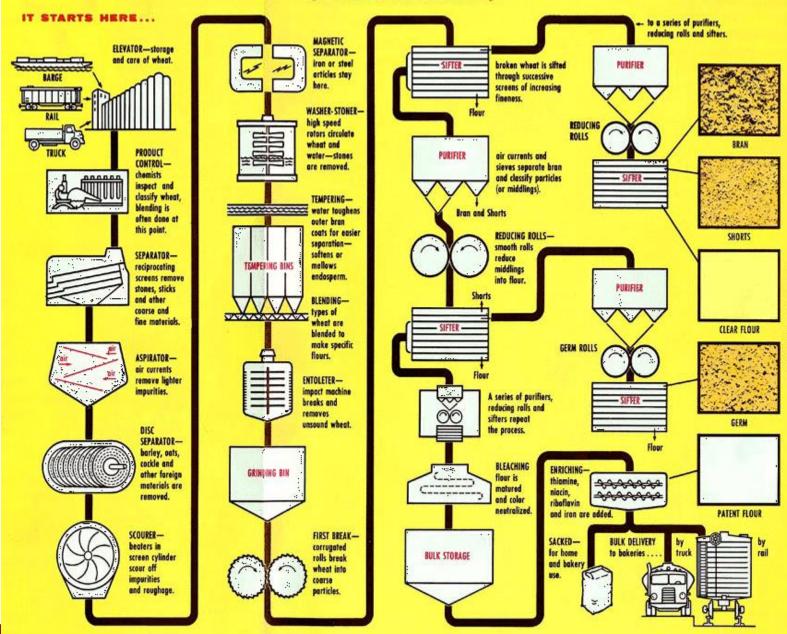


Baking flour as a vehicle for the transmission of Shiga toxin producing *Escherichia coli*

Alex Gill

Bureau of Microbial Hazards/Bureau des dangers microbiens Health Canada/Santé Canada

YOUR HEALTH AND SAFETY ... OUR PRIORITY.


Grain Milling

Milling Economics – Canada

- The primary market for wheat flour is industrial bakers
- Less than 10% of flour is sold to consumers
- Industrial bakers require specific functional and rheological properties.
- Grain with different characteristics is milled and the flour mixed to create desired products

HOW FLOUR IS MILLED

(A SIMPLIFIED DIAGRAM)

Bacteriology of Milling

Grain processing is non linear

- A lot of flour is not produced from a single load of grain
- Constant recirculation of grain particles and mixing
- Decontamination prior to packing likely futile

Heat treated flour

- Produced as a special product line
 i.e. cookie dough ice cream
- Heating destroys functional characteristics
- No wet cleaning or sanitation.
 - Blowing/vacuuming of dust
 - Pest control fumigation or heat

Bacteriology of Milling

Millers do not routinely test for bacteria

- Microbial growth controlled by low water activity < 0.600
- Initial bacterial load on grain varies
 - Milling reduces total CFU/g by approx. 1 log
 - 3.5 to 4.5 log CFU/g is "normal"
- North America mean *E. coli* 0.82 log CFU/g

Milling operation is very dry.

- Moisture is very carefully controlled
- Two potential places for *E. coli* growth in the mill
 - Tempering bin
 - Animal Pests, e.g. rodents, beetles

Sabillón Galeas, 2014. http://digitalcommons.unl.edu/foodscidiss/49 Sperber et al. 2007. J. Food Prot. 70:1041 Eglezos 2010. J Food Prot. 73:1533 Berghofer et al. 2003. Int J Food Microbiol. 85:137

STEC in Flour

Outbreaks of STEC

Table 1. Outbreaks of STEC implicating wheat flour

Location	Dates	Cases	Serotypes
USA - Multistate	Dec 2015/Sept 2016	56	0121, 026
Canada - Multiprovince	Nov 2016/Apr 2017	30	O121
Canada - BC	Feb 2017/Sept 2017	6	O121
USA - Multistate	Dec 2018/May 2019	21	O26

Consumption of raw dough identified as a risk factor in two outbreaks

Crowe et al., 2017. N. Engl. J. Med. 377:2036. BCCDC. 2017. http://www.bccdc.ca/about/news-stories/newsreleases/2017/bccdc-advises-british-columbians-about-a-new-outbreak-of-e-coli-0121-associated-with-flour Morton et al., 2017. Can. Commun. Dis. Rep. 43(7/8):154 CDC. 2019. https://www.cdc.gov/ecoli/2019/flour-05-19/index.html

STEC Prevalence in Milled Grains

Table 2. Prevalence of STEC in milled grains.

Country	n	Analytical unit	Grains	Prevalence stx STEC	
Switzerland	93	25 g	wheat (52), wheat + other (19), spelt (18), rye (3) buckwheat (1)	10.8%	8.6%
Switzerland	70	5 x 10 g	wheat (21), spelt (14), rye (4), buckwheat (2), millet (2), chestnut (1), corn (1), durum wheat, (1) Emmer wheat (1), soy (1), mixed flour (22)	12.9%	11.4%
Germany	51	25 g	wheat, rye	29.4%	21.6%

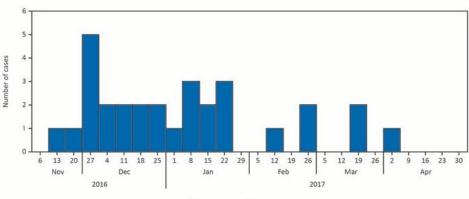
Boss and Hummerjohann, 2019. J. Food Prot. 82(8):1398 Kindel et al., 2019. J. Food Prot. 82(1):164 Mäde et al. 2017. J. Consum. Prot. Food Saf. 12:245–253

Canada 2016/2017 Outbreak STEC 0121:H19

HEALTH CANADA > 1

Outbreak of STEC 0121:H19

Outbreak Dates


- Start: Nov 2016 End: Apr 2017
- Source identified in Mar 2017

Cases

- 30 confirmed in six provinces
- Age range 2-79 years (median 23.5 years)
- 8 hospitalisations / 1 hemolytic uremic syndrome

Outbreak strain of E. coli

- Serotype O121:H19
- Virulence genes
 - stx2a, eae, hlyA

Month and week of symptom onset

Morton et al., 2017. Can. Commun. Dis. Rep. 43(7/8):154

Flour as the Source

Alberta Clinical Case

• STEC O121:H19

2016

- Same PFGE as outbreak strain
- STEC O121:H19 isolated from open bag of flour

Canadian Food Inspection Agency

- Tested flour samples from implicated producer
- STEC O121 in flour milled on three sequential days in Oct

Research Questions

What is the concentration of STEC O121 in the recalled flour?

- Exposure risk
- Choice of analytical sample size
- Pathogen infectivity

What is the composition of the microbiota of the samples?

- Understanding the contamination source
- Are there potential indicator organisms?

Characterisation of the pathogen

• Are there attributes which may have contributed to the outbreak?

Enumeration of Microbiota

STEC O121 enumeration by two approaches

- MPN enumeration of recalled product samples
- MPN statistics to estimate from qualitative data
 - Positive/negative results from outbreak investigation

Microbiota

- Total Aerobic Count
- MacConkey Agar (Gram negatives)
- Petrifilm *E. coli* and total Coliforms
- Composition of microbiota, genus level
- Identification of colonies from Total Aerobic plates
- Biochemical and Bruker Biotyper (MALDI-TOF)

STEC O121 in Flour

Table 3. Estimate of STEC O121 in wheat flour. Estimatefrom results of outbreak investigation testing. Estimate fromMPN analysis of recall samples.

	MPN/100g			
Production	Estimate from	MPN		
Day	Qualitative data	Analysis		
Α	0.41	0.17		
В	0.30	0.43		
С	0.15	0.30		

Gill et al. 2019. Food Micro. 82:474

Multiple STEC in Recalled Flour

Multiple STEC isolated

- O8:H28 (*stx1 -, stx2a +, eae -, hlyA* +)
- O146:H21 (stx1 -, stx2b +, eae -, hlyA +)

No disease cases associated with these serotypes in the outbreak period

- Lower potential to cause illness than STEC O121:H19?
- Lower infectivity than STEC O121:H19?
- Co-infection with STEC O121:H19?
- Were illnesses undiagnosed?

Comparison of Recalled vs Retail Flour

No STEC in the 8 samples of Retail flour

- 5 x 100g analytical units for each sample
- Enrichment and PCR screen for stx

No evidence of more fecal bacteria in Recalled flour

Table 4. Enumeration of microbiota. Means are Log CFU/g. CL: 95% confidence limit. *Recalled significantly different than Retail, *t-test* (P < 0.05)

Sample		AC	C:	Colifo	orms	E. coli	MA	NC
	n	Mean	CI	Mean	CL	>10 cfu/g	Mean	CL
Recall A	6	4.9*	0.2	2.9	0.6	0	4.6*	0.2
Recall B	18	4.5*	0.3	3.0	0.1	1	4.5*	0.1
Recall C	6	4.5*	0.2	2.7	0.8	2	4.4*	0.2
Retail flour	24	3.9	0.2	2.7	0.1	0	3.7	0.2

ACC: total Aerobic Colony Count. Coliforms/ *E. coli*: 3M Petrifilm *E. coli*/Coliform. MAC: MacConkey agar

Gill et al. 2019. Food Micro. 82:474

Flour Analysis - 2 Years Storage

- No increase in water activity during storage
- Samples from two production days, A and B
- n=5 100 g analytical units form each day
- STEC O121 isolated
 - Same core genome Multilocus Sequence Type as outbreak isolates (max. 7 SNP's in 2513 genes)

Table 5. STEC 0121:H19 in flour stored for 2 years

Production Day	n=5 100 g	MPN/100g
А	1/5	0.22
В	1/5	0.22

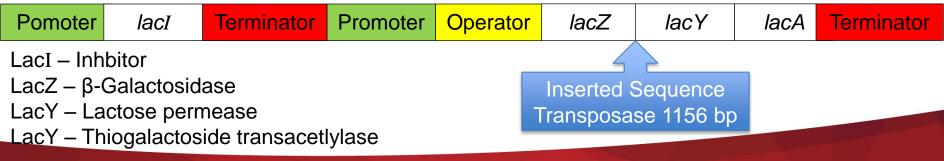
Delayed Lactose Phenotype

STEC O121:H19 strains from Canada and US flour outbreaks

- Do not utilise lactose in 24 h
- Lactose utilisation after 48 h or in 24 h when sub-cultured to a second lactose media

 Table 6. Prevalence of delayed lactose phenotype in STEC

	β-Galactosidase Activity			
	Induced	Delayed	No Activity	
O121:H19	12	11	1	
O121:other H	7	1 (O121:NM)	-	
Other O-types	36	-	1 (O145:H34)	


Delayed Lactose Phenotype

Genomic Analysis

- Long read scaffold (MinION)/Short read correction (MiSeq)
- Comparison of Lac operon in three O121:H19 strains

Lactose Phenotype	Strain ID	Isolate Origin	Comments
Induced (WT)	11-3925	Clinical	No Insert
Delayed	BMH-17-0004 19-9255	Flour Clinical	Inserted Sequence between <i>lacZ</i> and <i>lacY</i>
No Activity	1748	Clinical	Inserted Sequence between <i>lacZ</i> and <i>lacY</i> Silent T substitution in <i>lacI</i>

- Inserted sequence (Transposase 1156 bp)
 - Replaces 4 a.a. with 10 a.a. in end of LacZ
 - Increased Rho independent terminator sequences

Conclusions

Are milled grains a new vehicle for STEC?

- Many unattributed STEC cases
- Outbreaks with wide geographic and temporal range
 - Better linking of cases
- Investigator awareness post 2016
- Milling is a traditional industry; no changes in processing

Are outbreaks caused by unusual contamination?

- E. coli is a normal part of flour microbiota
 - STEC are a subpopulation of *E. coli*
- No increase in fecal indicators in outbreak flour
- Surveys indicate STEC present in non-outbreak flour
- Illness associated with STEC at <1 MPN/100g

Conclusions

Need for robust sampling plans

• STEC in flour at <1 MPN/100g can cause outbreaks

Do not terminate analysis on first STEC isolation

• Multiple STEC can be present in a flour production lot

STEC O121:H19 can persist in flour up to 2 years

- Is this exceptional among STEC?
- Are other low moisture foods STEC vehicles?

Pathogen levels can be estimated from qualitative data

- Treat positive/negative results as MPN tubes
- Can potentially guide sampling plans

Acknowledgements

Collaborators

Canadian Food Inspection Agency Linda Chui - Alberta Health Services Peter Feng, Karen Jinneman, June Wetherington - US FDA Rebecca Lindsey, Haley Martin, Devon Stoneburg, Nancy Strockbine- US CDC

Technical Assistance – Health Canada Tanis McMahon, Robyn Kenwell, Nick Petronella, Dr. Kelly Weedmark, Marco Lai, Dylan Fox-Altherr Micaela Hadley

11th Triennial International Symposium on Vero (Shiga) Toxin-Producing *E. coli*

May 9 - 12, 2021

Banff, Alberta, Canada www.vtec2021.org

@vtec2021 \@vtec2021

VTEC 2021 BANFF

f@vtec2021

