04/11/2019

Update on the annual reporting of STEC in the EU and on EFSA activities for molecular typing data collection for food and animal isolates

Mirko Rossi

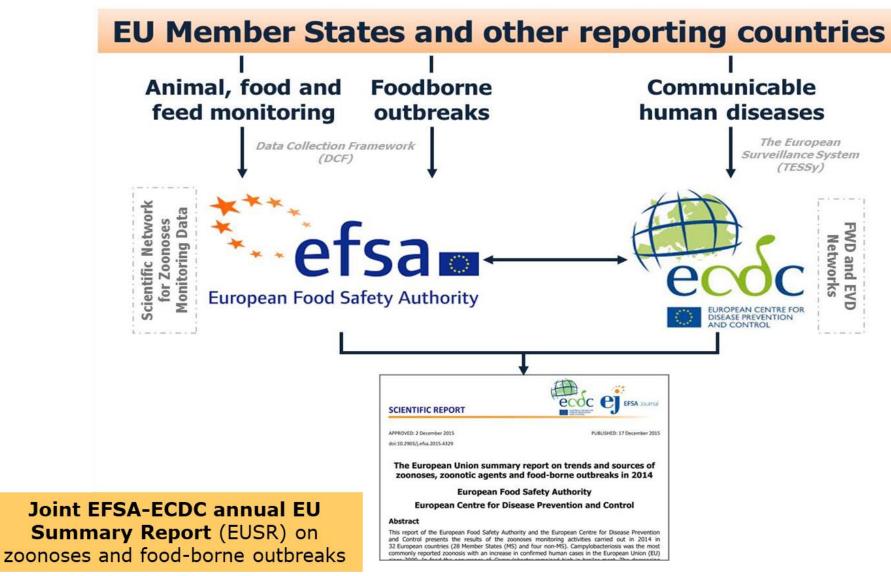
Scientific Offiecer BIOCONTAM Unit

Trusted science for safe food

- Annual reporting of STEC in the EU
- EFSA activities for molecular typing data collection for food and animal isolates including WGS
- Joint ECDC EFSA assessments on EU-wide foodborne events

Monitoring of zoonoses and FBO in the EU

FOOD-ANIMAL DATA


- Directive 2003/99/EC on the monitoring of zoonoses and zoonotic agents
 - Publication of the annual EU Summary Report
 - MSs have an **obligation** to report data each year
 - Mandatory data collection for:
 - 8 zoonotic agents: Salmonella (+ AMR), Campylobacter (+ AMR), L. monocytogenes, Brucella, tuberculosis due to Mycobacterium bovis, VTEC, Trichinella, Echinococcus
 - foodborne outbreaks (FBOs) and susceptible animal populations

HUMAN DATA

Decision 1082/2013/EU on serious cross-border threats to health

Zoonoses data collection

[Available online: www.efsa.europa.eu/efsajournal]

In the year after the 2011 outbreak, overall EU/EEA trend did not show any significant increase or decrease

1.77 cases /100,000 (IE highest notification rate = 16.6)

79.1% domestic cases (FI, SE and NO reporting the highest proportion of travel associated cases)

	Number of confirmed ^(a)	Hospitalisation				Deaths			
Disease	Human	Status	Number of	Reported	Proportion	Outcome	come Number of	Reported	Case
Disease	Human cases	available (%)	reporting MS ^(b)	hospitalised cases	hospitalised (%)	available (%)	reporting MS ^(b)	Deaths	Fatality (%)
Campylobacteriosis	246,158	27.6	17	20,810	30.5	72.8	16	45	0.04
Salmonellosis	91,662	43.1	14	16,796	42.5	67.8	17	156	0.25
Yersiniosis	6,823	27.1	14	616	33.4	65.5	15	3	0.07
STEC infections	6,073	41.0	18	933	37.5	66.1	21	20	0.50
Listeriosis	2,480	40.4	16	988	98.6	65.8	18	225	13.8

Table 2: Reported hospitalisation and case fatalities due to zoonoses in confirmed human cases in the EU, 2017

Serogroups in confirmed human STEC infections, 2017

O157 the most commonly reported serogroup (but steadily decreasing sing 2012) 026 decreased since 2016

0157 + 026 = 46.2%

One new serogroup (O76) entered into and three serogroups (O5, O182, O27) were dropped from the "top 20 list" in 2017.

The proportion of non-typable STEC strains increased in 2017

		2017		2016		2016		2015	
Serogroup	Cases	MS	%	Cases	MS	%	Cases	MS	%
0157	1,304	24	31.9	1,552	22	38.6	1,510	21	42.1
O26	582	18	14.3	671	19	16.7	537	16	15.0
NT ^(a)	493	11	12.1	335	12	8.3	397	10	11.1
O103	245	14	6.0	218	18	5.4	172	14	4.8
091	179	14	4.4	149	11	4.0	114	12	3.2

 Table 32:
 Distribution of the 20 most frequent serogroups reported in confirmed cases of human

 STEC infections in EU/EEA, 2015–2017

Analytical methods used 2017

Sample	es tested	proportion (%) of total samples test	otal samples tested by method		
Туре	Number	ISO/TS 13136:2012	ISO 16654:2001 or NMKL 164:2005 or DIN 10167	Unspecified		
Food	21 574	97.4	2.6	0.0		
Animals	2 310	52.5	43.5	4.0		

New aggregation rules for 2073/2005

- Data sets usable for trend watching
 - Surveillance based on Reg 2073
 - Single sampling unit
 - Appropriate sampling stage
- Other food data: only summary

Wide adoption of standard method at EU level in Food

Sampling reported for STEC (2015 – 2017)

	2017	2016	2015
Total number of food-borne outbreaks (including waterborne outbreaks)	48	42	69
Number of outbreak-related cases	260	735	674
Food			
Meat and meat products			
Number of sampled units	12,465	9,369	10,872
Number of reporting MS	20	18	16
Milk and milk products			
Number of sampled units	3,637	3,848	4,370
Number of reporting MS	12	12	11
Fruits and vegetables (and juices)			
Number of sampled units	2,325	1,518	1,821
Number of reporting MS	15	21	22
Animals			
Bovine animals			
Number of sampled herds	226	62	49
Number of reporting MS	4	2	2
Small ruminants			
Number of sampled herds	10	208	109
Number of reporting MS	1	8	7

- 21,574 food units tested
- 2,310 units from animals or herds or flocks tested (negative trend observed in 2016)
- Meat and meat products highest number of samples tested
- Bovine marked increase
- Increase MS reporting (=25)
- Large differences among MS in food categories sampled

STEC positive samples in food and animals

Food category ^(b)	Samples tested by	Any STEC		
	ISO TS 13136 ^(c)	n ^(d)	%	
Bovine meat	8,059	134	1.7	
Ovine and goat meat	579	39	6.7	
Other ruminants meat ^(e)	93	23	24.7	
Pig meat	1,363	60	4.4	
Other meat ^(f)	1,466	27	1.8	
Mixed meat	587	13	2.2	
Milk and dairy products ^(g)	2,322	57	2.5	
Raw milk ^(h)	1,094	23	2.1	
Fruit and vegetable	2,280	7	0.3	
Seeds ⁽ⁱ⁾	1,565	10	0.6	
Other food	1,603	7	0.4	
Total	21,011	400	1.9	

Food:

- 1.8% of the 21,574 food samples tested
- meat samples > milk & dairy products (2.5%) > seeds (0.6%) fruit & vegetables (0.3%)
- Animals:
 - 10.6% of the 2,310 animal samples tested
 - deer (20.1%) > `other animals' (17.2%) > cattle (8.3%) > goat and sheep (2.9%)

12 MS reported sprouted seeds at retail level with <u>no positive samples</u>

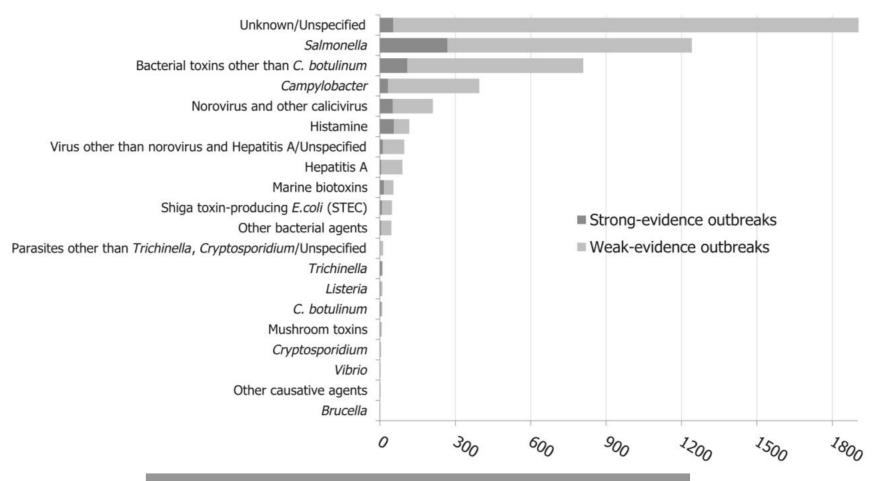
4 non-compliant batches reported by 1 MS in Official samples taken at processing plant

Only 6 MS provided info on 98 single samples taken as part of official control

Sprouted seeds	Number of reporting MS	Sample units tested	Sample units positive (%)
2013	6	444	0 (0.0%)
2014	6	481	0 (0.0%)
2015	7	576	1 (0.2%)
2016	8	344	1 (0.3%)
2017	12	786	0 (0.0%)

Table 31: STEC sprouted seeds monitoring results at retail, reporting Member States, EU, 2013–2017

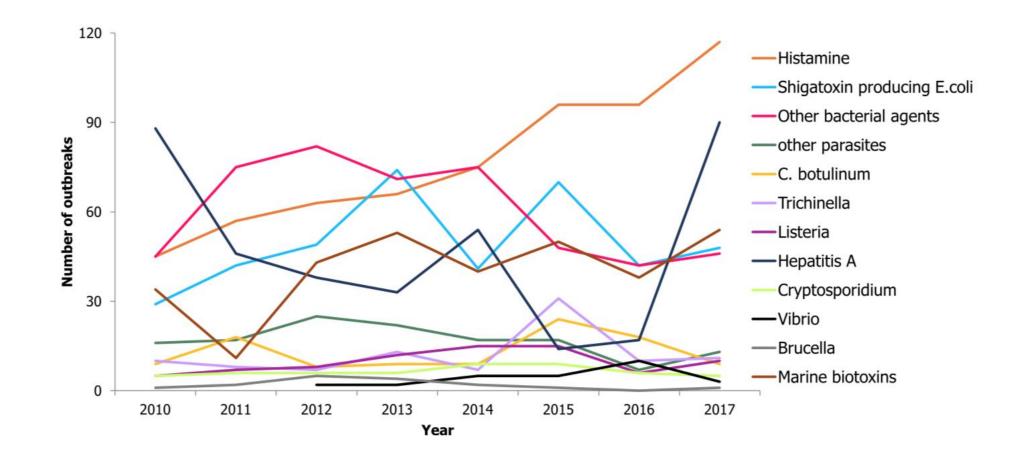
Serogroups: < 33 % food and 52% of animals isolates</p>


Food (% positive samples):
O157 (6.2%) > O103 (2.7%) > O26 (1%) > O111 and O145 (0.75%)
Animals (% positive samples):
O157 (31.5%) > O103 (2.9%) > O26 (2.5%) > O116 (1.2%) = O168 (1.2%)

Virulotype for 180/401 STEC strains isolated from food

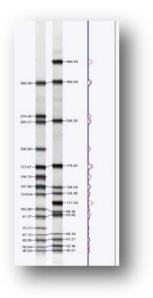
- 50% carried the genes encoding the Stx2
- 7.2% were stx2+; eae+ (HUS)
- 8 stx1+; stx2+; eae+

Distribution of strong-evidence and weak-evidence food-borne and waterborne outbreaks, per causative agent, EU, 2016

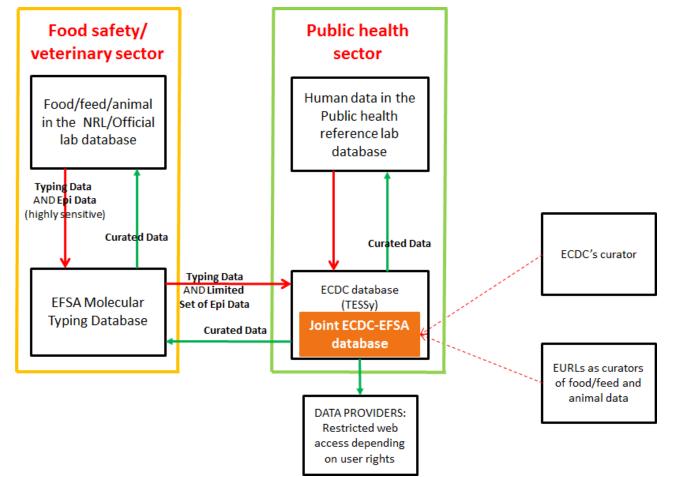

Total outbreak 5,079, strong-evidence 643

- 48 FBOs due reported by 11 MSs 260 cases 65 hospitalisations – 2 deaths
- 39 weak evidence
- 9 strong evidence
 - Food vehicle: Bovine meat (4), Cheese (1), Dairy products other than cheeses (1), Meat and meat products (1), Milk (2)
 - Type: All general outbreaks (but 1 N.A.)
 - Serogroup: VTEC 0157 (6), VTEC 0111 (1), VTEC (2)
- In addition, 1 EFTA countries reported 10 weak-evidence outbreaks (NO)

Foodborne outbreaks due to STEC, 2016



- Annual reporting of STEC in the EU
- EFSA activities for molecular typing data collection for food and animal isolates including WGS
- Joint ECDC EFSA assessments on EU-wide foodborne events


Molecular typing data collection

Following the STEC crisis in 2011, EC sent a request to EFSA and ECDC for assistance:

- to collect molecular typing data (**PFGE and MLVA**) on Salmonella, L. monocytogenes and VTEC isolates from food, feed, animals and humans
- to perform a joint data analyses of the data in the joint EFSA-ECDC molecular typing database.

Status of engagement of laboratories (as of October 2019)

	Human side	Food/ veterinary side
Nominated users	All MSs	14 MSs ^(a) : AT, BE, DK, DE, ES, FI, FR, IE, IT, LU, PT, SE, SK, UK (21 labs ^(b))
Signature of the Collaboration Agreement	16 MSs : AT, CZ, DK, EE, DE, EL, HU, LV, LT, MT, NO, RO, ES, SE, NL, SK	11 MSs : AT, BE, DE, FI, FR, IE, IT, LU, PT, SE, SK (13 labs)
Transmission of data (excluding WGS data)	15 MSs : AT, BE, CZ, DK, EL, ES, FR, IE, IT, LU, NL, NO, SE, SI, UK	9 MSs: BE, DE, FI, FR, IE, IT, LU, SE, SK
Total number of isolates uploaded	47,784	2,270

(a): Salmonella and STEC: 13 MSs (all except FR) - Listeria: all MSs

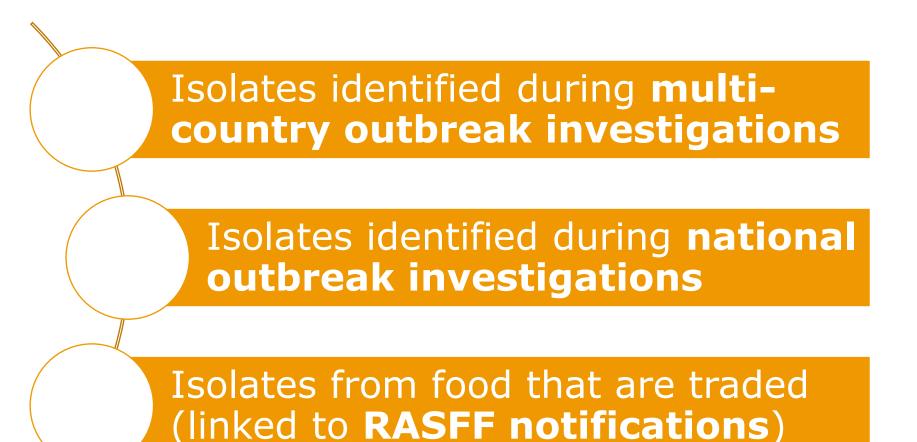
(b): 3 different users for the 3 pathogens in AT, IE and IT, 2 users for the 3 pathogens in SK

Data on **food isolates** submitted per country and pathogen (as of October 2019)

Country	L. monocytogenes	Salmonella	VTEC	N. isolates submitted from EFSA DB to Joint DB
BE	326*			326
DE	152			152
FI	41			41
FR	1,186			1,186
IE	129			129
IT		91 (MLVA)	45	136
LU	118	3 (PFGE)		121
SE	26			26
SK	146	5 (PFGE)	2	153
TOTAL	2,124	99	47	2,270

44 Isolates still to be submitted from the EFSA database to joint database

Status of engagement of laboratories



Laboratory	Mapping done	Submission
IT NRL VTEC	224 isolates	45 isolates
IT NRL Lm	Entire database (around 2000 isolates)	no submission
IT NRL Salmonella (DCF)	Entire database	91 isolates (MLVA)

- **DE**: interested for outbreak cases
- **PT** (DCF): they are interested \rightarrow waiting for their feedback.
- **SE** (*Salmonella* NRL): we provided clarification on legal aspects \rightarrow waiting for their feedback.
- **SI**: interested but they still need to sign the agreement

Prioritisation of Isolates to be typed (and then submitted)

In 2017, EFSA and ECDC received a new joint mandate from EC to expand the molecular typing data collection to **Whole Genome Sequencing (WGS)** data.

ToR1: to analyse outcome of ECDC and EFSA Surveys on WGS

ToR2: to assess the state of the art of pipelines

ToR3: to assess **needs/requirements** for analysis

ToR4: to prepare a Technical report

TECHNICAL REPORT

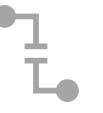
APPROVED: 29 April 2019 doi:10.2903/sp.efsa.2019.EN-1337

EFSA and ECDC technical report on the collection and analysis of whole genome sequencing data from food-borne pathogens and other relevant microorganisms isolated from human, animal, food, feed and food/feed environmental samples in the joint ECDC–EFSA molecular typing database

 European Centre for Disease Control (ECDC), European Food Safety Authority (EFSA), Ivo Van Walle, Beatriz Guerra, Vitor Borges, João André Carriço, Guy Cochrane, Tim Dallman, Eelco Franz, Renata Karpíšková, Eva Litrup, Michel-Yves Mistou,
 Stefano Morabito, Joël Mossong, Erik Alm, Federica Barrucci, Chiara Bianchi, Giancarlo Costa, Saara Kotila, Iolanda Mangone, Daniel Palm, Luca Pasinato, Joana Revez, Marc Struelens, Daniel Thomas-López and Valentina Rizzi

- Every single solution has a substantial number of gaps due to not meeting all the critical requirements
- Scenarios would consist of a <u>combination of solutions</u>
- The choice among scenarios depends on other <u>strategic or</u> <u>financial elements</u> that are not under the control of the JWG

EFSA and ECDC identified '**Strategic elements**' to be used to guide the decision and are under negotiation to identify the best scenario to present to EC

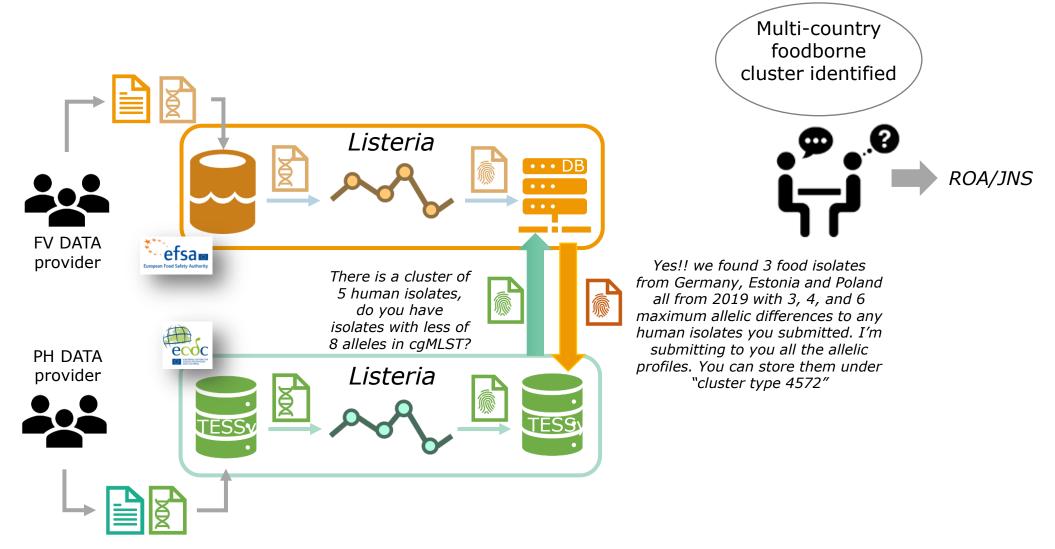

- Develop internal bioinformatic services addressing multiple needs for different risk assessment domains
- Guarantee full transparency of the analytical procedures (following the implementation of the changes in Regulation 178/2002/EC)
- Engage more with data provider for increasing the attractiveness of the system and therefore the submission of data related to non-human isolates

Proposed solution

Signal detection of multi-country events based on cg/wgMLST

Two interoperating workflows

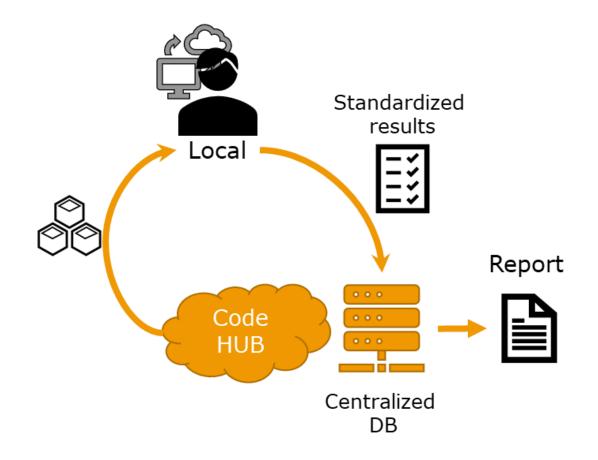
Cross-sector matches


Machine-to-machine

Each workflow collects and stores the data (i.e. allelic profiles and descriptive data) of the respective data domain.

Databases will be queried, and comparison will be performed live to the data stored, returning any matches (according to business rules) Automatic exchanging of **allelic profiles** and limited descriptive data as established in the Collaboration Agreement

Practical example


Moving code to data for reproducible analysis

- Container technology allows sharing standard workflows
 - Harmonization is ensured by sharing identical pipeline
 - Analysis is reproducible

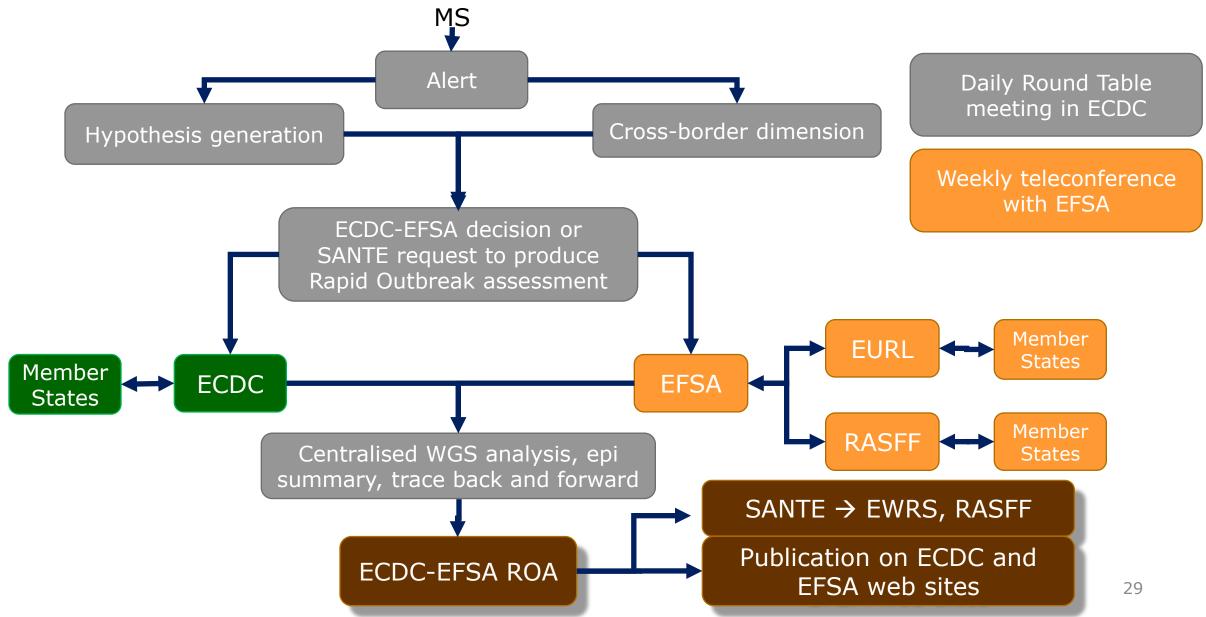
Decentralization of the resources to data providers

- Capacity building at country level
- Raw can data remain at the owner level, if wished (only final results are shared)

.. What do you think if only cgMLST allelic profiles need to be share? .. Would you share data easier?

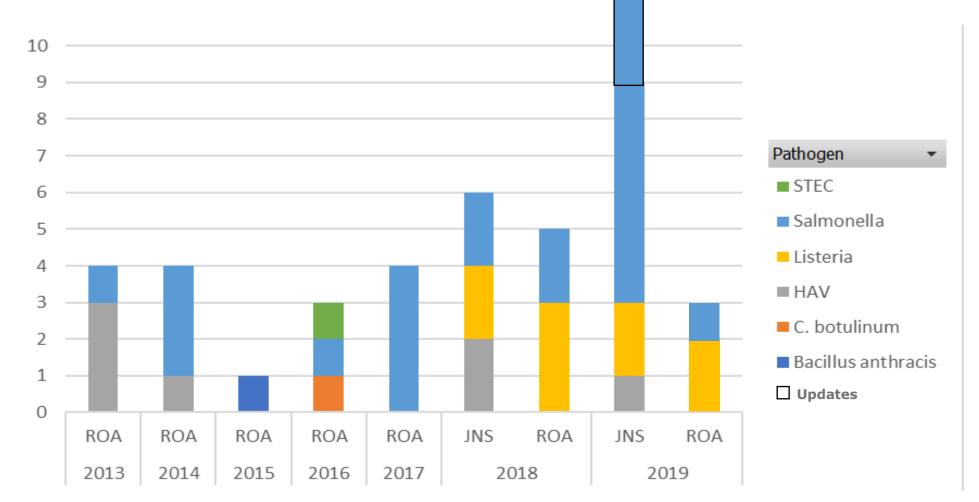
- Annual reporting of STEC in the EU
- EFSA activities for molecular typing data collection for food and animal isolates including WGS
- Joint ECDC EFSA assessments on EU-wide foodborne events

Joint Rapid Outbreak Assessment


- Aim: assess crossborder foodborne public health threat
- Active data collection, joint analyses
- Agreed procedure

Joint Notification Summary

- Aim: immediate notification of a cross-border foodborne event to risk managers
- Based on available information


Operational steps in Rapid Outbreak Assessment

Activities in the last 7 years as of October 2019

JNS = Joint Notification Summary

ROA = Rapid Outbreak Assessment

Thanks for your attention!

Acknowledgements

EFSA

Luca Pasinato Alessandro Delfino Mirko Rossi Chiara Bianchi Giancarlo Costa Ernesto Liebana

ECDC

Ivo van Walle Ettore Severi Erik Alm Saara Kotila

SANTE Pamina Mika-Suzuki

EURL *Listeria*

Benjamin Felix Bertrand Lombard Jean-Charles Leblanc

EURL *Salmonella* Kirsten Mooijman

EURL *E. coli* Stefano Morabito

EU/EEA Member States

For reporting PFGE and MLVA data

Special thanks to Alessandro Delfino and Luca Pasinato for the collection of data in the current joint molecular typing database