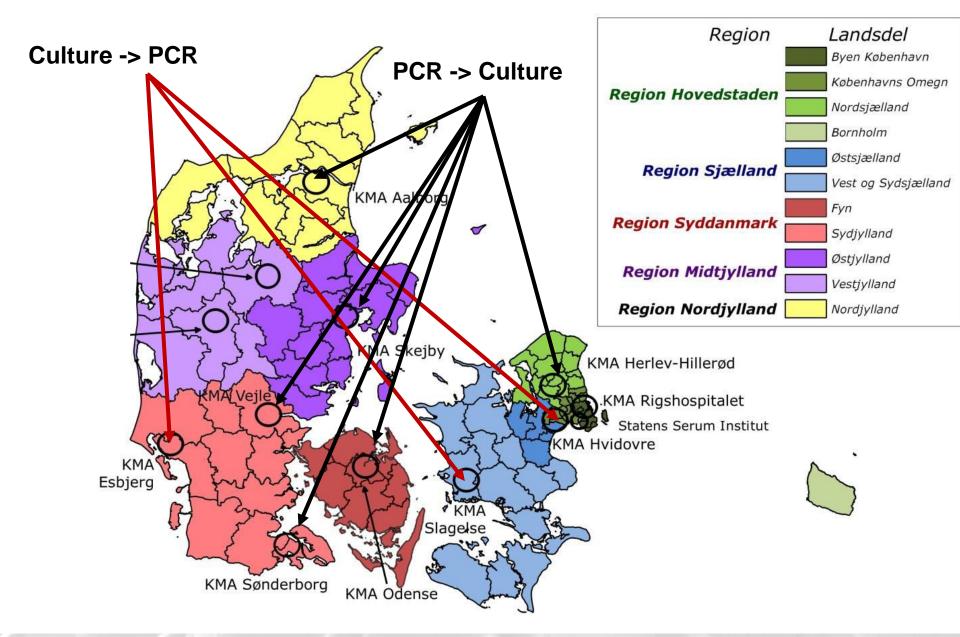
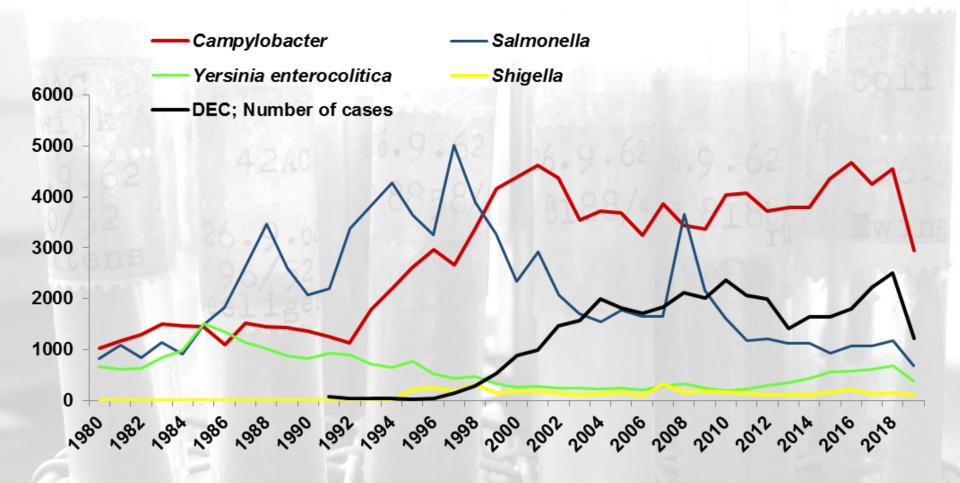


The Danish Surveillance System for pathogenic *E. coli* infections November 2019

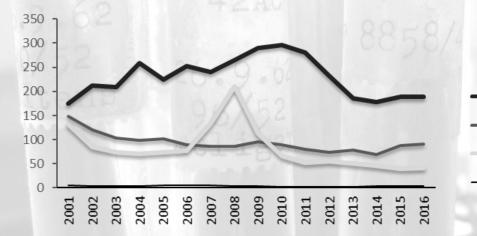


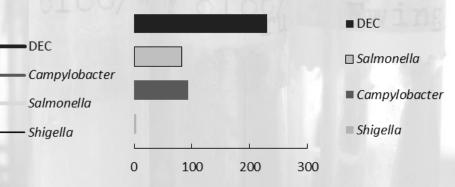
Flemming Scheutz The International Centre for Reference and Research on Escherichia and Klebsiella

Foodborne Infections Department for Bacteria, Parasites & Fungi STATENS SERUM INSTITUT



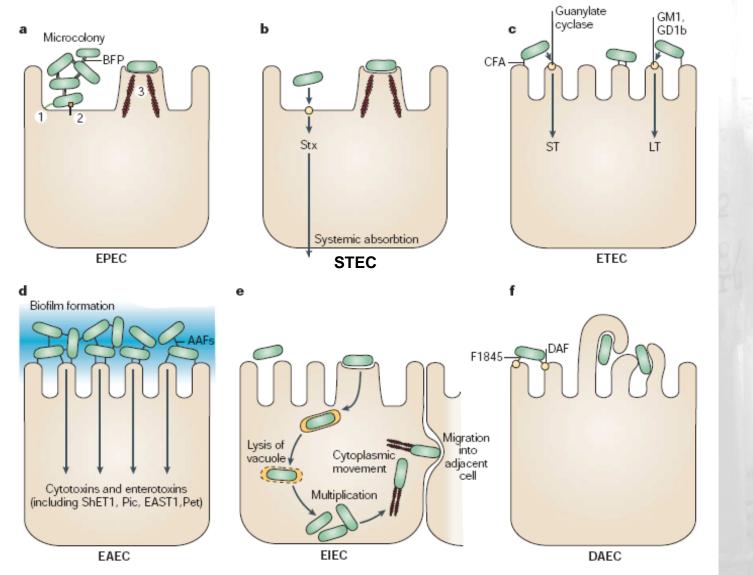
DEC in Denmark 1980- 2019


STATENS SERUM INSTITUT



S T A T E N S S E R U M I N S T I T U T

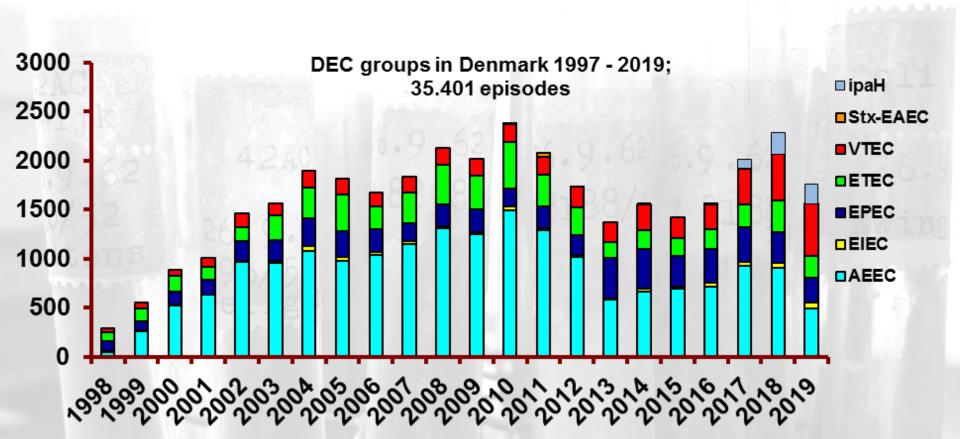
Reported incidence of the four most common enterpathogenic bacteria in Denmark, 2001 - 2016; less than 5 years Average incidence of the four most common enterpathogenic bacteria 2001 – 2016; less than 5 years



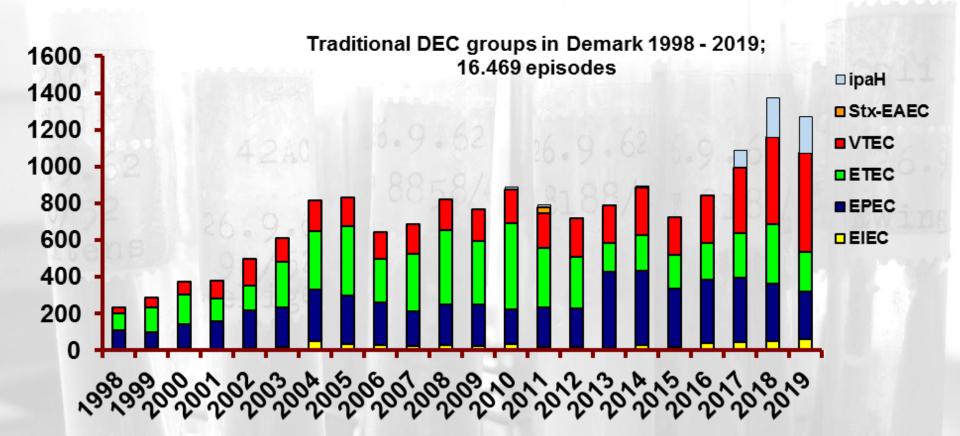
STATENS

SERUM INSTITUT

Diarrhoeagenic E. coli DEC

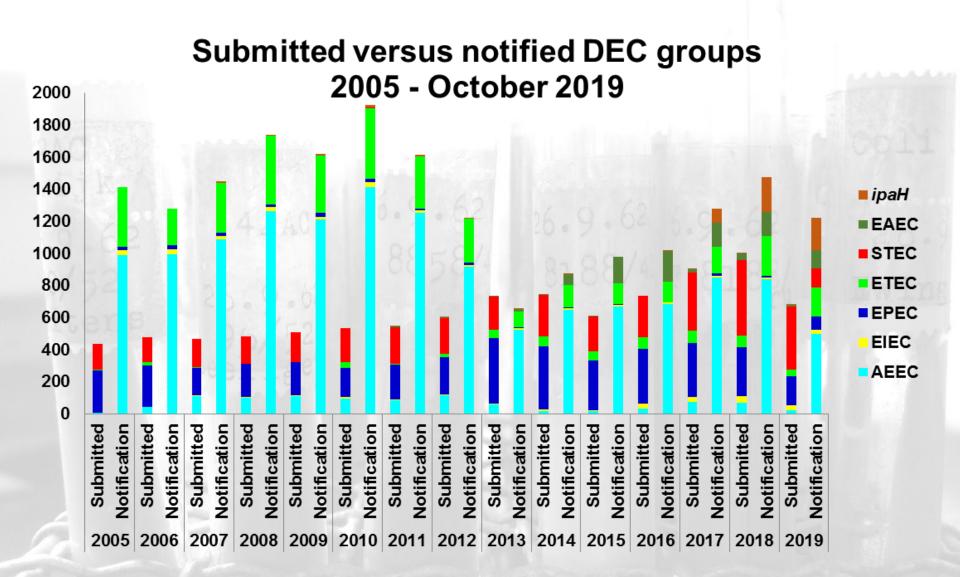


Kaper *et al*, Nature Reviews; Microbiology 2004



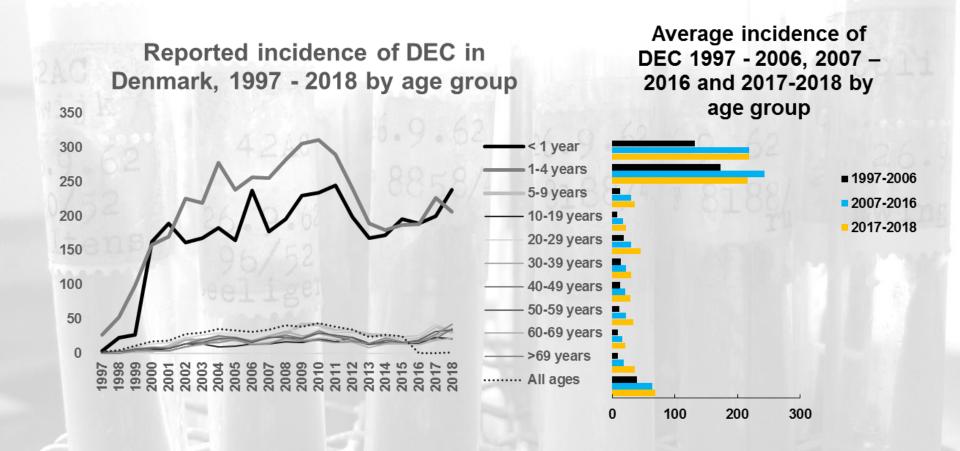
S E R U M I N S T I T U T

DEC in Denmark

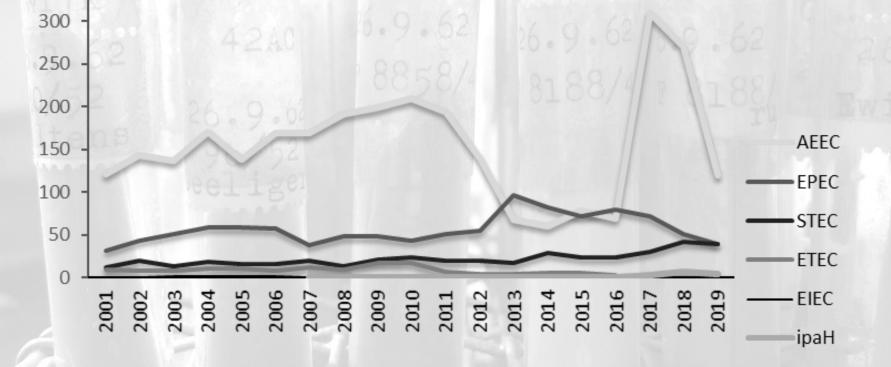


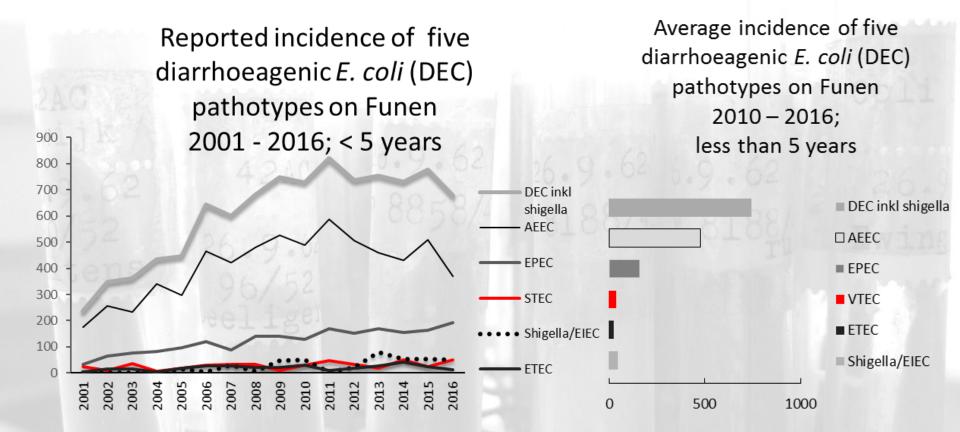
DEC in Denmark

STATENS SERUM INSTITUT

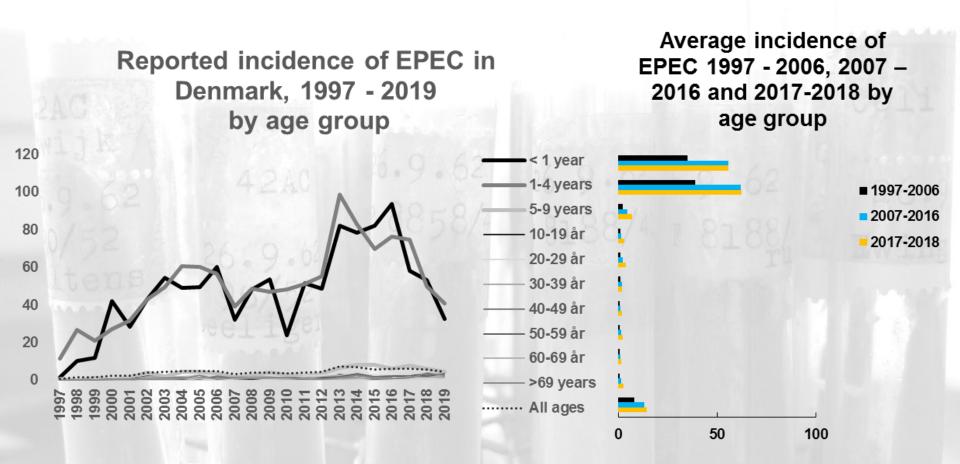


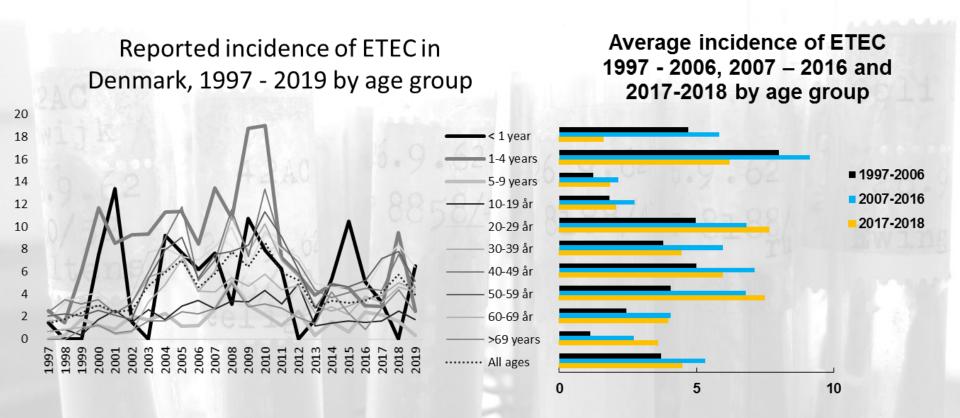
INSTITUT


STATENS SERUM INSTITUT

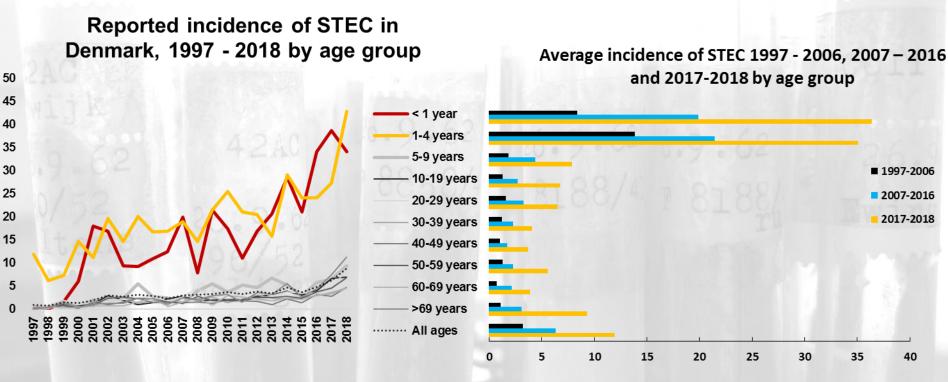


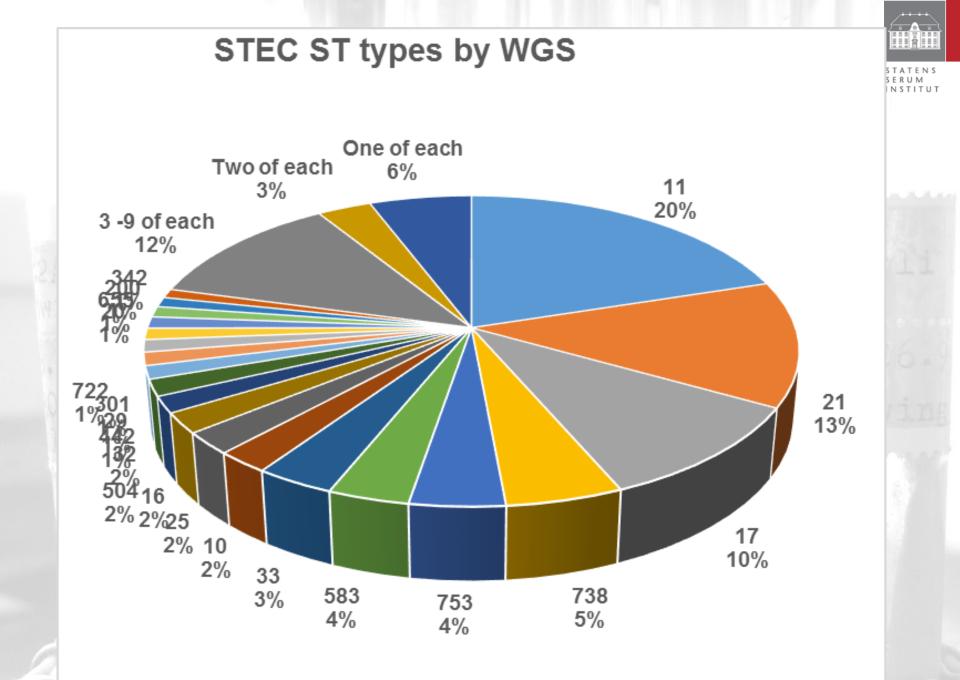
Reported incidence of five diarrhoeagenic *E. coli* (DEC) pathotypes in Denmark, 2001 - 2019; less than 5 years


350

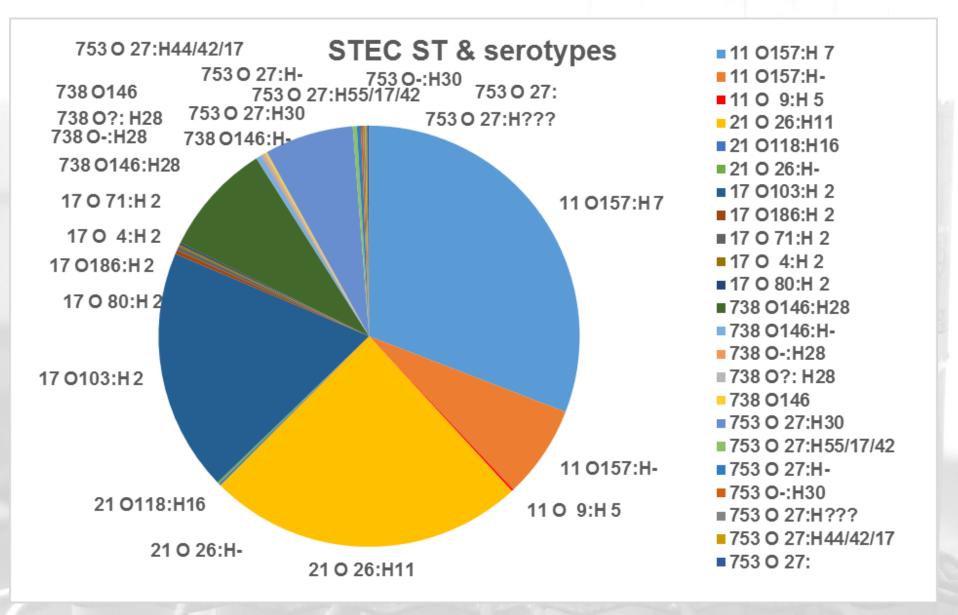


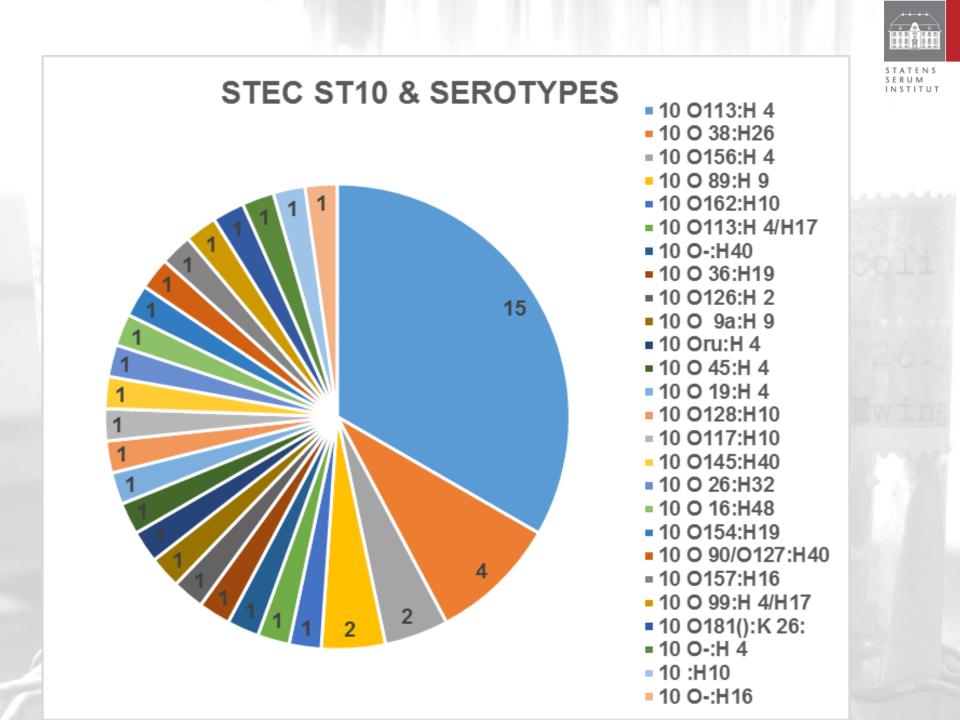
EPEC in Denmark

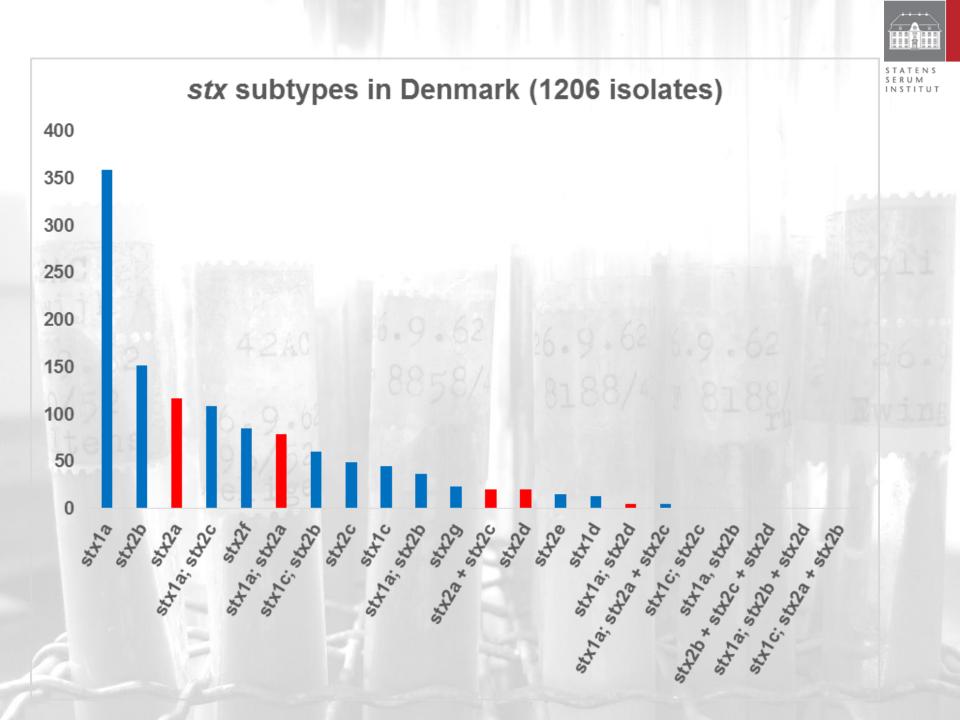

ETEC in Denmark



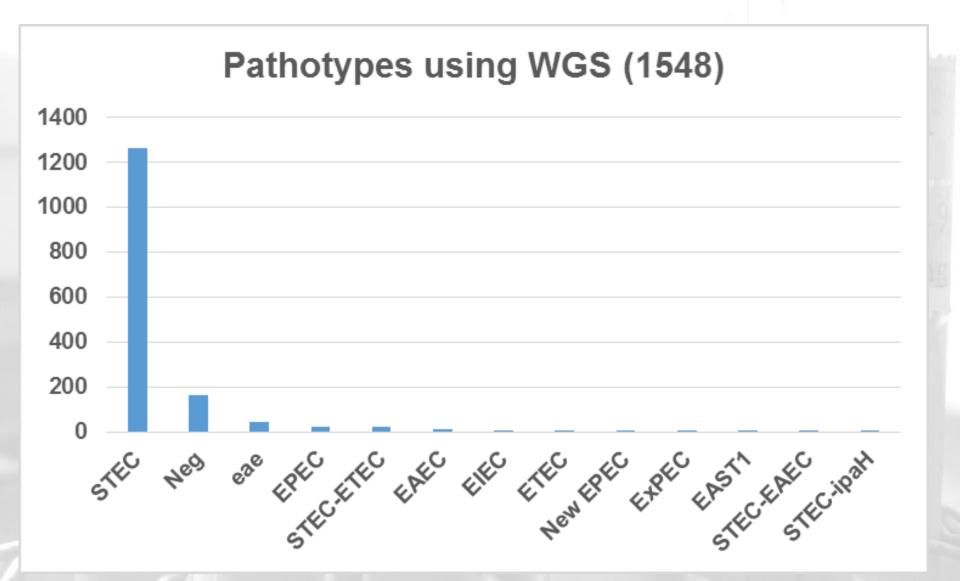
S T A T E N S S E R U M I N S T I T U T




STEC in Denmark



STATEN S SERUM



S T A T E N S S E R U M I N S T I T U T

Definition of hybrid

1: an offspring of two animals or plants of different races, breeds, varieties, species, or <u>genera</u> a *hybrid* of two roses

2: a person whose background is a blend of two diverse cultures or traditions
3a: something <u>heterogeneous</u> in origin or composition : <u>COMPOSITE</u> *hybrids* of complementary DNA and RNA strands
a *hybrid* of medieval and Renaissance styles

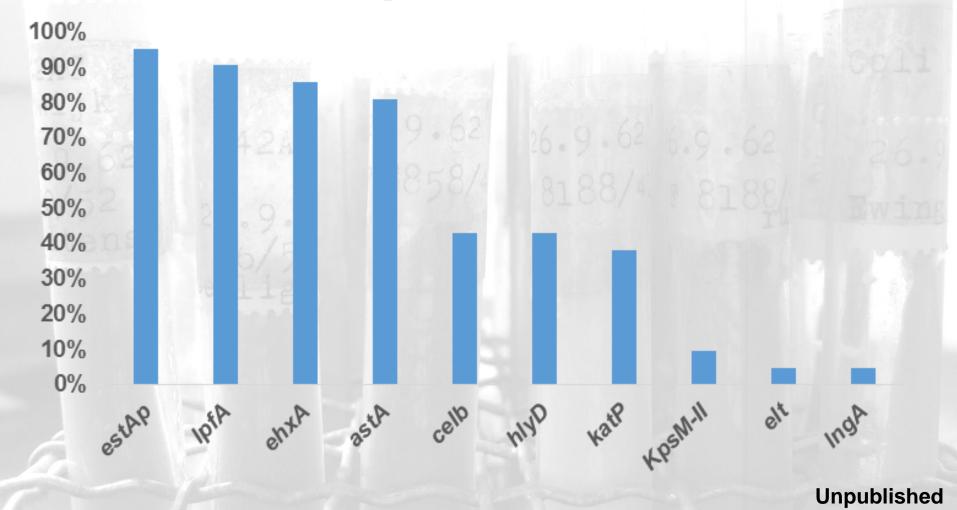
3b: something (such as a power plant, vehicle, or electronic circuit) that has two different types of components performing essentially the same function drives a *hybrid* that gets really good mileage

Crossovers

23

	MLS			
GROUP	T ST SEROTYPE	<i>stx_</i> sub	Enterotoxin	Total
STEC-ETEC	200 O187:H28	stx2g	estap	12
STEC-ETEC	5822 H 7	stx2g	estap	2
STEC-ETEC	5822 Orough:H 7	stx2g	estap	2
STEC-ETEC	5822 O?:H 7	stx2g	estap	1
STEC-ETEC	58 O 8:H 9	stx2e	estap	1
STEC-ETEC	325 O 15:H16	stx2g	<i>esta</i> p	1
STEC-ETEC	2353 O 6:H16	stx1a	elt	1
STEC-ETEC	8880 O 13:H23	stx2d	estap	1
STEC-ipaH	Shigella flexneri 2a	stx1a		1
STEC-EAEC	O104:H 4	stx2a	pic, sigA	1

1


Total

E. albertii eae, stx2f

21 STEC-ETEC in Denmark

Virulence genes in STEC-ETEC

SCIENTIFIC **Reports**

OPEN

Received: 11 January 2019 Accepted: 21 March 2019 Published online: 04 April 2019

Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic *Escherichia coli* (STEC/ETEC) Strains in Sweden

Xiangning Bai^{1,2}, Ji Zhang³, Anoop Ambikan¹, Cecilia Jernberg⁴, Ralf Ehricht^{5,6}, Flemming Scheutz⁷, Yanwen Xiong² & Andreas Matussek^{1,8,9}

Strain	Serotype	<i>stx</i> subtype	<i>sta</i> subtype	ST	Sampling year	Clinical symptom	Duration of <i>stx</i> shedding (day)	Age of patients (year)
SE572	O187:H28	stx2g	sta4, sta5	200	2005	D	11	1
SE573	O15:H16	stx2g	sta4	325	2009	D, AP, F	16	56
SE574	O136:H12	stx2a	sta4, sta4, sta5	329	2014	Ν	18	10
SE575	O100:H30	stx2e	sta1	993	2017	D	_	82

 Table 1. Characteristics of STEC/ETEC hybrid strains in this study. D: Diarrhea. AP: Abdominal pain. F: Fever.

 N: No symptoms, individual was sampled due to contact tracing around an index case. -: Unavailable.

Enterohemorrhagic *Escherichia coli* Hybrid Pathotype 080:H2 as a New Therapeutic Challenge

Nurcan Soysal, Patricia Mariani-Kurkdjian, Yasmine Smail, Sandrine Liguori, Malika Gouali, Estelle Loukiadis, Patrick Fach, Mathias Bruyand, Jorge Blanco, Philippe Bidet, Stéphane Bonacorsi

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 9, September 2016

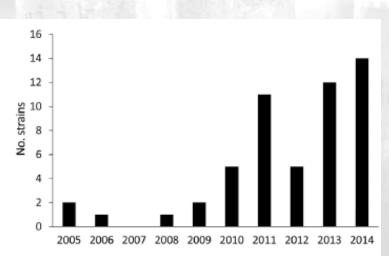


Figure 1. Number of enterohemorrhagic *Escherichia coli* O80:H2 strains detected annually, France, January 2005–October 2014.

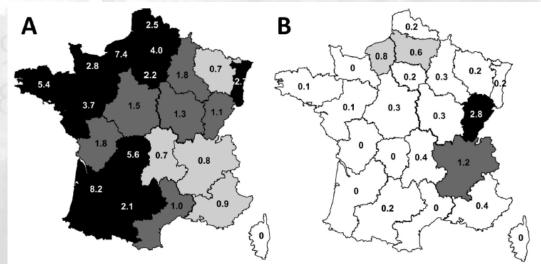


Figure 2. Regional 10-year cumulative incidence rates of hemolytic uremic syndrome cases caused by enterohemorrhagic *Escherichia coli* serotypes O157:H7 and O80:H2, France, January 2005–October 2014. A) Serotype O157:H7. B) Serotype O80:H2. White, <0.5 cases/100,000 children; light gray shading, 0.5–0.7 cases/100,000 children; medium gray shading, 0.8–0.9 cases/100,000 children; dark gray shading, 1–2 cases/100,000 children; black, >2 cases/100,000 children.

48/53 (91%) had HUS; Median age for these 48 patients was 1.2 years

Characteristics of 57 STEC-ExPEC O80:H2

69% combination af *stx2* subtypes: stx2c/2d (62%) stx2a/2d (7%) 31% only one subtype: stx2a (22%) stx2d (9%) All eae-ξ 87% enterohaemolysin ehxA All 57 isolates: \geq 4 genes from pS88 plasmid: *sitA*, *cia*, *hlyF*, *ompT* 98% iss og iroN genes 96% cvaA gene 61% iucC og etsC

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

AND INFECTION

SCMID ENGE

Decearch note

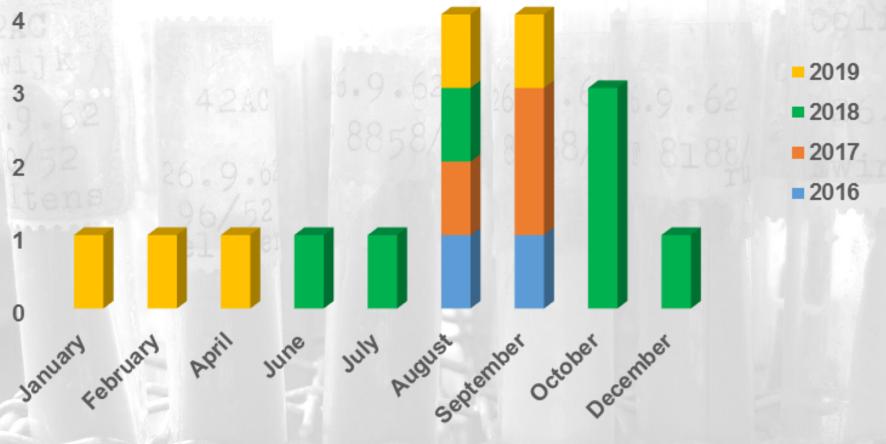
K. De Rauw et al. / Clinical Microbiology and Infection 25 (2019) 111.e5-111.e8

111.e7

Table 1

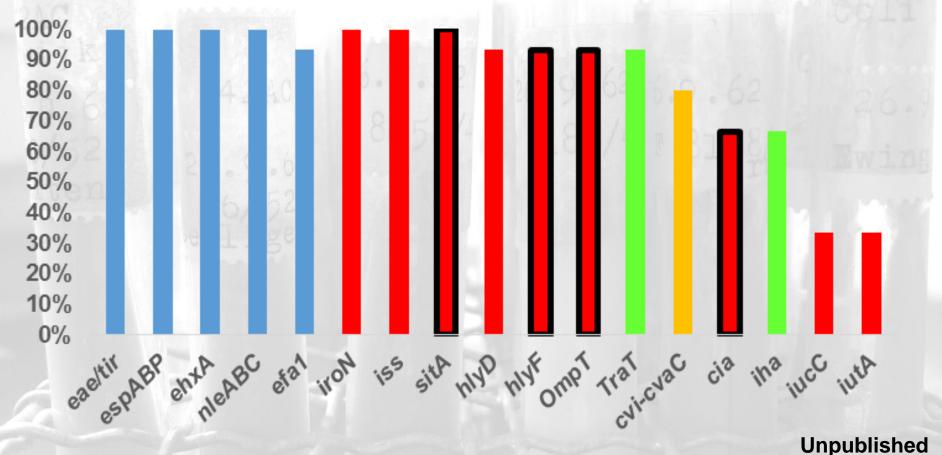
Characteristics, conventional virulence genes, extraintestinal pathogenic Escherichia coli plasmid pS88-related genes and extended-spectrum β-lactamase production of the studied Belgian E. coli O80:H2

Strain	Source	Year	Patien	Patient characteristics ^b			Virule	pS88 related genes									ESBL ^c				
			Sex	Age	Prov.	HUS	GI	stx	eae	ehxA	cia	сvаА	eitB	etsC	hlyF	iroN	iss	iucC	отрТр	sitA	
EH1752	Human	2008	F	1 y	FB	N	D	stx2d	eaeξ	+	+	+	_	+	+	+	+	+	+	+	-
EH1764		2008	F	72 y	UNK	N	D	stx2d	eaeξ	+	+	+	-	+	+	+	+	+	-	+	-
EH2262		2013	F	49 y	FB	N	D	stx2a	eaeξ	+	+	+	-	+	+	+	+	+	+	+	-
EH2400		2014	F	61 y	WF	N	D	stx2d	eaeξ	+	+	+	-	+	+	+	+	+	+	+	-
EH2436		2014	F	78 y	WB	UNK	UNK	stx2d	eaeξ	-	+	+	-	+	+	+	+	+	+	+	-
EH2549		2015	F	60 y	Α	N	BD	stx1a	eaeξ	+	+	+	-	-	_	-	+	-	-	-	+
EH2644		2015	F	11 m	WB	Y	D	stx2d	eaeξ	+	+	+	-	+	+	+	+	+	+	+	-
EH2786		2016	F	2 y	BCR	UNK	UNK	stx2a	eaeξ	+	+	+	-	_	+	+	+	_	+	+	-
EH2808		2016	F	61 y	N	Y	UNK	stx2d	eaeξ	+	+	+	-	+	+	+	+	+	+	+	-
FMV 36819_3ª	Calf	1987	UNK	2.5 m	WB	NR	D	stx1a	eaeξ	+	+	+	-	-	+	+	+	-	+	+	-
FMV 36819_5ª		1987	UNK	2.5 m	WB		D	stx1a	eaeξ	-	_	+	-	-	_	-	_	-	-	-	-
ARSIA 22		2009	UNK	UNK	L		D	1	eaeξ	+	+	+	-	_	+	+	+	_	+	+	-
ARSIA 23		2009	UNK	UNK	N		D	1	eaeξ	+	_	+	-	_	+	+	+	_	+	+	-
ARSIA 94		2010	M	1 m	Lu		D	1	eaeξ	+	+	+	-	+	+	+	+	+	+	+	-
ARSIA 150		2012	M	6.5 m	L		D	1	eaeξ	+	+	+	-	-	+	+	+	-	+	+	-
ARSIA 212		2013	F	4.5 m	L		D	1	eaeξ	+	+	+	-	-	+	+	+	-	-	+	-
ARSIA 3042		2014	M	16 d	L		D	1	eaeξ	+	+	+	-	_	+	+	+	_	+	+	-
ARSIA 3088		2015	М	17 d	Lu		D	1	eaeξ	+	+	+	-	-	+	+	+	-	-	+	+


^a Strains FMV 36849_3 and FMV 36819_5 originate from the same calf.

^b F, female; M, male; UNK, unknown; yr, years; m, months; d, days; Prov., Province of residence; FB, Flemish Brabant; WF, West Flanders; WB, Walloon Brabant; A, Antwerp; BCR, Brussels Capital Region; N, Namur; L, Liège; Lu, Luxembourg; HUS, haemolytic uraemic syndrome; N, no; UNK, unknown; Y, yes; NR, not relevant; GI, gastrointestinal symptoms; D, diarrhoea; UNK, unknown; BD, bloody diarrhoea.

^c ESBL, extended spectrum β-lactamase production.


16 isolates O80:H2 - seasonal variation

STEC-ExPEC O80:H2 in Denmark

Prevalence of ExPEC and DEC associated virulence genes

Whole-Genome Characterization and Strain Comparison of VT2f-Producing *Escherichia coli* Causing Hemolytic Uremic Syndrome

Laura Grande, Valeria Michelacci, Roslen Bondi, Federica Gigliucci, Eelco Franz, Mahdi Askari Badouei, Sabine Schlager, Fabio Minelli, Rosangela Tozzoli, Alfredo Caprioli, Stefano Morabito

 Table 2. Characteristics of VT2f-producing Escherichia coli investigated in a comparative analysis of the virulence profile of strains isolated from humans with mild and severe disease and from the animal reservoir*

Source and	Year		•	•								•			Intimin
strain	isolated	Serotype	Phylotype	MLST	LEE	adfO	efa1	cif	nleA	nleB	nleC	Hly	katP	espP	type
Human diarrhea															
M856	2008	ONT:H6	B2	ST583	+	+	-	+	-	+	+	-	-	-	α-2
M858	2008	O125:H6	B2	ST583	+	+	-	+	-	+	-	-	-	-	α-2
M859	2009	O113:H6	B2	ST121	+	+	-	+	-	-	-	-	-	-	α-2
M884	2011	O96:H7	B2	ST28	+	+	-	+	+	+	-	-	-	-	β-2
M885	2011	O132:H34	B2	ST582	+	+	-	_	_	+	+	-	-	-	β-2
M900	2012	O145:H34	B2	ST722	+	+	-	_	_	+	_	-	-	-	1
BCW5711	2012	O63:H6	B2	ST583	+	+	-	+	+	_	+	-	-	-	α-2
BCW5746	2012	O63:H6	B2	ST583	+	+	-	+	_	-	+	-	-	-	α-2
BCW5743	2012	O63:H6	B2	ST583	+	+	-	+	-	-	+	_	-	-	α-2
BCW5739	2012	O63:H6	B2	ST583	+	+	-	+	_	-	+	-	-	-	α-2
BCW5717	2012	O63:H6	B2	ST583	+	+	-	+	-	-	+	_	-	-	α-2
Pigeon															
ED360	1997	O45:H2	B1	ST20	+	+	_	+	+	+	+	-	-	-	β
ED361	1997	O75:H2	B1	ST20	+	+	-	+	+	+	+	-	-	-	β
ED363	1997	O4:H2	B1	UNK	+	+	-	+	+	+	+	-	-	-	β
ED366	1997	ONT:H2	B1	ST2685	+	+	-	+	+	+	+	-	-	-	β
ED369	1997	O45:H2	B1	ST20	+	+	-	+	+	+	+	-	-	-	β
ED377	1997	O4:H2	B1	UNK	+	+	-	+	+	+	+	-	-	-	β
ED430	2000	O45:H2	B1	ST20	+	+	-	+	+	+	+	-	-	-	β
ED444	2000	O128:H2	B1	ST20	+	+	-	+	+	+	+	-	-	-	β
HUS															
EF453	2013	O80:H2	B1	ST301	+	+	+	-	+	+	+	+	-	+	ξ
EF467	2013	O26:H11	B1	ST21	+	+	+	+	+	+	+	+	+	+	β
EF476	2014	O55:H9	B1	ST301	+	+	+	-	+	+	+	+	-	+	ξ

*Human samples were diarrheal or fecal samples from HUS cases and pigeon samples were feces from asymptomatic birds. LEE, locus of enterocyte effacement; MLST, multilocus sequence type; UNK, unknown; +, positive; –, negative.

Research Article

Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in *Escherichia coli* O2:H6

EMBO

Molecular Medicine

OPEN

ACCESS

RANSPAREN

PROCESS

Martina Bielaszewska^{1,†}, Roswitha Schiller^{1,2,†}, Lydia Lammers¹, Andreas Bauwens¹, Angelika Fruth³, Barbara Middendorf¹, M Alexander Schmidt⁴, Phillip I Tarr⁵, Ulrich Dobrindt^{1,2}, Helge Karch¹ & Alexander Mellmann^{1,*}

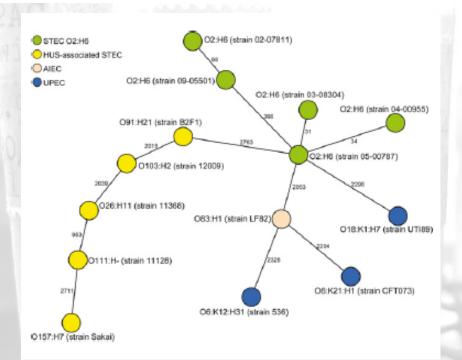
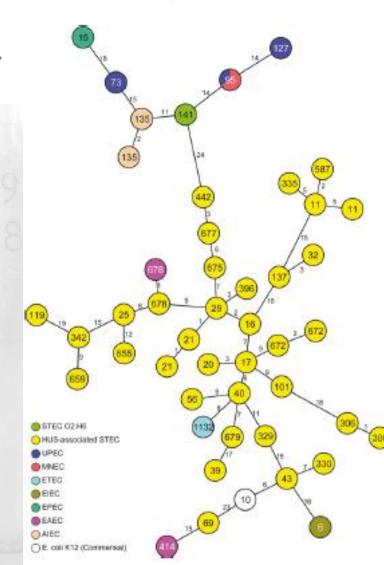
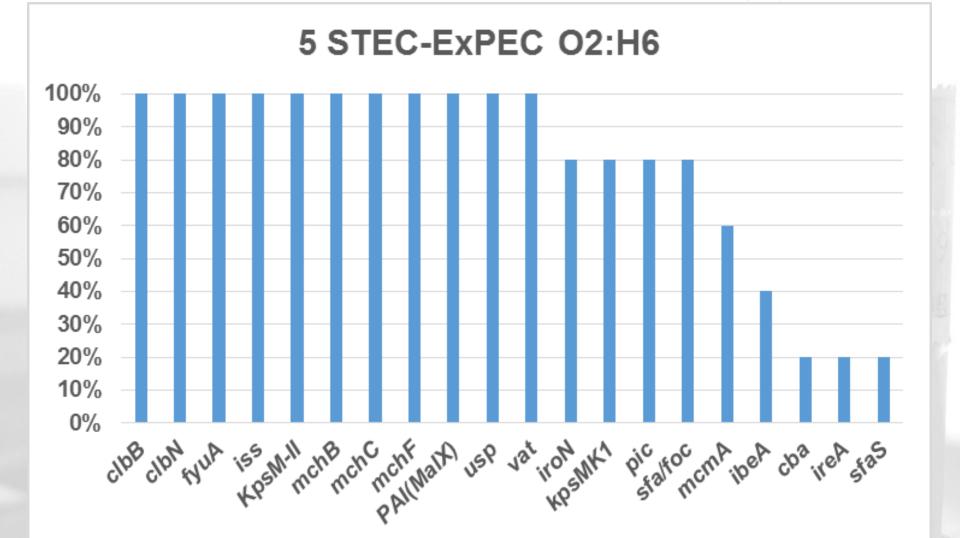
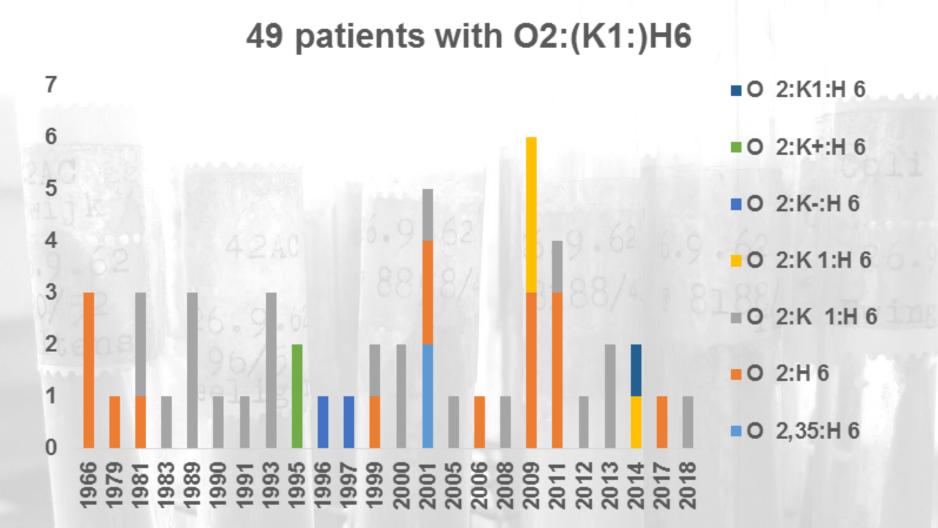




Figure 2. Phylogenetic relationships of STEC O2:H6 to prototypic UPEC, AIEC and most closely related and prototypic HUS-associated STEC based on whole genome sequencing. Minimum spanning tree is based on allelic profiles of 2827 genes present in all strains investigated (see supplementary Table S1). The different pathotypes are distinguished by colors of the circles and the serotypes and strain numbers (in parentheses) are given.



STATENS SERUM INSTITUT

49 patients with O2:(K1:)H6

NA D **Bacteraemia** UTI BD **Meningitis** Bacteraemia, recurrent; second PD Bacteraemia, recurrent; index Endocardit **BD; Long term carrier**

Extraintestinal pathogenic *E. coli* ExPEC Groups

E. coli associated with extraintestinal infections in humans

• ExPEC: Extraintestinal pathogenic E. coli

- UPEC: Uropathogenic E. coli
- MNEC: Meningitis E. coli (Neonatal)
- APEC: Avian pathogenic E. coli

Table 1 C.-D. Köhler, U. Dobrindt / International Journal of Medical Microbiology 301 (2011) 642- 647 ExPEC virulence factors.

Functional category	Virulence factor	Vol. 74, 2008		COM	APARISON OF B	PEC STRAINS REV	EALS ZOONO	TIC PATHOG	ENS 704			
Adhesin	Type 1 fimbriae (Fim)		TABLE 1. Results of genotyping studies*									
	P fimbriae (Pap/Prf)		% of prevalence	e relative to the total	-		sistal significano	of prevalence				
	S/F1C fimbriae (Sfa/Foc)	Gene, sizain, or replicos	UPBC (SII)	NMEC (91)	APBC (452)	APEC vs human RaPEC	APEC vi UPEC	APEC VI	UPBC1			
	N-acetyl D-glucosamine-specific fimbriae (Gaf)	юT	67.8	85.6	78.1	4	-	-	-			
	M-agglutinin (Bma)	Nia Luca	83.4 46.4	95.6 77.8	\$0.6 \$1.5	÷+	++	-	Ŧ			
	Bifunctional enterobactin receptor/adhesin (lha)	khyF eizA eizN	5.6 6.0 6.0	58.0 61.1 58.0	75.4 67.0 66.8	#	##	-	#			
	Afimbrial adhesin (Afa)	owy T epi ist eni	5.6 26.6 34.8	64.4 55.6 63.3	\$1.6 \$2.7 \$7.4	**	++	- ++	++			
	Temperature sensitive hemagglutinin (Tsh)	int/ cvs.4	23.4	68.9	77.4	**	‡‡ ‡‡	<u>++</u>	++ ++ ++			
		cvall37 cvall37	24.1 22.0 5.6	65.6 61.1 54.4	77.4 66.1 67.5	++	+++++	-	**			
Invasin	Invasion of brain endothelium (IbeA)	cveC cwi che	36 38 40	4.4 21.1	67.5 24.6 34.3	++ ++ ++	#	++				
		che atk eizt	26 43	21.1 31.1 5.6	52.7 37.2	÷	**	Ť.				
Iron acquisition	Siderophore receptor IreA	eidl U11051	4.5	5.6	37.2		++	#	-			
	Aerobactin (luc)	U110024 part#	2.4 2.4	5.6	19.7 19.7	##	**	-	-			
	Yersiniabactin (Ybt)	adda:	32	5.6	19.7 0.2	++	++	-	_			
	Salmochelin (Iro)	pand pape	54.8 59.7 55.4	26.9 35.6 32.2	7.5 40.5 39.2	#	##	2: of provakence: AFEE: 51 NMSEE - - - - ++ ++ ++ - - - - - - - - - - - - -	<u>+</u> +			
	Periplasmic iron binding protein (SitA)	papet papet papet papet papet papet kgat kgat kgat kgat kgat kgat	0.6	67	1.5		-		÷			
		papers kurl	42.9 20.2 29.2	22.2 4.4 70.0	40.7 0.7 15.7		+++		#			
Toxins	alpha-Hemolysin (HlyA)	kys2 kys3	78.5	85.6 2.2 56.7	25.0 1.8	++	++	-	2			
	Cytolethal distending toxin IV (CDT 1)	ikali int ihut	66.2 26.0 19.2	56.7 17.8 58.9	15.0 46.0	++ ++	++++++	++	Ξ.			
	Cytotoxic necrotizing factor 1 (CNF-1)	gindl Yal	19.2 22.6 62.3	56.7 74.4	14.2 8.8 33.4	** **	- ++	x of provakence AFFEIC'NN NMFEC 	**			
	Putative hemolysin (HlyF)	20	23.4	4.4	1.3	#	**		++			
	Colibactin (Clb)	nyfi fywr cdall bwall	8.7 1.3	35.6 2.2 51.1	1.1 0.4	++	++		++			
		faller lab	26.4	3.3	4.4	++	++++++		++			
	Serine protease autotransporters Sat, Pic	rft owy-T chrom	53 81.5	4.4 31.1 47.8	0.4	++ ++	÷.	÷+	::			
Protectins	Group II capsule incl. K1 capsule	perior chrom foll-arr foll- ite	16.0 14.3 39.2	4/.8 2.2 26.7	4.6 0.0 3.5	#	+++	-	++			
	Conjugal transfer surface exclusion protein (TraT)	alb rfa5	12.6	25.6 46.7	K.2 4.0			#	÷.			
	Outer membrane protease T (OmpT)	Indi/O replices Ind/IC replices	14.5	36.0	17.9	÷+	++	++	++			
		IncA/C replicon IncP replicon	0.6	0.0 K.Q	3.3 21.7	##	÷+	x of provakence AFFEIC'NN NMFEC 	Ŧ			
	Increased serum survival (Iss)	IncT replicon IncK/B replicon IncW replicon	0.0	0.0 2.2	0.9 1.5	1	-	-	-			
	Colicin V (Cva)	IncFILA replicon IncFILA replicon	0.2 3.0 2.6	0.0 1.1 1.1	0.0 24.3 1.5	++	++	++				
Others	D-Serine deaminase (DsdA)	IncHill replican	115 1.7 4.5	NDD 1.1 6.7	86.9 4.2 36.3	++	++	2	++			
Others		Incl replicon IncX replicon	0.0	0.0	0.0	++	++	++	_			
	Maltose and glucose-specific PTS transporter subunit	IncHII replican IncN replican IncHII2 heplican	1.9	0.0 2.2	1.1	Ť.	tt	NMEE	-			
		Incl./M replican	0.0	0.0	0.7	-		-	-			
	Flagella	Phylo B1 Phylo B2	4.5 62.7	2.2	15.9	##	**	+	-			
sed on results from	IICB (MalX) Flagella Anfora et al. (2007). Ewers et al. (2007). Johnson et al. (2003).	IncN replicon IncHIE replicon IncL/M replicon Phylo A Phylo Bi	0.2 0.2 0.0 10.5	22 0.0 0.0 11.1	15.0 4.0 0.7 36.9	- ++ - ++ ++ ++ ++	++	•	 - + ++			

Based on results from Anfora et al. (2007), Ewers et al. (2007), Johnson et al. (2003), Johnson et al. (2008c) and Rodriguez-Siek et al. (2005).

⁴ Values shown for results of genotyping are given in percentages. Two-way comparisons were performed for each gene, strain, or replices studied between the different groups examined, using Fehrer's exact not. For each comparison, a P value of <0.05 (+) was considered statistically significant, and a P value of <0.05 (-) was not considered statistically significant, while a P value of <0.05 (-) was not considered statistically significant, while a P value of <0.05 (-) was not considered statistically significant, eds, optiornal; chrom, chromosomai; Phylo,</p> phylotype.

Criteria for extraintestinal pathogenic *E. coli* (ExPEC)

- exhibits ≥2
- pap (P fimbriae)
- sfa/foc (S/F1C fimbriae)
- afa/dra (Dr binding adhesins),
- iutA (aerobactin receptor)
- kpsMTII (group 2 capsule synthesis)

Johnson, J. R., A. C. Murray, A. Gajewski, M. Sullivan, P. Snippes, M. A. Kuskowski, and K. E. Smith. 2003. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic *Escherichia coli* from retail chicken products. Antimicrob.Agents Chemother. **47**:2161-2168

Alternative definition for extraintestinal pathogenic *E. coli* (UPEC)

- presence of ≥3
- chuA (heme binding)
- fyuA (yersiniabactin receptor)
- vat (vacuolating toxin)
- yfcV (putative fimbrial subunit)

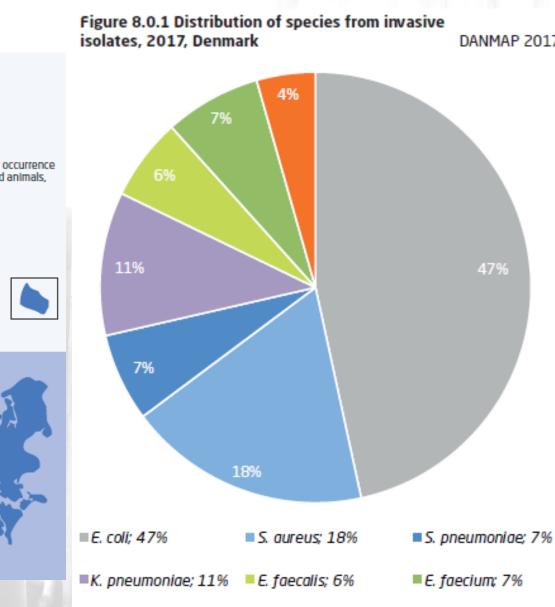
Spurbeck, R. R., P. C. Dinh, Jr., S. T. Walk, A. E. Stapleton, T. M. Hooton, L. K. Nolan, K. S. Kim, J. R. Johnson, and H. L. Mobley. 2012. *Escherichia coli* isolates that carry *vat*, *fyuA*, *chuA*, and *yfcV* efficiently colonize the urinary tract. Infect.Immun. **80**:4115-4122.

Whole genome sequence (WGS)-based prediction of antimicrobial resistance in clinical *Escherichia coli* from one day in Denmark

Non-biased snapshot of the *E. coli* available from that day (January 2018) in the clinical settings in Denmark. 170 isolates:

- 148 (87.1%) urine
- 8 (4.7%) blood
- 14 (8.2%) other sources including urethral and tracheal swabs, pus, faeces and abscess

Findings:

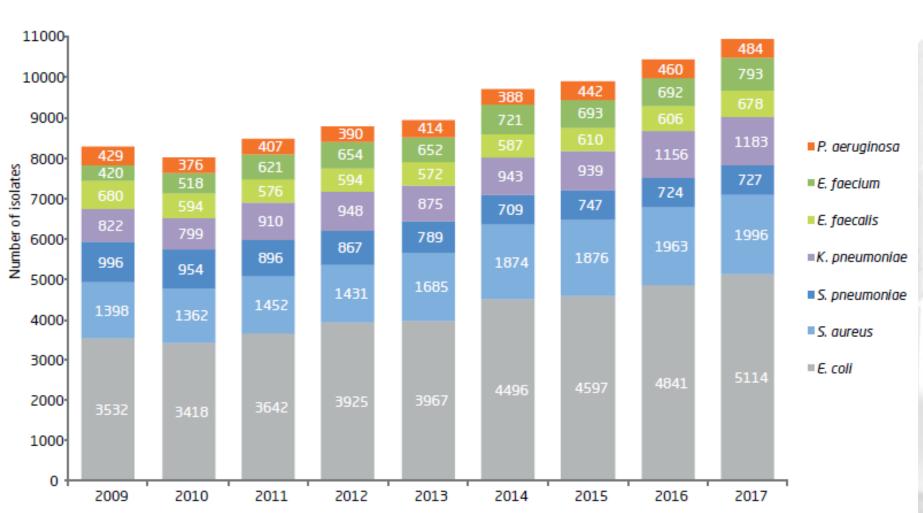

- ST-73 (n=22; 12.9%)
- ST-69 (n=19; 11.2%)
- ST-131 (n=13; 7.6%)
- ST-95 (n=10; 5.9%)
- other STs represented by six or less isolates each

Whole genome sequence (WGS)-based prediction of antimicrobial resistance in clinical *Escherichia coli* from one day in Denmark

- All ST-131 (n=13) serotype O25:H4
- 7 (53.8%) were resistant to 3rd generation cephalosporins, attributed either to *bla*CTX-M-15 (n=5) or *bla*CTX-M-27 (n=2)
- These isolates correspond to 70% of all 3rd generation cephalosporin-resistant isolates observed in this study (n=10).

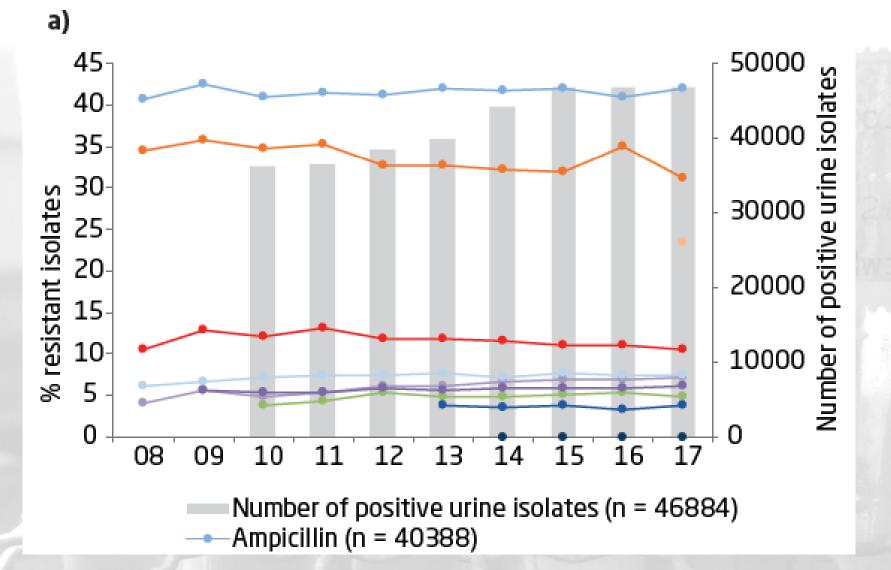
DANMAP 2017

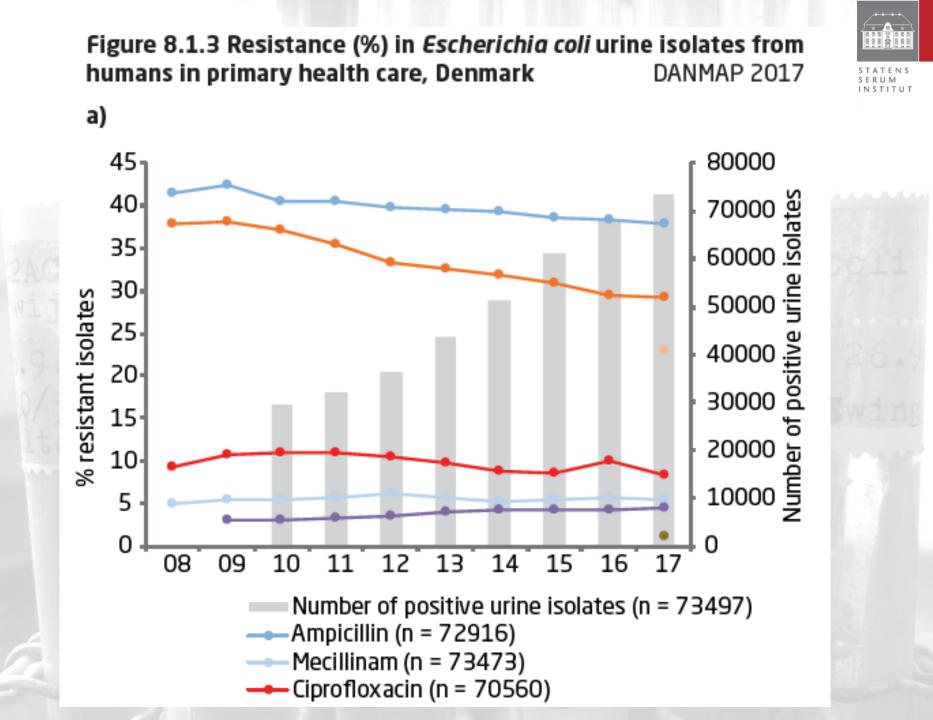
DANMAP 2017


DANMAP 2017 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark

Statens Serum Institut National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark

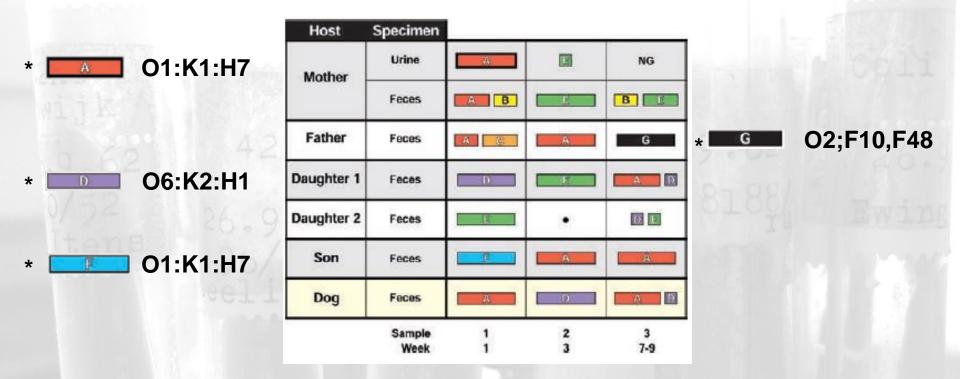
P. aeruginosa; 4%




Figure 8.0.2 Number of submitted invasive isolates (from 2009 to 2017) for each of the species under surveillance. DAM

DANMAP 2017

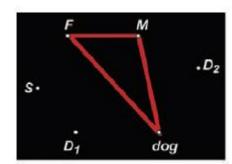
Figure 8.1.2 Resistance (%) in *Escherichia coli* urine isolates from humans in hospitals, Denmark DANMAP 2017



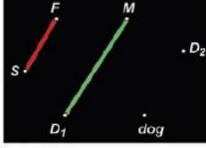
Sharing of Virulent *Escherichia coli* Clones among Household Members of a Woman with Acute Cystitis ^{Clinical Infectious Diseases} 2006;43:e101-8

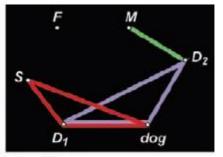
S T A T E N S S E R U M I N S T I T U T

James R. Johnson and Connie Clabots



* No. of Virulence Factor (VFs) scores: ExPEC ≥ 10


pap sfa/foc focG iha hlyD sat iroN fyuA ireA iutA kpsM II K1 traT ompT iss usp malX H7


S T A T E N S S E R U M I N S T I T U T

Initial

Week 3

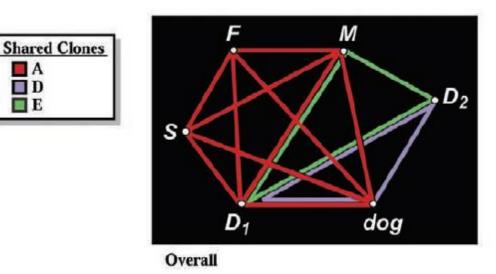


Figure 3. Clone-sharing relationships among 6 household members at 3 individual sampling points (top) and overall (bottom). Colored lines indicate presence of indicated clone (A, red; D, purple; E, green) in both members of a particular host pair, either at the same sampling point (top) or overall (bottom). More clone-sharing pairs are evident in the bottom panel than in the 3 top panels combined.

WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark

Louise Roer¹*, Frank Hansen¹, Martin Christen Frølund Thomsen², Jenny Dahl Knudsen³, Dennis Schrøder Hansen⁶, Mikala Wang⁵, Jurgita Samulionien⁶, Ulrik Stenz Justesen¹, Bent L. Røder⁸, Helga Schumacher⁵, Claus Østergaard⁹, Leif Percival Andersen¹⁰, Esad Dzajic¹¹, Turid Snekloth Søndergaard¹², Marc Stegger³, Anette M. Hammerum¹ and Henrik Hasman¹

S T A T E N S S E R U M I N S T I T U T

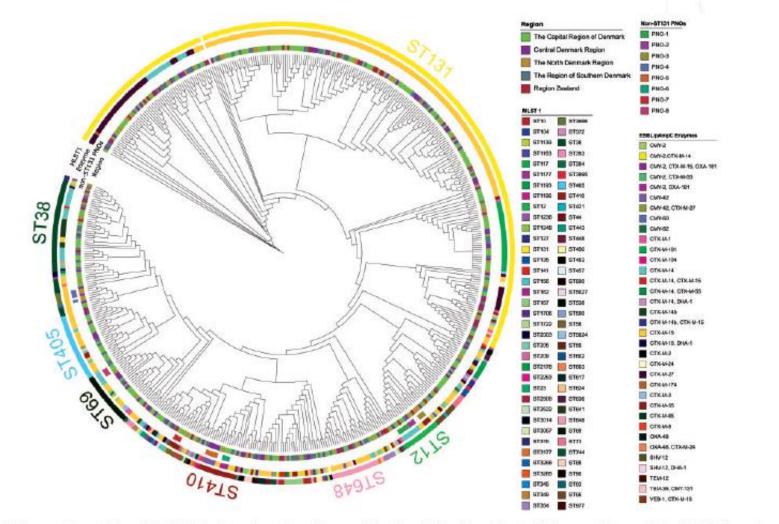


Figure 1. Phylogenetic analysis of 3GC-R Ec isolates from bloodstream infections in Danish patients. Phylogenetic tree of the 518 ESBL, carbapenemase and pAmpC isolates, constructed from 191623 SNPs, and represented as a cladogram. PNOs for ST131 are presented in Figure 2. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.

Journal of Antimicrobial Chemotherapy

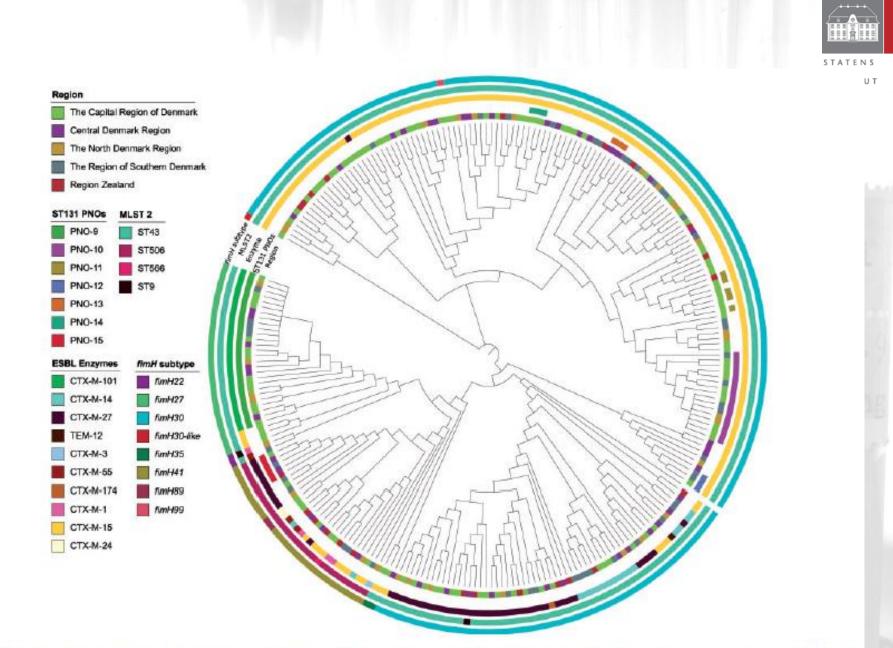
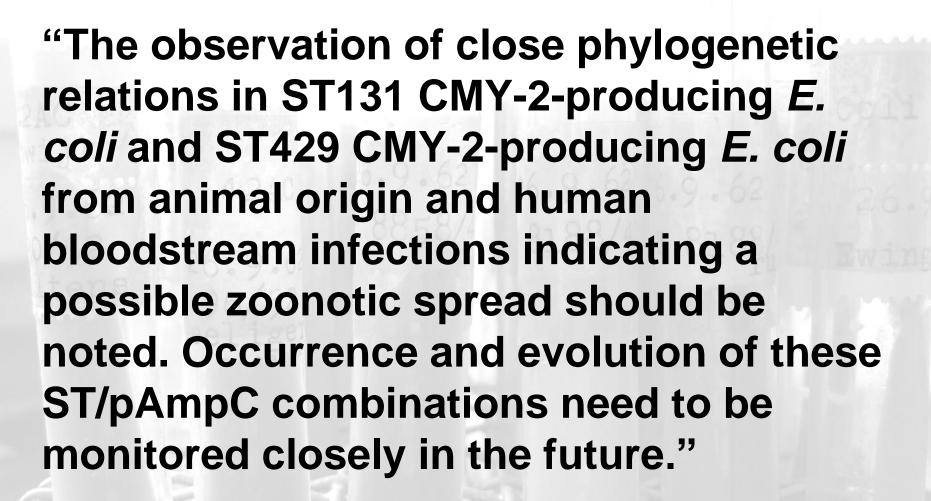
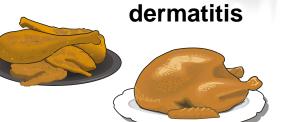



Figure 2. Phylogenetic analysis of ST131 ESBL E. coli isolates from bloodstream infections in Danish patients. Phylogenetic tree of the 258 ST131 ESBL isolates, constructed from 15050 SNPs, and represented as a cladogram. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.

DANMAP 2017



ExPEC as a zoonotic agent?

- 24% (396/1648) of foods samples *E. coli* positive:
- 9 % in miscellaneous foods (="non-meat")
- 69% in beef / pork
- 92% in poultry

	ExPEC	AMR
 Miscellaneous for 	ods : 4%	27%
Beef / pork :	19%	85%
Poultry:	46%	94%

colonisation

STATENS SERUM INSTITUT

E. coli O45:K1:H7 causing an outbreak of neonatal meningitis and sepsis in Germany

septicaemia

colonisation septicaemia meningitis

Non-publiched data by Rita Prager, Helmut Tschäpe et al.

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

STATENS SERUM INSTITU

Poultry as reservoir for extraintestinal pathogenic *Escherichia coli* O45:K1:H7-B2-ST95 in humans

Azucena Mora^{a,*}, Susana Viso^a, Cecilia López^a, María Pilar Alonso^b, Fernando García-Garrote^b, Ghizlane Dabhi^a, Rosalía Mamani^a, Alexandra Herrera^a, Juan Marzoa^a, Miguel Blanco^a, Jesús E. Blanco^a, Maryvonne Moulin-Schouleur^{c,d}, Catherine Schouler^{c,d}, Jorge Blanco^a

^a Department of Microbiology and Parasitology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain ^b Unit of Microbiology, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain ^c Laboratoire de Pathogénie Bactérienne, INRA, LUMP, 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France

... The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry ...

... In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans

Epidemiol. Infect. (2010), **138**, 1679–1690. © Cambridge University Press 2010 doi:10.1017/S0950268810001639

S T A T E N S S E R U M I N S T I T U 1

REVIEW ARTICLE A systematic review of outbreak and non-outbreak studies of extraintestinal pathogenic *Escherichia coli* causing community-acquired infections

D. B. GEORGE AND A. R. MANGES*

Table 1. Reported outbreaks of community-acquired Escherichia coli causing human extraintestinal infections

Ref.	Location	Infection*	Observation period	Peak period	No. isolates	No. epidemic strain	Proportion (%)	Sex‡	Age (yr)	Serotype/sequence type (ST)
[13]	London, UK	UTI, PY, B	1986-1987	Oct. 1986-Apr. 1987		> 500		в	0-97	O15:K52:H1
[15]	Copenhagen, Denmark	UTI	1991-1992	Apr. 1991-Sept. 1991	72	19	26	В	0-87	O78:H10
[28]	Columbus, USA	UTI			101	16	16	F	≥18	O18:K1:H7
[27]	Barcelona, Spain		1994-1995		1871	25	1		0-83	O15:K52:H1
[16]	Berkeley, USA	UTI	1999-2000		255	28	11	F	18-45	O11/O17/O77:K52:H18
[14]	Calgary, Canada	UTI, PY, B	2000-2002	OctDec. 2000	232	67	29	B	1-92§	
[37]	UK	UTI, PY, B	2003-2004	Oct. 1986-Apr. 1987	291	110	38			O25
[35]	Zagreb, Croatia	U, UTI, PY	2004	-	2451	25	1	B	1-79	04
[36]	UK	U, B	2004-2005		88	21	24			O25-ST131
[33]	Spain	UTI, B	2004-2005		52.5	103	20	B	≤14 to ≥65	
[34]	Portugal	U, B†	2004-2006		119	91	76	B		
[44]	Lugo, Spain	U	2006-2008		11 343	77	1			O25(b):H4-ST131

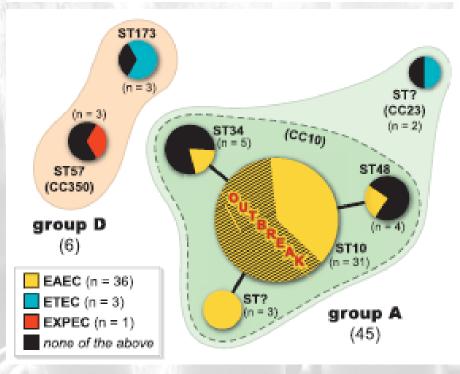
* B, Isolates recovered from blood samples, bacteraemia cases or sepsis cases; U, Isolates recovered from urine samples; UTI, isolates recovered from cases of cystitis or UTIs; PY, isolates recovered from pyelonephritis cases.

† E. coli was also recovered from wounds, ascitic fluid, sputum, gastric fluids, bronchioaveolar lavage and secretions.

‡ M, male; F, female; B, both male and female.

§ Dr J. Pitout, personal communication.

|| Indicates that the proportion is estimated based on a sub-sample of ESBL-producing E. coli and therefore does not reflect the overall proportion.


Crossovers

Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection

Bente Olesen,^{a,b} Flemming Scheutz,^b Rebecca L. Andersen,^a Megan Menard,^c Nadia Boisen,^d Brian Johnston,^c Dennis S. Hansen,^a Karen A. Krogfelt,^e James P. Nataro,^d and James R. Johnson^c

Genes present in>90% of outbreak isolates included *fimH* (type 1 fimbriae); *fyuA*, *traT*, and *iutA* (associated with ExPEC);

sat, pic, aatA, aggR, aggA, aar, aaiC, aap, and ORF3 (associated with EAEC) Gene content of the ExPEC database downloaded from NCBI and to be added to the VirulenceFinder database.

38 ExPEC specific genes

Gene	Description	No. from NCBI	No. in db
afaA	Transcriptional regulator	14	4 STATENS
afaB	Periplasmic chaperone	12	6 SERUM INSTITUT
afaC	Outer membrane usher protein	13	11
afaD	Afimbrial adhesin	62	37
afaE	Adhesin protein	42	30
сеа	colicin E1	132	23
chuA	Outer membrane hemin receptor	423	79
cia	colicin ia	259	37
cib	colicin ib	24	6
clbB	Hybrid nonribosomal peptide / polyketide megasynthase	270	77
сvаС	microcin C	166	10
etsC	Putative type I secretion outer membrane protein	169	18
focC	S fimbrial/F1C minor subunit	710	2*
focG	F1C adhesin	9	2
focI	S fimbrial/F1C minor subunit	5	1
fyuA	Siderophore receptor	465	98
hlyF	Hemolysin F	287	21
hra	Heat-resistant agglutinin	132	8
ibeA	Invasin of brain endothelial cells;	369	66
irp2	High molecular weight protein 2 non ribosomal peptide synthetase	1033	346
iucC	Aerobactin synthetase	335	47
iutA	Ferric aerobactin receptor	350	71
kpsE	Capsule polysaccharide export inner-membrane protein	54	21
kpsM	Polysialic acid transport protein	94	82
mcbA	Bacteriocin microcin B17	949	2
neuC	Polysialic acid capsule biosynthesis protein	961	68
отрТ	Outer membrane protease (protein protease 7)	3564	314
papA	Major pilin subunit	116	29
рарС	Outer membrane usher P fimbriae	786	40
sfaD	S fimbrial/F1C minor subunit	18	10
sfaE	S fimbrial/F1C minor subunit	3	3*
sfaS	sialic acid-binding adhesin	54	2
sitA	Iron transport protein	369	56
tcpC	Tir domain-containing protein	24	3
terC	Tellurium ion resistance protein	126	25
traT	Outer membrane protein complement resistance	1386	200
usp	Uropathogenic specific protein	19	6
yfcV	Fimbrial protein	768	82
Total	and the second	14441	1929

*Two *sfaE* and *focC* alleles were 100% identical, and are called *focCsfaE* in the database

Conclusions

- DEC are important causes of diarrhoea
- eae positive E. coli (EPEC, STEC, AEEC) are primarily affecting children < 5 years
- The ST and/or the serotype cannot be taken as a proxy for virulence potential
- *E. coli* crossover pathotypes poses diagnostic and clinical challenges
- ExPEC are the main cause of UTI and bacteraemia
- What is the zoonotic potential of APEC/ExPEC?

"WE FINISHED THE GENOME MAP, NOW WE CAN'T FIGURE OUT HOW TO FOLD IT !"

