

The association between free-living amoebae (FLA) and pathogenic bacteria is an issue that has gained great importance due to the environmental and health consequences that it implies:

- (i) shape human pathogens from the evolutionary point of view
- (ii) comprise a protective niche and vector for pathogen transmission

## (1990 - 2020) 100 80 60

Pubmed reports: Interaction FLA and bacteria

\* **Update on 2021:** published only one article – «Paradigms of Protist/Bacteria Symbioses Affecting Human Health: *Acanthamoeba* species and *Trichomonas vaginalis*, Henriquez et al. 2021.

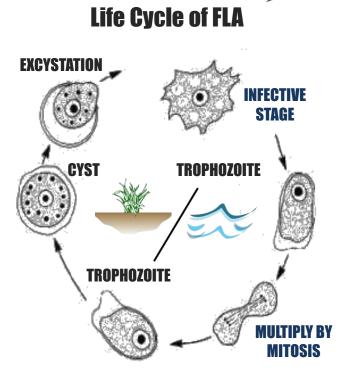
40



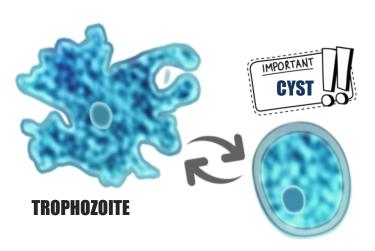


#### **BACKGROUND**




Representative micrograph of *Acanthamoeba* castellanii interactions with *Enterobacter* aerogenes; from Yousuf et al., 2013.

## **Bacteria can benefit from interactions with FLA**


- 1) their ability to **escape predation** and **grow** in the presence of a protozoan
- 2) their ability to resist intracellular digestion
- their ability to resist digestion but also to grow within the protozoan vegetative form



#### FREE-LIVING AMOEBAE



...FROM A PUBLIC HEALTH PERSPECTIVE



CYSTIC
STAGE
amoebae are
tolerant from
dessication,
starvation,
chemical and
physical
agents

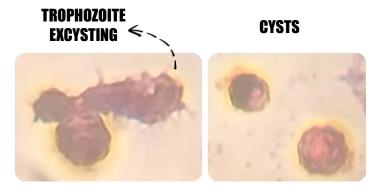
FLA life cycle modified picture from: https://www.cdc.gov/dpdx/freelivingamebic/index.html





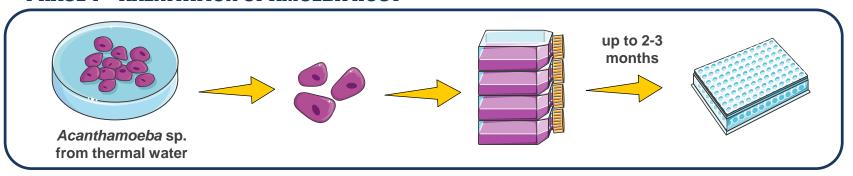


Investigate the potential for ubiquitous free-living amoebae (*Acanthamoeba*) to support the growth of STEC and their interactions

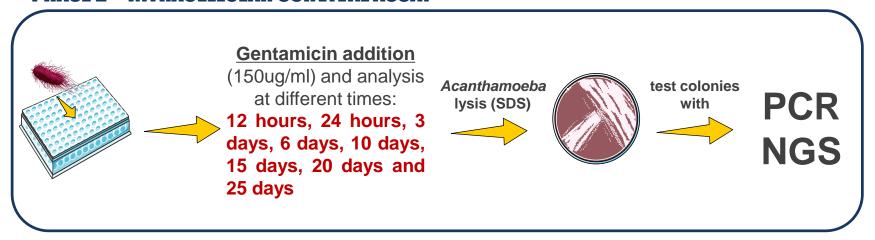



#### **EXPERIMENTAL PROCEDURES**




| O157:H7                                  | eae+ stx1+ stx2+ | HUS          |
|------------------------------------------|------------------|--------------|
| O157:H7                                  | eae+ stx1+       | HUS          |
| O157:H7                                  | eae+ stx2+       | bovine stool |
| non pathogenic<br><i>E. coli</i> (ECORI) | -                | -            |

#### AMOEBA HOST – *Acanthamoeba* sp.




Trophozoite and cysts of *Acanthamoeba* sp. with a stained with Giemsa (40X). Original photos.

#### PHASE 1 – AXENITATION OF AMOEBA HOST



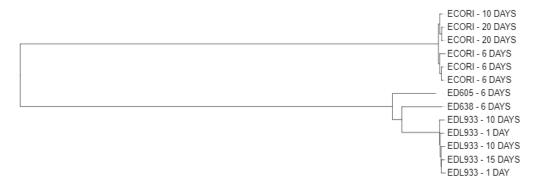
#### PHASE 2 – INTRACELLULAR SURVIVAL ASSAY







#### **RESULTS**


| E. coli strains | Virulence<br>genes  | Source          | 12 hours | 1 day   | 3 days  | 6 days  | 10 days  | 15 days  | 20<br>days | 25 days |
|-----------------|---------------------|-----------------|----------|---------|---------|---------|----------|----------|------------|---------|
| O157:H7         | eae+ stx1+<br>stx2+ | HUS             | 100 cfu  | 100 cfu | -       | -       | 100 cfu  | 23 cfu   | -          | 70 cfu  |
| O157:H7         | eae+ stx1+          | HUS             | 1 cfu    | 100 cfu | 100 cfu | 1 cfu   | 30 cfu   | -        | -          | >100    |
| O157:H7         | eae+ stx2+          | bovine<br>stool | 1 cfu    | 100 cfu | -       | 14 cfu  | 100 cfu  | -        | -          | >100    |
| ECORI           |                     | -               | 1 cfu    | 100 cfu | -       | 100 cfu | >100 cfu | >100 cfu | 100 cfu    | 1 cfu   |





#### ...STILL IN PROGRESS

Tree scale: 0.001 -----



TO DATE NO DIFFERENCES SAME STRAIN AT DIFFERENT TIMES!!

chewTree: phylogenetic tree from chewBBACA alleles





#### NEXT STEPS

|                        |                     |                 |          |         |         |         |          | •        | •          |         |
|------------------------|---------------------|-----------------|----------|---------|---------|---------|----------|----------|------------|---------|
| <i>E. coli</i> strains | Virulence<br>genes  | Source          | 12 hours | 1 day   | 3 days  | 6 days  | 10 days  | 15 days  | 20<br>days | 25 days |
| O157:H7                | eae+ stx1+<br>stx2+ | HUS             | 100 cfu  | 100 cfu | -       | -       | 100 cfu  | 23 cfu   | -          | 70 cfu  |
| O157:H7                | eae+ stx1+          | HUS             | 1 cfu    | 100 cfu | 100 cfu | 1 cfu   | 30 cfu   | -        | -          | >100    |
| O157:H7                | eae+ stx2+          | bovine<br>stool | 1 cfu    | 100 cfu | -       | 14 cfu  | 100 cfu  | -        | -          | >100    |
| ECORI                  | -                   | -               | 1 cfu    | 100 cfu | _       | 100 cfu | >100 cfu | >100 cfu | 100 cfu    | 1 cfu   |

use the rpoS mRNA as a viability marker!!





#### **CONCLUSIONS**

- ✓ Acanthamoeba sp. can internalize pathogenic and non pathogenic E. coli
- ✓ internalized bacteria (pathogenic and non-pathogenic) are able to survive within amoebae up to 25 days!
- ✓ our results are compatible with the results of Barker and collaborators (1999) which showed that there is a mutually beneficial interaction between E. coli O157 and Acanthamoeba trophozoites and that a significant increase in E. coli O157 is observed.
- ✓ free-living amoebae could play a decisive role in the persistence of pathogenic strains of *E. coli* in the environment favoring their spread with a consequent increase in the risk of infection for humans



### Thanks for your Attention



